An improved SIR-based sequential Monte Carlo algorithm
Résumé
Sequential Monte Carlo (SMC) algorithms are based on importance sampling (IS) techniques. Resampling has been introduced as a tool for fighting the weight degeneracy problem. However, for a fixed sample size N, the resampled particles are dependent, are not drawn exactly from the target distribution, nor are weighted properly. In this paper, we revisit the resampling mechanism and propose a scheme where the resampled particles are (conditionally) independent and weighted properly. We validate our results via simulations.