SMOS images restoration from L1A data: A sparsity-based variational approach - IMT - Institut Mines-Télécom Access content directly
Conference Papers Year : 2014

SMOS images restoration from L1A data: A sparsity-based variational approach

Abstract

Data degradation by radio frequency interferences (RFI) is one of the major challenges that SMOS and other interferometers radiometers missions have to face. Although a great number of the illegal emitters were turned off since the mission was launched, not all of the sources were completely removed. Moreover, the data obtained previously is already corrupted by these RFI. Thus, the recovery of brightness temperature from corrupted data by image restoration techniques is of major interest. In this work we propose a variational approach to recover a super-resolved, denoised brightness temperature map based on two spatial components: an image u that models the brightness temperature and an image o modeling the RFI. The approach is totally new to our knowledge, in the sense that it is directly and exclusively based on the visibilities (L1a data), and thus can also be considered as an alternative to other brightness temperature recovery methods.
Fichier principal
Vignette du fichier
inproceedings-2014-16025-1.pdf (1.36 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01265931 , version 1 (01-02-2016)

Identifiers

Cite

J. Preciozzi, Pablo Musé, Andrés Almansa, Sylvain Durand, Ali Khazaal, et al.. SMOS images restoration from L1A data: A sparsity-based variational approach. IEEE Geoscience and Remote Sensing Symposium, Jul 2014, Quebec, Canada. pp.2487-2490, ⟨10.1109/IGARSS.2014.6946977⟩. ⟨hal-01265931⟩
492 View
557 Download

Altmetric

Share

Gmail Facebook X LinkedIn More