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ABSTRACT

Data degradation by radio frequency interferences (RFI) is
one of the major challenges that SMOS and other interfer-
ometers radiometers missions have to face. Although a great
number of the illegal emitters were turned off since the mis-
sion was launched, not all of the sources were completely
removed. Moreover, the data obtained previously is already
corrupted by these RFI. Thus, the recovery of brightness tem-
perature from corrupted data by image restoration techniques
is of major interest. In this work we propose a variational ap-
proach to recover a super-resolved, denoised brightness tem-
perature map based on two spatial components: an image u
that models the brightness temperature and an image o mod-
eling the RFI. The approach is totally new to our knowledge,
in the sense that it is directly and exclusively based on the
visibilities (L1a data), and thus can also be considered as an
alternative to other brightness temperature recovery methods.

Index Terms— SMOS, MIRAS, RFI, non-differentiable
convex optimization, total variation minimization.

1. INTRODUCTION

Meteorological and climate predictions are very sensitive to
variables such as surface soil moisture (SSM) and sea surface
salinity (SSS). The MIRAS instrument (Microwave Imaging
Radiometer by Aperture Synthesis), carried on the SMOS
satellite, is capable of measuring the corresponding bright-
ness temperature of both SSM and SSS indirectly, in the L-
band microwave, using interferometry and sensing the so-
called visibility function [1], defined as the complex cross-
correlation between the two signals collected by each pair
(Ak, Al) of antennas:

Vk,l =
1√

∆k∆l

∫∫
||ξ||≤1

Uk(ξ)U∗l (ξ)(Tb(ξ)−Tr)r̃kl(t)
e−i2πuT

klξdξ√
1− ||ξ||2

.

(1)
Here, ukl is the frequency baseline associated to Ak and Al;
Uk, Ul are the corresponding normalized voltage patterns and
∆k,∆l are the solid angles of the corresponding antennas.
The Cartesian coordinates ξ = (ξ1, ξ2) are the spatial do-

main coordinates, restricted to the unit circle. Tr is the phys-
ical temperature of the receivers (assumed the same for all
receivers); r̃kl is the Fringe-Wash function, a function of the
spatial delay t = ukl

T ξ
f0

, where f0 = c
λ0

is the central fre-
quency of observation. Note that the brightness temperature
Tb is a 2D function restricted to the unit circle (||ξ|| ≤ 1).

The MIRAS instrument is composed of three arms on a Y-
shaped configuration, each arm carrying an array of antennas.
This configuration leads to a hexagonal sampling grid of the
visibility function. Figure 1 shows the star shaped domain Ω
obtained from the MIRAS configuration.

If we denote by T = Tb − Tr, the samples of T in the
hexagonal grid could be obtained from the visibility samples
by solving the linear system GT = V , where matrix G rep-
resents the discrete linear operator given by (1). Of course,
this inverse problem is ill-posed since G is not invertible (due
to the lack of information beyond Ω). Hence, additional con-
straints must be added to the model. In [2], Anterrieu pro-
poses to solve it as a constrained least square problem, im-
posing that T has no frequency components outside Ω. This
problem can be formulated as the unconstrained minimisation
of |V − GF∗ZΩT̂ |22 on T̂ , where F∗ denotes the hexago-
nal Inverse Fourier Transform, ZΩ the zero padding operator
and T̂ the Fourier coefficients of T for frequencies in Ω. Let
J = GF∗ZΩ, then T̂ = J+V where J+ is the pseudo-inverse
of J: J+ = (J∗J)−1J∗. This is the way the L1a product is
obtained, and corresponds exactly to T̂ . In what follows we
will note L1b data product as DL1b.
Using L1b data, T can be recovered from DL1b very eas-
ily: T = F∗ZΩDL1b. Naturally, as we have shown in [3],
this simple Fourier inversion leads to potentially very strong
Gibbs effects which are partially alleviated (as proposed by
[2]) by the use of a Blackman window B: T = F∗BZΩDL1b.
As we pointed out in [3], such linear approaches are not well
suited for the restoration of SMOS images, because usually
the measurements are polluted by a number of strong outliers
that correspond to signals emitted in the L-Band by illegal an-
tennas1. Because these outliers have frequencies beyond Ω,
very strong Gibbs effects can be seen on the final brightness

1International radio regulations reserve the L-band is exclusively to the
Earth Exploration Satellite Service, space research and radio astronomy.



temperature images (see Figure 2). To eliminate them and to
obtain a super-resolved solution, in [3] we proposed to solve
the following variational formulation

min
u,o
{TV(u) + µS(o)} s.t. ‖W (F (o+u)−DL1b)‖22 ≤ |Ω|σ2,

(2)
where TV (u) denotes the total variation semi-norm of the tar-
get image u, S(o) a sparsity measure on the outliers (in prac-
tice `0 or `1 norms),W is a weighting matrix and σ2 is the in-
strumental noise, assumed to be white and Gaussian (see [3]
for details). Note that this method allows to automatically
separate the restored image u from the outliers. Although this
approach produced significantly better results than previous
ones (Blackman and direct Fourier inversion), the model is
not totally accurate since the restoration is performed starting
from the DL1b, which has already been subject to regularisa-
tion.

In this work, we improve our previous model, by directly
dealing with visibilities (SMOS L1a data product). The goals
are exactly the same than those of our previous work: to de-
tect and remove signal effects generated from illegal emit-
ters (outliers), while at the same time extrapolating the image
spectrum in order to minimize Gibbs effects. As we will show
in the following sections, this simple data change is not easy
to implement because of the lack of regularization in the L1a
data, and because of several issues that have to be consid-
ered to make the inverse problem numerically tractable. To
our knowledge, this is the first work that tackles the prob-
lem directly and exclusively from the L1a product. Other ap-
proaches, such as [4], first localise the potential outliers based
on the L1b product, then simulate the contribution on visibil-
ities of each outlier to remove it from the original L1a data;
finally they convert the outlier-free L1a data to L1b (by means
of the pseudo-inverse matrix J+) as an intermediate step to
recover the temperatures.

Fig. 1. Spectral domain Ω as-
sociated to MIRAS Y-shaped
instrument.

Fig. 2. Temperature obtained
by the inverse Fourier trans-
form of the L1b product.

2. PROPOSED APPROACH

As we already mentioned, visibilities and bright temperatures
are related by the discrete linear operator given by (1). In

matrix notation2 , this is Gu = V . As before, the goal is to
obtain the temperatures image u from the given visibilities V ,
knowing the non-invertibility of G .

2.1. Variational formulation

We propose to recover u by solving the following constrained
optimization problem:

min
u,o
{TV(u) + µS(o)} s.t. ‖G(o+u)−V ‖22 ≤ |Ω|σ2, (3)

that can be reformulated as an unconstrained problem (see [3]
for the details):

min
u,o

{
‖G(o+ u)− V ‖22 + λ(TV(u) + µS(o))

}
. (4)

The first term is the data fidelity term,which acts directly on
the visibilities (L1a product). The second term acts as a regu-
larizer and is the same as the one in our previous model; it is
designed to separate the outliers o from the brightness temper-
ature map u. TV (u) intends to super-resolve u beyond spec-
tral support Ω while avoiding Gibbs oscillations. The second
term seeks to promote a sparse solution to the image of out-
liers by applying some sparsity operator to o. The parameter
µ controls the trade-off between both terms; its choice can be
formally derived from geometric considerations on the out-
liers. For the sake of brevity, we refer the reader to [3].

In order to reduce the “staircasing” effect inherent to
many TV minimization methods, we make use of the Spectral
TV introduced by Moisan [5] (see [3] for the implementation
details). The final method can be stated as follows:

min
u,o


1

2
‖G(o+ u)− V ‖22︸ ︷︷ ︸

E1(u,o)

+λ(TVH(u) + µS(o))︸ ︷︷ ︸
E2(u,o)

 , (5)

where TVH(u) denotes the Spectral TV.

2.2. Numerical implementation

Numerical minimization is based on a Forward-Backward
splitting algorithm [6]. The k-th iteration starting from seed
x0 = (u0, o0) is{

xk+1/2 = xk − γ∇E1(xk)
xk+1 = proxγE2

(xk+1/2).

In order to ensure convergence to the minimizer, γ must be
smaller than 2/L, where L is the Lipschitz constant of ∇E1

(in our case γ < 689). Because the formulation only changes
from the previous one on the data term E1, the proximal op-
erator for E2 remains the same as in the case of L1b data [3]:

proxγE2
(u, o) =

(
proxγλTVH

(u),proxγλµ‖·‖1(o)
)
.

2For the sake of simplicity, we use the same symbol to refer to an image
and its vectored form. Disambiguation follows easily from the context.



Now we differentiate E1 and we obtain:

∇E1(u, o) = (G∗G(u+ o)− V,G∗G(u+ o)− V ) .

G∗G is a huge full matrix (16384 × 16384 since G is a
4695 × 16384 matrix). Explicit multiplication by this ma-
trix at each iteration of the algorithm is computationally in-
tractable. However, a change of basis to the Fourier domain
changes the gradient term to

∇E1(u, o) = F ∗((GF∗)∗GF∗F (u+ o)− (GF∗)∗V )

which reveals an even larger (32768 × 32768) but highly
sparse matrix FG∗GF∗: to keep the energy at 99.99%, we
only need to keep 0.0008% of the coefficients.
Finally, each iteration for the first step (S(o) = ‖o‖1) can be
expressed as follows:

uk+1/2 = uk − γF ∗(FG∗GF∗F (u+ o)− FG∗V
ok+1/2 = ok − γF ∗(FG∗GF∗F (u+ o)− FG∗V
uk+1 = proxγλTVH

(uk+1/2)

ok+1 = sγλµ(ok+1/2).

This iteration converges to a global minimum, that corre-
sponds to the solution of problem (5) with sparsity operator
S(o) = ‖o‖1. We use this soultion as an initialisation for
the second step, where the sparsity operator is non-convex,
namely S(o) = ‖o‖0. For this problem, the same Forward-
Backward method can be considered and is guaranteed to
converge to a local minimizer [7]. Now, instead of the soft
thresholding, the proximal operator for S(o),which is now
‖o‖0, becomes the hard thresholding h√2γλµ.

3. EXPERIMENTS

To highlight the benefits of the proposed framework, we
present two kinds of experiments. In the first one, we com-
pare results from our approach to those obtained by previ-
ous works: a Fourier inversion of the L1b data, a simple
Blackman apodization to smooth the outliers effects, and
our previous L1b minimisation framework presented on [3].
Experiments are run on several snapshots from the SMOS
dataset of march 2010. We have set σ equal to 5K, which
is the measurement error reported by the SMOS mission.
Figures 4 and 5 show the results obtained for snapshots 996
and 1050. For geographic reference, figure 3 shows how
these regions look in Google Earth from approximately the
same viewing angles as the SMOS acquisitions.

Note that the acquired images are corrupted by several
outliers that considerably degrade the data. It is clear that the
present method outperforms both the direct inverse Fourier
transform and the Blackman apodization. It also improves
the results from our previous work based on L1b data, which
resulted in more regularised images and thus, valuable details
where lost. It is worth mentioning that the comparison of the
results was confirmed by environmental scientists.

Fig. 3. Google Earth view of two of the regions used on the
experiments. The left one corresponds to snapshot 996 and
the right one to snapshot 1050.

F−1 Blackman

Using L1b method The proposed method

Fig. 4. Comparison between previous works and our method.
This snapshot corresponds to Central Europe, with Italy
clearly visible, and was taken on march 2010. Color scale
was mapped between 0 and 300 Kelvin..

In the second experiment we perform a quantitative evalu-
ation of our method, for which we need a ground truth data to
compare with. We generated a simulated set in the following
way. We first applied our algorithm to a real acquired im-
age free of outliers. This leads to a denoised image ugt that
we selected as ground truth, and then we obtained from it the
corresponding visibilities Vgt = Gugt. We then generated
the outliers image by randomly selecting several pixels, and
randomly generating intensity values between 300 and 30000
K. Similarly, this image Tδ was transformed into visibilities:
Vδ = GTδ . Finally, we added noise that follows the given
normal noise model with mean 0 and variance σv . The final
simulated data was then Vf = Vgt + Vδ + nv , which fol-
lows exactly our image generation model. Figure 6 shows the
results obtained on the simulated dataset. The table shows
the estimation error on u for different error norms using both
our previous method on L1b data, and the current one based
on L1a. These errors were computed over the whole Fourier
domain, since in the case of simulated images, no aliasing oc-
curs. In all cases, the standard deviation of the residual mea-
sured in the spatial domain was 5±0.2, which is in agreement
with the expected temperature noise model (σT = 5.0). We
can see from this table a consistent improvement on the use
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Fig. 5. Comparison between previous works and our method.
This snapshot corresponds to North Europe and was taken on
march 2010. Color scale were mapped between 0 and 300
Kelvin.

of the proposed method compared with the previous one.
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uL1a − ugt 3.197598 5.418558 57.679203
uL1b − ugt 9.587280 12.994680 87.467700

Fig. 6. Results from simulated data. The error is measured
over all the image, not only the free of aliasing (FOA) zone.

4. CONCLUSIONS

In this article we present a new method to restore SMOS im-
ages directly and exclusively from the L1a product. Although
the main objetive of the method is to detect and remove the
outliers produced by RFI, it can be considered as a new ap-
proach to obtain brightness temperature from the visibilities,
even in the absence of outliers. The method follows the same
methodology of our previous work [3], but adapted to the use
of L1a instead of L1b data. We kept the previous idea of us-
ing two variables u and o to model brightness temperatures
and outliers images separately, but the data term was adapted
to use visibilities directly. This modification requires several
changes: working directly with visibilities is hard since ma-
trix G is numerically difficult to invert. We propose then to

work on the Fourier domain, which turns the problem more
stable with a new matrix GF∗ that becomes extremely sparse.
This new approach is much closer to the real SMOS image
formation model. This is not only a better model from a theo-
retical point of view: it gives better results because outliers
are removed before any regularisation is done (in contrast
with L1b methods were the RFI contributions are distributed
all along the data). Consequently, the obtained images are
less regularised when compared to L1b based methods, and
small variations are kept, which is important since each pixel
has a resolution between 30 and 50 km.
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