Simplicial Homology of Random Configurations - IMT - Institut Mines-Télécom
Article Dans Une Revue Advances in Applied Probability Année : 2014

Simplicial Homology of Random Configurations

Résumé

Given a Poisson process on a $d$-dimensional torus, its random geometric simplicial complex is the complex whose vertices are the points of the Poisson process and simplices are given by the \u{C}ech complex associated to the coverage of each point. By means of Malliavin calculus, we compute explicitly the n$th$ order moment of the number of $k$-simplices. The two first order moments of this quantity allow us to find the mean and the variance of the Euler caracteristic. Also, we show that the number of any connected geometric simplicial complex converges to the Gaussian law when the intensity of the Poisson point process tends to infinity. We use a concentration inequality to find bounds for the for the distribution of the Betti number of first order and the Euler characteristic in such simplicial complex.
Fichier principal
Vignette du fichier
chi_mean_v3.pdf (280.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00578955 , version 1 (22-03-2011)
hal-00578955 , version 2 (12-07-2011)
hal-00578955 , version 3 (04-07-2012)
hal-00578955 , version 4 (04-07-2013)

Identifiants

Citer

Laurent Decreusefond, Eduardo Ferraz, Hugues Randriambololona, Anaïs Vergne. Simplicial Homology of Random Configurations. Advances in Applied Probability, 2014, 46 (2), pp.1-23. ⟨hal-00578955v4⟩
880 Consultations
667 Téléchargements

Altmetric

Partager

More