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Abstract. Given a Poisson process on a d-dimensional torus, its random geo-

metric simplicial complex is the complex whose vertices are the points of the

Poisson process and simplices are given by the C̆ech complex associated to the

coverage of each point. By means of Malliavin calculus, we compute explic-

itly the three first order moments of the number of k-simplices, and provide

a way to compute higher order moments. Then, we derive the mean and the

variance of the Euler characteristic. Using the Stein method, we estimate the

speed of convergence of the number of occurrences of any connected subcom-

plex converges towards the Gaussian law when the intensity of the Poisson

point process tends to infinity. We use a concentration inequality for Poisson

processes to find bounds for the tail distribution of the Betti number of first

order and the Euler characteristic in such simplicial complexes.

1. Motivation

Algebraic topology is the domain of mathematics in which the topological prop-

erties of a set are analyzed through algebraic tools. Initially developed for the

classification of manifolds, it is by now heavily used in image processing and geo-

metric data analysis. More recently, applications to sensor networks were developed

in [7, 11]. Imagine that we are given a bounded domain in the plane and sensors

which can detect intruders within a fixed distance. The so-called coverage problem

consists in determining whether the domain is fully covered, i.e. whether there is

any part of the domain in which an intrusion can occur without being detected.

The mathematical set which is to be analyzed here is the union of the balls cen-

tered on each sensor. If this set has no hole then the domain is fully covered. It

turns out that algebraic topology provides a computationally effective procedure

to determine whether this property holds. In view of the rapid development of the
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technology of sensor networks [17, 18, 24], which are small and cheap devices with

limited capacity of autonomy and communications, devoted to measure some local

physical quantity (temperature, humidity, intrusion, etc.), this kind of question is

likely to become recurrent.

The coverage problem, via homology techniques, for a set of sensors was first

addressed in the papers [7, 11]. The method consists in calculating from the geo-

metric data, a combinatorial object known as a simplicial complex which is a list of

points, edges, triangles, tetrahedron, etc. satisfying some compatibility conditions:

all the faces of a k-simplex (k = 0 means points, k = 1 means edges, etc.) of

the complex must belong to the set of (k − 1)-simplices of the complex. Then, an

algebraic structure on these lists and linear maps, known as boundary operators,

are constructed. Some of the topological properties (like connectivity and cover-

age) are given by the so-called Betti numbers which mathematically speaking are

dimension of some quotient vector spaces (see below). Another key parameter is

the alternated sum of the Betti numbers, known as Euler characteristic which gives

some information on the global topology of the studied set. Persistence homology

[5, 10] is both a way to compute the Betti numbers avoiding a (frequent) combi-

natorial explosion and a way to detect the robustness of the topological properties

of a set with respect to some parameter: For instance, in the intrusion detection

setting, how the connectivity of the covering domain is altered by variations of the

detection distance.

When points (i.e. sensors) are randomly located in the ambient space, may it be

R
d or a manifold, it is natural to ask about the statistical properties of the Betti

numbers and the Euler characteristic. We completely solved the problem in one

dimension (see [8]) by basic methods inspired by queuing theory, without using the

forthcoming sophisticated tools of algebraic topology. Since we cannot order points

in R
d, it is not possible to generalize the results obtained in this earlier work to

higher dimension.

A very few papers deal with the properties of random simplicial complexes.

In [15] and [22], for Binomial point processes whose number of points are going

to infinity, the asymptotic regimes of the mean value of the Betti numbers and

simplices numbers are investigated. In [16], these results are refined by providing

Poisson and Gaussian approximations of the Betti numbers in asymptotic regimes.

As will be apparent below, for the Rips-Vietoris simplicial complex, the number

of k-simplices boils down to the number of (k+ 1)-cliques of the underlying graph.
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As we mainly analyze this kind of complex, our work has thus strong links with the

pioneering work of Penrose [22] and with [3, 23] as well. In [3], for Poisson input, the

limiting regimes of the number of k-simplices on a square of size a, are investigated

through limit theorems of U-statistics. The size of the square is growing to infinity

with a constant mean number of points per unit of surface. In [23], there is an

extension of the latter result to non-linear manifolds and non-uniform distributions

of the points. In the above cited papers, sophisticated combinatorial arguments are

at the root of the arguments of the convergence theorems. We here replace this

line of thought by a functional analytic approach which transfers the difficulty to

the computation of a (possibly involved) deterministic integral. By doing so, we

can, in principle, obtain a CLT for the number of occurrences of any connected

sub-complex and not only for cliques.

Figure 1. A sub-complex which is not a clique

One of our main contributions are exact formulas for the first three moments

of the number of simplices for both the Poisson and the Binomial processes at

the price of working on a square bounded domain, which we embed into a torus in

order to avoid side effects. The rationale behind this simplification is that when the

size of the covering balls is small compared to the size of the square, the topology

of the two sets (the union of balls in the square and the union of balls in the

corresponding torus) must be similar. Our method could be generalized to compute

the moments of any order but the computations become more and more tricky as

the order increases. We also investigate the properties of the moments of the

Euler characteristic. Moreover, by using Malliavin calculus, we go further than the

previously cited works since we can evaluate the speed of convergence in the CLT.

We also give a concentration inequality to bound the distribution tail of the first

Betti number.

During the final preparation of this paper, we learned that such an approach

was used independently in [26] for the analysis of U -statistics (functionals of a fixed
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chaos in our vocabulary) of Poisson processes. Both approaches rely on the ideas

which appeared in [9, 20].

Our method goes as follows: We write the numbers of k-simplices (i.e. points,

edges, triangles, tetrahedron, etc) as iterated integrals with respect to the under-

lying Poisson process. Then, the computation of the means is reduced to the com-

putation of deterministic iterated integrals thanks to Campbell formula. By using

the definition of the Euler characteristic as an alternating sum of the numbers of

simplices, we find its expectation. The point is that even if the summing index goes

to infinity, the expectation of χ depends only on the d-th power of the intensity

of the Poisson process where d is the dimension of the underlying space. By de-

poissonization, we obtain the exact values of the mean number of simplices of any

order and then the mean value of the Euler characteristic for Binomial processes.

Using the multiplication formula of iterated integrals, one can reproduce the same

line of thought for higher order moments to the price of an increased complexity in

the computations. We obtain closed form formulas for the variance of the number

of k-simplices and of the Euler characteristic and a series expansion for third order

moments. Our method is a priori suitable for any higher order moments but the

computations become much involved. Using Stein’s method mixed with Malliavin

calculus, we generalize the results of [22] by proving a precise (i.e. with speed of

convergence) CLT for sub-complexes count. As expected, the speed of convergence

is of the order of λ−1/2.

The paper is organized as follows: Sections 2 and 3 are primers on algebraic

topology and Malliavin calculus. In Section 4, the average number of simplices

and the mean of the Euler characteristic are computed. This is sufficient to bound

the tail distribution of β0 using concentration inequality. Section 5 applies the

Malliavin calculus in order to find the explicit expression of second order moments

of the number of k-simplices and the Euler characteristic. Using the same strategy,

in Section 6, we find the expression for the third order moment of the number

of simplices. In Section 7, we prove a central limit theorem for the number of

occurrences of a finite simplex into a Poisson random geometric complex.

2. Algebraic Topology

For further reading on algebraic topology, see [1, 13, 19]. Graphs can be gener-

alized to more generic combinatorial objects known as simplicial complexes. While

graphs model binary relations, simplicial complexes represent higher order relations.
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Given a set of vertices V , a k-simplex is an unordered subset {v0, v1, . . . , vk} where

vi ∈ V and vi 6= vj for all i 6= j. The faces of the k-simplex {v0, v1, . . . , vk} are

defined as all the (k − 1)-simplices of the form {v0, . . . , vj−1, vj+1, . . . , vk} with

0 ≤ j ≤ k. A simplicial complex C is a collection of simplices which is closed with

respect to the inclusion of faces, i.e. if {v0, v1, . . . , vk} is a k-simplex then all its

faces are in the set of (k − 1)-simplices.

One can define an orientation on simplices by defining an order on vertices and

with the convention that:

[v0, . . . , vi, . . . , vj , . . . , vk] = −[ v0, . . . , vj , . . . , vi, . . . , vk],

for 0 ≤ i, j ≤ k.

For each integer k, Ck is the vector space spanned by the set of oriented k-

simplices of V . For any integer k, the boundary map ∂k is the linear transformation

∂k : Ck → Ck−1 which acts on basis elements [v0, . . . , vk] as

∂k[v0, . . . , vk] =

k∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk],

and ∂0 is the null function. Examples of such operations are given in Table 1.

v0

v1

v2 v0

−

v2

+

[v0, v1] + [v1, v2]
∂

−→ [v2] − [v0]

v0

v1

v2 v0

v1

v2

[v0, v1, v2]
∂

−→ [v1, v2] − [v0, v2]

+[v0, v1]

v0

v1

v2
v3

Filled Empty
v0

v1

v2
v3

[v0, v1, v2, v3]
∂

−→

+[v1, v2, v3]

−[v0, v2, v3]

+[v0, v1, v3]

−[v0, v1, v2]

a) b) c)

Table 1. Examples of boundary maps. From left to right. An

application over 1-simplices. Over a 2-simplex. Over a 3-simplex,

turning a filled tetrahedron to an empty one.

These maps give rise to a chain complex: a sequence of vector spaces and linear

transformations:

· · · ∂k+2−→ Ck+1
∂k+1−→ Ck ∂k−→ · · · ∂2−→ C1 ∂1−→ C0.

A standard result then asserts that for any integer k, ∂k ◦ ∂k+1 = 0. If one defines

Zk = ker ∂k and Bk = im ∂k+1, this induces that Bk ⊂ Zk.
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0 00

Ck

Zk

Bk

Ck+1 Ck−1

∂
−→

∂
−→

Figure 2. A chain complex showing the sets Ck, Zk and Bk.

The k-th homology group of C, denoted by Hk, is the quotient vector space,

Hk = Zk/Bk and the k-th Betti number of C is its dimension: βk = dimHk =

dimZk − dimBk.

The simplicial complexes we consider are of a special type since they are built

on topological rules.

Definition 1. Given U = (Uv, v ∈ ω) a collection of open sets of some topological

space X, the C̆ech complex of U denoted by C(U), is the abstract simplicial complex

whose k-simplices correspond to (k+1)-tuples of distinct elements of U that have non

empty intersection, so {v0, v1, . . . , vk} is a k-simplex if and only if
⋂k

i=0 Uvi 6= ∅.

For the applications we have in mind, the set Uv is meant to be the covered zone

by the sensor located at v. For the sake of tractability, it is supposed to be a ball

centered at v with a fixed radius. As said earlier, in order to avoid side effects, we

work on the d-dimensional torus of length a, denoted by T
d
a and to simplify the

computations, we consider the l∞ distance. Namely, the torus is defined as the

quotient of the action of the group of translations aZd on R
d, i.e. T

d
a = R

d/aZd.

The space X = [0, a)d can be embedded in T
d
a as a fundamental domain of this

action. If we equip X with the distance

ρd(x, y) = inf
k∈Zd

‖x− y + ka‖∞

where ‖x‖∞ is the l∞-norm in R
d, then the embedding of X into the torus is a bi-

jective isometry. One can thus identify these two spaces and use the representation

which is the most convenient according to the situation.

Definition 2. Given ω a finite set of points on the torus T
d
a. For ǫ > 0, we

define Uǫ(ω) = {Bρd
(v, ǫ), v ∈ ω} and Cǫ(ω) = C(Uǫ(ω)), where Bρd

(x, ǫ) = {y ∈
T
d
a, ρd(x, y) < ǫ}.
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The following result is known for R
d, there is a slight modification of the proof

for the torus.

Theorem 1. Suppose ǫ < a/4. Then Cǫ(ω) has the same homology vector spaces

as Uǫ(ω). In particular they have the same Betti numbers.

Proof. This will follow from the so-called nerve lemma of Leray, as stated in [27,

Theorem 7.26] or [4, Theorem 10.7]. One only needs to check that any non-empty

intersection of sets Bρd
(v, ǫ) is contractible.

Consider such a non-empty intersection, and let x be a point contained in it.

Then, since ǫ < a/4, the ball Bρd
(x, 4ǫ) can be identified with a cube in the

Euclidean space. Then each Bρd
(v, ǫ) containing x is contained in Bρd

(x, 4ǫ), hence

also becomes a cube with this identification, hence convex. Then the intersection

of these convex sets is convex, hence contractible. �

For any finite sets of points ω of the torus, according to the geometrical definition

of the C̆ech complex, the Betti numbers have a geometrical meaning: β0(ω) (with

obvious notations) is the number of connected components and for k ≥ 1, βk(ω)

is the number of k-dimensional holes of Uǫ(ω). For k = 0 and k = 1, an intuitive

explanation can be given. By definition, β0(ω) is the number of points minus the

number of independent edges. Each time there exists a cycle with n points, we can

remove an edge without altering β0(ω) since there are n − 1 independent edges in

such a cycle. Doing this repeatidly, one can reduce the original graph to as many

linear chains of edges as there are connected components. A linear chain of edges

which contains n points has n − 1 edges, hence a β0(ω) equal to 1. Thus β0(ω)

counts the number of connected components. As to β1(ω), we remark that ker∂1

is composed by the cycles and that B1 is the set of linear combinations of edges

forming triangles, hence β1(ω) is the number of cycles which are not triangles, hence

represents the number of “coverage” holes. The well known topological invariant

named Euler characteristic for Uǫ(ω), denoted by χ(ω), is an integer defined by:

χ(ω) =
∞∑

i=0

(−1)iβi(ω).

Let sk(ω) be the number of k-simplices in the simplicial complex Cǫ(ω). A well

known theorem states that this is also given by:

χ(ω) =
∞∑

i=0

(−1)isi(ω).
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Definition 3. Let ω be a finite set of points in T
d
a. For any ǫ > 0, the Rips-

Vietoris complex of ω, Rǫ(ω), is the abstract simplicial complex whose k-simplices

correspond to unordered (k + 1)-tuples of points in ω which are pairwise within

distance less than ǫ of each other.

Lemma 2. For the torus T
d
a equipped with the product distance ρd, the Rips-

Vietoris complex R2ǫ(ω) has the same Betti numbers as the C̆ech complex Cǫ(ω).

The proof is given in [11] in a slightly different context, but it is easy to check that

it works here as well. It must be pointed out that C̆ech and Rips-Vietoris simplicial

complexes can be defined similarly for any distance on T
d
a but it is only for the

product distance that the homology vector spaces of both complexes coincide.

Proposition 3. Let ω ∈ T
d
a be a set of points, generating the simplicial complex

Cǫ(ω). Then, if i > d, βi(ω) = 0.

Proof. By Theorem 1, Cǫ(ω) has the same homology as Uǫ(ω). But Uǫ(ω) is an

open manifold of dimension d, so its Betti numbers βi(ω) vanish for i > d, see for

example [12, Theorem 22.24]. �

Proposition 4. Let ω ∈ T
d
a be a set of points, generating the simplicial complex

Cǫ(ω). There are only two possible values for the d-th Betti number of Cǫ(ω):

i) βd(ω) = 0, or

ii) βd(ω) = 1.

If the latter condition holds, then we also have χ(ω) = 0.

Proof. By Theorem 1, Cǫ(ω) has the same homology as Uǫ(ω). Now, Uǫ(ω) is an

open sub-manifold of the torus, so there are only two possibilities:

i) Uǫ(ω) is a strict open sub-manifold, hence non-compact

ii) Uǫ(ω) = T
d
a.

In the first case, βd(ω) = 0 by [12, Corollary 22.25]. In the second case Cǫ(ω) has

same homology as the torus, hence βd(ω) = 1 and χ(ω) = 0. �

3. Poisson point process and Malliavin calculus

The space of configurations on X = [0, a)d, is the set of locally finite simple

point measures (see [6, 25] for details):

ΩX =

{
ω =

n∑

k=1

δ(xk) : (xk)
k=n
k=1 ⊂ X, n ∈ N ∪ {∞}

}
,
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where δ(x) denotes the Dirac measure at x ∈ X . It is often convenient to identify

an element ω of ΩX with the set corresponding to its support, i.e.
∑n

k=1 δ(xk) is

identified with the unordered set {x1, . . . , xn}. For A ∈ B(X), we have δ(x)(A) =

1A(x), so that

ω(A) =
∑

x∈ω

1A(x),

counts the number of atoms in A. Simple measure means that ω({x}) ≤ 1 for

any x ∈ X . Locally finite means that ω(K) < ∞ for any compact K of X . The

configuration space ΩX is endowed with the vague topology and its associated σ-

algebra denoted by FX . To characterize the randomness of the system, we consider

that the set of points is represented by a Poisson point process ω with intensity

measure dΛ(x) = λ dx in X . The parameter λ is called the intensity of the Poisson

process. Since ω is a Poisson point process of intensity measure Λ:

i) For any compact A, ω(A) is a random variable of parameter Λ(A):

P(ω(A) = k) = e−Λ(A)Λ(A)
k

k!
·

ii) For any disjoint sets A,A′ ∈ B(X), the random variables ω(A) and ω(A′) are

independent.

Along this paper, we refer EΛ [F ] as the mean of some function F depending

on ω given that the intensity measure of this process is Λ. The notations VarΛ [F ]

and CovΛ [F, G] are defined accordingly. As said above, a configuration ω can be

viewed as a measure on X . It also induces a measure on any Xn, called the factorial

measure associated to ω of order n, defined by

ω(n)(C) =
∑

(x1,··· , xn)∈ω
xi 6=xj

1C(x1, · · · , xn),

for any C ∈ Xn, with the convention that ω(n) is the null measure if ω has less

than n points. Let f ∈ L1(Λ⊗n) and let F be a random variable given by

F (ω) =
∑

xi∈ω
xi 6=xj

f(x1, . . . , xn) =

∫
f(x1, . . . , xn) dω(n)(x1, · · · , xn).

The Campbell-Mecke formula for Poisson point processes states that

EΛ [F ] =

∫

Xn

f(x1, . . . , xn) dΛ(x1) . . . dΛ(xn).

In view of this result, it is natural to introduce the compensated factorial measures

defined by :

dω
(1)
Λ (x) = dω(x)− dΛ(x)
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and for n ≥ 2, for any f ∈ L1(Λ⊗n),

∫
f(x1, · · · , xn)dω

(n)
Λ (x1, · · · , xn)

=

∫ 

∫

f(x1, · · · , xn)(d(ω −
n−1∑

j=1

δ(xj))(xn)− dΛ(xn))




dω
(n−1)
Λ (x1, · · · , xn−1).

A real-valued function f : Xn → R is called symmetric if

f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn)

for all permutations σ of Sn. Then the space of square integrable symmetric

functions of n variables is denoted by L2(X,Λ)◦n. For f ∈ L2(X,Λ)◦n, the multiple

Poisson stochastic integral In(fn) is then defined as

In(fn)(ω) =

∫
fn(x1, . . . , xn) dω

(n)
Λ (x1, · · · , xn).

It is known that In(fn) ∈ L2(ΩX ,P). Moreover, if fn ∈ L2(X, Λ)◦n and gm ∈
L2(X, Λ)◦m, the isometry formula

(1) EΛ [In(fn)Im(gm)] = n!1m(n) 〈fn, gm〉L2(X,Λ)◦n

holds true. Furthermore, we have:

Theorem 5. Every random variable F ∈ L2(ΩX , P) admits a unique Wiener-

Poisson decomposition of the type

F = EΛ [F ] +
∞∑

n=1

In(fn),

where the series converges in L2(ΩX ,P) and, for each n ≥ 1, the kernel fn is an

element of L2(X,Λ)◦n. Moreover, by definition VarΛ [F ] = ‖F − EΛ [F ] ‖2L2(ΩX ,P)

then we have the isometry

(2) VarΛ [F ] =

∞∑

n=1

n! ‖fn‖2L2(X,Λ)◦n .

For fn ∈ L2(X,Λ)◦n and gm ∈ L2(X,Λ)◦m, we define fn⊗l
k gm, 0 ≤ l ≤ k, to be

the function:

(3) (yl+1, . . . , yn, xk+1, . . . , xm) 7−→
∫

Xl

fn(y1, . . . , yn)gm(y1, . . . , yk, xk+1, . . . , xm) dΛ(y1) . . . dΛ(yl).

We denote by fn ◦lk gm the symmetrization in n+m− k − l variables of fn ⊗l
k gm,

0 ≤ l ≤ k. This leads us to the next proposition (see [25] for a proof):
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Proposition 6. For fn ∈ L2(X,Λ)◦n and gm ∈ L2(X,Λ)◦m, we have

In(fn)Im(gm) =

2(n∧m)∑

s=0

In+m−s(hn,m,s),

where

hn,m,s =
∑

s≤2i≤2(s∧n∧m)

i!

(
n

i

)(
m

i

)(
i

s− i

)
fn ◦s−i

i gm

belongs to L2(X,Λ)◦n+m−s, 0 ≤ s ≤ 2(m ∧ n).

In what follows, given f ∈ L2(X,Λ)◦q (q ≥ 2) and t ∈ X , we denote by f(∗, x)
the function on Xq−1 given by (x1, . . . , xq−1) 7−→ f(x1, . . . , xq−1, x).

Definition 4. Let DomD be the the set of random variables F ∈ L2(ΩX , P)

admitting a chaotic decomposition such that

∞∑

n=1

qq!‖fn‖2L2(X,Λ)◦n < ∞.

Let D be defined by

D : DomD → L2(ΩX ×X,P⊗ Λ)

F = EΛ [F ] +
∑

n≥1

In(fn) 7−→ DxF =
∑

n≥1

nIn−1(fn(∗, x)).

It is known, cf. [14], that we also have

DxF (ω) = F (ω ∪ {x})− F (ω), P⊗ Λ− a.e.

Definition 5. The Ornstein-Uhlenbeck operator L is given by

LF = −
∞∑

n=1

nIn(fn),

whenever F ∈ DomL, given by those F ∈ L2(ΩX , P) such that their chaos expan-

sion verifies
∞∑

n=1

q2q!‖fn‖2L2(X,Λ)◦n < ∞.

Note that EΛ [LF ] = 0, by definition and (1).

Definition 6. For F ∈ L2(ΩX ,P) such that EΛ [F ] = 0, we may define L−1 by

L−1F = −
∞∑

n=1

1

n
In(fn).

Combining Stein’s method and Malliavin calculus yields the following theorem,

see [21]:
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Theorem 7. Let F ∈ DomD be such that EΛ [F ] = 0 and Var(F ) = 1. Then,

dW (F, N (0, 1)) ≤ EΛ

[∣∣∣∣1 +
∫

X

[DxF ×DxL
−1F ] dΛ(x)

∣∣∣∣
]

+

∫

X

EΛ

[
|DxF |2

∣∣DxL
−1F

∣∣
]

dΛ(x).

Another result from the Malliavin calculus used in this work is the following one,

quoted from [25]:

Theorem 8. Let F ∈ DomD be such that DF ≤ K, a.s., for some K ≥ 0 and we

denote

‖DF‖L∞(L2(X,Λ),P) := sup
ω

∫

X

|DxF (ω)|2 dΛ(x) < ∞.

Then

(4) P(F −EΛ [F ] ≥ x) ≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖L∞(L2(X,Λ),P)

))
.

4. First order moments

Let ω denote a generic realization of a Poisson point process on the torus T
d
a

and Cǫ(ω) the associated C̆ech complex with ǫ < a/4. A Poisson process in R
d of

intensity λ dilated by a factor α is a Poisson process of intensity λα−d. Hence,

statistically, the homological properties of a Poisson process of intensity λ, inside

a torus of length a with ball sizes ǫ are the same as that of a Poisson process of

intensity λα−d, inside a torus of length αa with ball sizes αǫ. Thus there are only

two degrees of freedom among λ, a, and ǫ. For instance, we can set a = 1 and the

general results are obtained by a multiplication of magnitude ad. Strictly speaking,

Betti numbers, Euler characteristic and number of k-simplices are functions of Cǫ(ω)
but we will skip this dependence for the sake of notations. We also define Nk as

the number of (k − 1)-simplices.

In this section, we evaluate the mean of the number of (k− 1)-simplices EΛ [Nk]

and the mean of the Euler characteristic EΛ [χ]. We introduce some notations. Let

∆
(d)
k = {(v1, . . . , vk) ∈ ([0, a)d)k, vi 6= vj , ∀i 6= j}.

For any integer k, we define ϕ
(d)
k as:

ϕ
(d)
k : ([0, a)d)k −→ {0, 1}

(v1, · · · , vk) 7−→





∏
1≤i<j≤k 1[0, 2ǫ)(ρd(vi, vj)) if (v1, . . . , vk) ∈ ∆

(d)
k ,

0 otherwise.
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In words, this means that ϕ
(d)
k (v1, · · · , vk) = 1 if [v1, · · · , vk] is a (k − 1)-simplex

and 0 otherwise.

Theorem 9. The mean number of (k − 1)-simplices Nk is given by

EΛ [Nk] =
λad(λ(2ǫ)d)k−1kd

k!
·

Proof. The number of (k − 1)-simplices can be counted by the expression:

Nk(ω) =
1

k!

∫
ϕ
(d)
k (v1, · · · , vk) dω(k)(v1, · · · , vk).

According to the Campbell-Mecke formula and since the max-distance can be ten-

sorized, we have:

EΛ [Nk] =
λk

k!

∫

Xk

ϕ
(d)
k (v1, · · · , vk) dv1 . . . dvk

=
λk

k!

(∫

[0,a)k
ϕ
(1)
k (xi, xj) dx1 . . . dxk

)d

.

A moment of thought reveals that for any (x1, · · · , xk) ∈ ∆
(1)
k , since ǫ < a/4 < a/2,

there exists a unique index i such that for all j ∈ {1, · · · , k}\{i}, one and only one

of the two following conditions holds:

xi < xj < xi + 2ǫ or xi < xj + a < xi + 2ǫ.

Let ζ(x1, · · · , xk) denote this index i. Hence, by invariance by translation of the

Lebesgue measure,

∫

ζ−1(1)

ϕ
(1)
k (xi, xj) dx1 . . . dxk

= (k − 1)!

∫ a

0

dx1

∫

[x1, x1+2ǫ)k−1

k−1∏

j=2

1xj<xj+1
dx2 . . . dxk = a(2ǫ)k−1.

The very same identity holds for any integral on the set ζ−1(i) for any i ∈ {1, · · · , k}
hence ∫

[0,a)k
ϕ
(1)
k (xi, xj) dx1 . . . dxk = ka(2ǫ)k−1.

The proof is thus complete. �

By depoissonization, we can estimate the mean number of k-simplices for a

Binomial process: a process with n points uniformly distributed over the torus.

Corollary 10. The mean number (k − 1)-simplices Nk given N1 = n is

EΛ [Nk |N1 = n] =

(
n

k

)
kd
(
2ǫ

a

)d(k−1)

.
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Proof. According to Theorem 9, we have:

λad(λ(2ǫ)d)k−1kd

k!
=

∞∑

n=0

EΛ [Nk |N1 = n] e−λad (λad)n

n!
·

The principle of depoissonization is then to invert the transform Θ defined by:

Θ : RN −→ R[λ]

(αn, n ≥ 0) 7−→
∑

n≥0

αne
−λλ

n

n!
·

We have that (λad)k =
∑

n≥k
n!

(n−k)!
(λad)n

n! e−λad

. The result follows. �

Remark. Considering the maximum norm simplifies the calculations. However,

even for the Euclidean norm, it is still possible to find a closed-form expression for

EΛ [N2] and EΛ [N3] when we consider the Rips-Vietoris complex in T
2
a. We are

limited to small orders because no formula seems to be known for the area of the

intersection of k balls in general position. For k = 2 and 3, the expectations are

given by the following formulas:

EΛ [N2] =
π(aλǫ)2

2
,

EΛ [N3] = π

(
π − 3

√
3

4

)
λ3a2ǫ4

6
·

Consider now the Bell’s polynomial Bd(x), defined as (see [2]):

Bn(x) =

n∑

k=0




n

k



 xk,

where n is a positive integer and




n

k



 is the Stirling number of the second kind.

An equivalent definition of Bn can be:

Bn(x) = e−x
∞∑

k=0

xkkd

k!
·

These polynomials appear rather surprisingly in the computations of the mean value

of the Euler characteristic.

Theorem 11. The mean of the Euler characteristic of the simplicial complex Cǫ(ω)
is given by

EΛ [χ] = −
( a

2ǫ

)d
e−λ(2ǫ)dBd(−λ(2ǫ)d).
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Proof. Since

Nk ≤ 1

k!

k−1∏

j=0

(N1 − j) ≤ Nk
1

k!
, then

∞∑

k=1

Nk ≤
∞∑

k=1

Nk
1

k!
≤ eN1 .

As EΛ

[
eN1
]
< ∞, we have EΛ

[
−∑∞

k=1(−1)kNk

]
= −∑∞

k=1(−1)kEΛ [Nk] and

EΛ [χ] = −
∞∑

k=1

(−1)k
λk(ak(2ǫ)k−1)d

k!

=
ade−λ(2ǫ)d

−(2ǫ)d
eλ(2ǫ)

d
∞∑

k=0

(−λ(2ǫ)d)kkd

k!

= −
( a

2ǫ

)d
e−λ(2ǫ)dBd(−λ(2ǫ)d).

The proof is thus complete. �

If we take d = 1, 2 and 3, we obtain:

EΛ [χ] = aλe−λ2ǫ, for d = 1;

EΛ [χ] = a2λe−λ(2ǫ)2
(
1− λ(2ǫ)2

)
, for d = 2;

EΛ [χ] = a3λe−λ(2ǫ)3
(
1− 3λ(2ǫ)3 + (λ(2ǫ)3)2

)
, for d = 3.

The next corollary is an immediate consequence of Corollary 10, obtained again by

depoissonization.

Corollary 12. The expectation of χ for a binomial point process with n points is

given by:

EΛ [χ |N1 = n] =

n∑

k=0

(−1)k
(
n

k

)
kd
(
2ǫ

a

)d(k−1)

.

So far, we have not say a word about Betti numbers. It turns out that the

preceding computations lead to a bound of the tail of β0, the number of connected

components.

Theorem 13. For y > λad, we have

PΛ(β0 ≥ y) ≤ exp

(
−y − λad

2
log

(
1 +

y − λad

(2d − 1)2λ

))
·

Proof. β0 is the number of connected components. Since there are more points

than connected components, EΛ [β0] ≤ EΛ [N1] = λad. According to the definition

of D, supx∈X Dtβ0 is the maximum variation of β0 induced by the addition of an

arbitrary point. If the point x is at a distance smaller than ǫ from ω, then Dxβ0 ≤ 0,

otherwise, Dxβ0 = 1, so Dxβ0 ≤ 1 for any x ∈ X . Besides, this added point can

join at most two connected components in each dimension, so in d dimensions it can
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join at most 2d connected component, which means that Dβ0 ranges from −(2d−1)

to 1, and then

‖Dβ0‖L∞(L2(X,Λ),P) ≤ sup
ω

∫

X

|Dxβ0|2 dΛ(x) ≤ λad(2d − 1)2.

Since the function f defined by

f(x, y) = exp

(
−k1 − x

2k2
log

(
1 +

(k1 − x)k2
k3y

))
·

is strictly increasing with respect to x and y for k1 > x, it follows from Theorem 8

that:

PΛ(β0 ≥ y) ≤ exp

(
−y − λad

2
log

(
1 +

y − λad

(2d − 1)2λad

))
,

for y > λad ≥ EΛ [β0]. �

5. Second order moments

We now deal with the computations of the second order moments. The proofs

rely on the chaos decomposition of the number of simplices (see Lemma 14) and

the multiplication formula for iterated integrals (see Proposition 6). The compu-

tations are rather technical and postponed to Appendix A. We make the following

convention: For any integer k,

∫

X0

ϕ
(d)
k (v1, · · · , vk) dv1 . . . dv0 = ϕ

(d)
k (v1, · · · , vk).

Lemma 14. We can rewrite Nk as

Nk =
1

k!

k∑

i=0

(
k

i

)
λk−i Ii

(∫

Xk−i

ϕ
(d)
k (v1, · · · , vk) dv1 . . . dvk−i

)
.

Proof. For k = 1, the result is immediate with the convention made above. Once

we have seen that

∫
ϕ
(d)
k (v1, . . . , vk) dω(k)(v1, · · · , vk)

=

∫ 

∫

ϕ
(d)
k (v1, . . . , vk)(d(ω −

k−1∑

j=1

δ(vj))(vk)− dΛ(vk))


 dω(k−1)(v1, · · · , vk−1)

+

∫ (∫

X

ϕ
(d)
k (v1, . . . , vk) dΛ(vk)

)
dω(k−1)(v1, · · · , vk−1),

the result follows by induction. �
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Theorem 15. The covariance between the number of (k−1)-simplices Nk, and the

number of (l − 1)-simplices, Nl for l ≤ k is given by

CovΛ [Nk, Nl] =

l∑

i=1

λad(λ(2ǫ)d)k+l−i−1

i!(k − i)!(l − i)!

(
k + l − i+ 2

(k − i)(l − i)

i+ 1

)d

.

Remark. As for the first moment it is still possible to find, considering the Euclidean

norm, a closed-form expression for VarΛ [Nk]. We did not find a general expression

for any dimension. However, when we consider the Rips-Vietoris complex in T
2
a,

the variance of the number of 1-simplices and 2-simplices are given by:

VarΛ [N2] =
( a

2ǫ

)2 (π
2
(4λǫ2)2 + π2(4λǫ2)3

)
,

and

VarΛ [N3] =
( a

2ǫ

)2
(
(4λǫ)3

π

6

(
π − 3

√
3

4

)
+ (4λǫ2)4π

(
π2

2
− 5

12
− π

√
3

2

)

+(4λǫ2)5
π2

4

(
π − 3

√
3

4

)2

 ·

Since we have an expression for the variance of the number of k-simplices, it is

possible to calculate the variance of the Euler characteristic.

Theorem 16. The variance of the Euler characteristic is:

VarΛ [χ] = λad
∞∑

n=1

cdn(λ(2ǫ)
d)n−1,

where

cdn =

n∑

j=⌈(n+1)/2⌉


2

j∑

i=n−j+1

(−1)i+j

(n− j)!(n− i)!(i+ j − n)!

(
n+

2(n− i)(n− j)

1 + i+ j − n

)d

− 1

(n− j)!2(2j − n)!

(
n+

2(n− j)2

1 + 2j − n

)d
]
.

Theorem 17. In one dimension, the expression of the variance of the Euler char-

acteristic is:

VarΛ [χ] = a
(
λe−2λǫ − 4λ2ǫe−4λǫ

)
.

Theorem 18. If d = 2, we have Dχ ≤ 2 and thus

P(χ−EΛ [χ] ≥ x) ≤ exp
(
−x

4
log
(
1 +

x

2λa2

))
·
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Proof. In two dimensions, according to Proposition 3, the Euler characteristic is

given by:

χ = β0 − β1 + β2.

If we add a vertex on the torus, either the vertex is isolated or not. In the first case,

it forms a new connected component increasing β0 by 1, and the number of holes,

i.e. β1, remains the same. Otherwise, as there is no new connected component,

β0 is the same, but the new vertex can at most fill one hole, increasing β1 by 1.

Therefore, the variation of β0 − β1 is at most 1.

Furthermore, when we add a vertex to a simplicial complex, we know from

Proposition 4 that Dβ2 ≤ 1 hence Dχ ≤ 2. Then, we use Eq. (4) to complete the

proof. �

6. Third order moments

Higher order moments can be computed in a similar way but the computations

become trickier as the order increases. We here restrict our computations to the

third order moments to illustrate the general procedure. The proof is given in

Appendix B.

We are interested in the central moment, so we introduce the following notation

for the centralized number of (k − 1)-simplices: Ñk = Nk −EΛ [Nk].

Theorem 19. The third central moment of the number of (k−1)-simplices is given

by:

EΛ

[
Ñk

3]
=
∑

i,j,s,t

λ3k−i−j t!

(k!)3

(
k

i

)(
k

j

)(
k

s

)(
i

t

)(
j

t

)(
t

i+ j − s− t

)
J3(k, i, j, s, t),

with s ≥ |i−j|, and J3(k, i, j, s, t) is an integral depending on k, i, j, s and t, defined

below in (9).

7. Convergence

Before going further, we must answer a natural question: Do we retrieve the

torus homology when the intensity of the Poisson process goes to infinity, so that

the number of points becomes arbitrary large ? The answer is positive as shows

the next theorem.

Theorem 20. The Betti numbers of Cǫ(ω) converge in probability to the Betti

numbers of the torus as λ goes to infinity:

PΛ

(
d⋂

i=0

(
βi(ω) =

(
d

i

)))
λ→∞−−−−→ 1,
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where
(
d
i

)
is the i-th Betti number of the d-dimensional torus, see [13].

Proof. Let η < ǫ/2, by compactness of the torus, there exists B a finite collection

of balls of radius η covering T
d
a. Since η < ǫ/2, if x belongs to some ball B ∈ B

then B ⊂ B(x, ǫ), hence

⋂

B∈B

(ω(B) 6= 0) ⊂
(
Uǫ(ω) = T

d
a

)
.

Thus,

PΛ

(
Uǫ(ω) 6= T

d
a

)
≤ PΛ

(
⋃

B∈B

(ω(B) = 0)

)

≤ K exp(−λ(2η)d)
λ→∞−−−−→ 0.

Moreover, by the nerve lemma

(
Uǫ(ω) = T

d
a

)
⊂

d⋂

i=0

(
βi(ω) =

(
d

i

))
,

and the result follows. �

Let Γ be an arbitrary connected simplicial complex of n vertices. The number

of occurrences of Γ in Cǫ(ω) is denoted as GΓ(ω). It must be noted that with

our construction of the simplicial complex, a complex Γ appears in Cǫ(ω) as soon

as its edges are in Cǫ(ω). The set of edges of Γ, denoted by JΓ is a subset of

{1, . . . , n} × {1, . . . , n}. Let us define the following function on the vertices of Γ:

h̃Γ(v1, . . . , vn) =
1

cΓ

∏

(i,j)∈JΓ

1ρd(vi,vj)<ǫ,

where cΓ is the number of permutations σ of {v1, . . . , vn} such that

h̃Γ(v1, . . . , vn) = h̃Γ(vσ(1), . . . , vσ(n)),

and let fΓ be the symmetrization of h̃Γ. Then, we have:

(5) GΓ(ω) =

∫
fΓ(v1, . . . , vn) dω(n)(v1, · · · , vn).

Lemma 21. The random variable GΓ has a chaos representation given by:

GΓ =
n∑

i=0

Ii(f
Γ
i ),

where fΓ
i is the bounded symmetric function defined as

(6) fΓ
i (vi+1, . . . , vn) =

(
n

i

)
λn−i

∫

Xn−i

fΓ(v1, . . . , vn) dv1 . . . dvn−i.
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Proof. From (5), using the binomial expansion and some algebra, we obtain

GΓ(ω)

=

n∑

i=0

∫ 

(
n

i

) ∫

Xn−i

fΓ(v1, . . . , vn)λ dv1 . . . λ dvn−i


 dω

(i)
Λ (vn−i+1, · · · , vn).

We define, for any i ∈ {1, . . . , n},

fΓ
i (vi+1, . . . , vn) =

(
n

i

)
λn−i

∫

Xn−i

fΓ(v1, . . . , vn) dv1 . . . dvn−i.

To conclude the proof, we note that, since X is a bounded set and hΓ is bounded,

fΓ
i is bounded. �

Theorem 22. There exists c > 0 such that for any λ ≥ 1,

dW

(
GΓ −EΛ [GΓ]√

VarΛ [GΓ]
, N (0, 1)

)
≤ c

λ1/2
·

Proof. Let F =
GΓ −EΛ [GΓ]√

VarΛ [GΓ]
. Provided that Γ has n vertices, according to

Lemma 21, we have the following identities:

DtF =
1√

VarΛ [GΓ]

n∑

i=1

iIi−1(f
Γ
i (∗, t)),

−DtL
−1F =

1√
VarΛ [GΓ]

n∑

i=1

Ii−1(f
Γ
i (∗, t)),

VarΛ [GΓ] =

n∑

i=1

i!
∥∥fΓ

i

∥∥2
L2(X,Λ)⊗i .

Hence, VarΛ [GΓ] is a polynomial of degree 2n− 1 with respect to λ. From Propo-

sition 6, it is tedious but straightforward to see that 〈DL−1F, DF 〉L2(X,Λ) is a

polynomial of degree 2n − 2 with random coefficients depending on the integrals

over X i of the fΓ
i . According to Lemma 21, these coefficients are bounded almost-

surely. Hence there exists a constant c > 0 such that

EΛ

[∣∣1 + 〈DL−1F, DF 〉L2(X,Λ)

∣∣] ≤ c λ−1/2.

The same kind of computations shows that

∫

X

EΛ

[
|DxF |2|DxL

−1F |
]
λ dx ≤ c λ−1/2.

Then, the result follows from Theorem 7. �
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Appendix A. Proofs of the second order moments

A.1. Proof of Theorem 15. By Lemma 14, we can rewrite the covariance between

Nk and Nl with l ≤ k:

CovΛ [Nk, Nl] = EΛ [(Nk −EΛ [Nk])(Nl −EΛ [Nl])]

= EΛ


 1

k!

k∑

i=1

(
k

i

)
λk−iIi

(
fk
i

) 1
l!

l∑

j=1

(
l

j

)
λl−jIj

(
f l
j

)

 ,

where

fk
i (vk−i+1, . . . , vk) =

∫

Xk−i

ϕ
(d)
k (v1, . . . , vk) dv1 . . . dvk−i.

Using the isometry formula, given by Eq. (1), we have:

CovΛ [Nk, Nl] =
1

k!l!

l∑

i=1

(
k

i

)(
l

i

)
λk+l−2i

EΛ

[
Ii
(
fk
i

)
Ii
(
f l
i

)]

=
1

k!l!

l∑

i=1

(
k

i

)(
l

i

)
λk+l−2ii!〈fk

i , f
l
i 〉L2(X,Λ)◦i

=
l∑

i=1

1

i!(k − i)!(l − i)!
λk+l−2i〈fk

i , f
l
i 〉L2(X,Λ)◦i

Hence, we are reduced to compute

〈fk
i , f

l
i 〉L2(X,Λ)◦i =

∫

Xi

(∫

Xl−i

ϕ
(d)
l (v1, . . . , vl) dvi+1. . . dvl

)

×
(∫

Xk−i

ϕ
(d)
k (v1, . . . , vk) dvi+1. . . dvk

)
λdv1 . . . λdvi.

Let us denote J2(m1,m2,m12) the integral on two simplices of respectively m1+m12

and m2 +m12 vertices with m12 > 0 common vertices:

J2(m1,m2,m12) =
∫

XM

ϕ
(d)
m1+m12

(v1, . . . , vm1+m12
)ϕ

(d)
m2+m12

(vm1+1, . . . , vM ) dv1 . . . dvM ,

with M = m1 +m2 +m12. Then we can rewrite:

〈fk
i , f

l
i 〉L2(X,Λ)◦i = λiJ2(l − i, k − i, i),
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and it then remains to compute J2(m1,m2,m12).

First, thanks to the tensorization property of the max-distance, we can write:

J2(m1,m2,m12) =

(∫

[0, a)M
ϕ
(1)
m1+m12

(x1, . . . , xm1+m12
)ϕ

(1)
m2+m12

(xm1+1, . . . , xM ) dx1 . . . dxM

)d

Let us split the integration domain of J2 into two parts:

• A1 = {(x1, . . . , xM ) ∈ ∆
(1)
M , ϕ

(1)
M (x1, . . . , xM ) = 1}, we recognize the inte-

gral calculated in the proof of Theorem 9:

∫

A1

ϕ
(1)
m1+m12

(x1, . . . , xm1+m12
)ϕ

(1)
m2+m12

(xm1+1, . . . , xM ) dx1 . . . dxM

= M(2ǫ)M−1a.

• A2 = {(x1, . . . , xM ) ∈ ∆
(1)
M , ϕ

(1)
M (x1, . . . , xM ) 6= 1}.

As in the proof of Theorem 9, we denote ζ(x1, · · · , xM ) the index i such that

xi < xj < xi+2ǫ or xi < xj + a < xi+2ǫ, which exists since ǫ < a/4 and m12 > 0.

By symmetry, we can reduce the analysis to the situation where ζ(x1, · · · , xM ) = 1

and x1 pertains to the first simplex of m1 +m12. We then order the three sets of

vertices such that:

x1 < · · · < xm1
, xm1+1 < · · · < xm1+m12

, and xm1+m12+1 < · · · < xM .

Since (x1, . . . , xM ) belongs to A2, we have xM − x1 > 2ǫ.

Let us denote Ja(f)(x) =
∫ a

x
f(u) du and by induction

J (m)
a (f)(x) =

∫ a

x

J (m−1)
a (f)(u) du.

Then we have by invariance by translation of the Lebesgue measure,

∫

A2

ϕ
(1)
m1+m12

(x1, . . . , xm1+m12
)ϕ

(1)
m2+m12

(xm1+1, . . . , xM ) dx1 . . . dxM

= 2m1!m2!m12!

∫ a

0

J
(m1−1)
x1+2ǫ (1)(x1)

∫ x1+4ǫ

x1+2ǫ

(−J
(m2−1)
xM−2ǫ (1)(xM )) J

(m12)
x1+2ǫ(1)(xM−2ǫ) dxM dx1.

We easily find that:

J
(m1−1)
x1+2ǫ (1)(x1) =

(2ǫ)m1−1

(m1 − 1)!

−J
(m2−1)
xM−2ǫ (1)(xM ) =

(2ǫ)m2−1

(m2 − 1)!
,

J
(m12)
x1+2ǫ(1)(xM − 2ǫ) =

(x1 − xM + 4ǫ)m12

m12!
·
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Thus we have:

∫

A2

ϕ
(1)
m1+m12

(x1, . . . , xm1+m12
)ϕ

(1)
m2+m12

(xm1+1, . . . , xM ) dx1 . . . dxM

=
2m1m2

m12 + 1
(2ǫ)M−1a.

Then,

J2(m1,m2,m12) = (m1 +m2 +m12 +
2m1m2

m12 + 1
)dad(2ǫ)(m1+m2+m12−1)d

concluding the proof.

A.2. Proof of Theorem 16. The variance of χ is given by:

VarΛ [χ] = EΛ

[
(χ−EΛ [χ])2

]

= EΛ



(

∞∑

k=1

(−1)k(Nk −EΛ [Nk]

)2



= EΛ




∞∑

i=1

∞∑

j=1

(−1)i+j(Ni −EΛ [Ni])(Nj −EΛ [Nj ])


 .

We remark that Ni ≤ N i
1/i!, thus

EΛ




∞∑

i=1

∞∑

j=1

|(Ni −EΛ [Ni])(Nj −EΛ [Nj])|




≤ EΛ




∞∑

i=1

∞∑

j=1

NiNj +EΛ [Ni]EΛ [Nj] +NiEΛ [Nj ] +NjEΛ [Ni]




≤ EΛ




∞∑

i=1

∞∑

j=1

N i+j
1 +EΛ

[
N i

1

]
EΛ

[
N j

1

]
+N i

1EΛ

[
N j

1

]
+N j

1EΛ

[
N i

1

]

i!j!




≤ EΛ

[
e2N1 + e2EΛ[N1] + 2eN1+EΛ[N1]

]

< ∞.

Thus, we can write

VarΛ [χ] =

∞∑

i=1

(−1)i
∞∑

j=1

(−1)j CovΛ [Ni, Nj ] .

The result follows by Theorem 15.
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A.3. Proof of Theorem 17. If d = 1, according to Theorem 16:

VarΛ [χ] =
a

2ǫ

∞∑

n=1

c1n(2λǫ)
n.(7)

Moreover, we define

αn =

n∑

j=⌈ n+1

2 ⌉


2

j∑

i=n−j+1

(−1)i+jn

(n− j)!(n− i)!(i + j − n)!
− n

(n− j)!2(2j − n)!


 ,

and βn = c1n − αn. It is well known that

2j−n∑

i=0

(−1)i
(
j

i

)
= (−1)2j−n−1

(
j − 1

2j − n

)
,

using Stiffel’s relation, we obtain:

αn = (−1)n
n

n!

n∑

j=⌈ n+1
2 ⌉

[(
n

j

)
2

2j−n∑

i=0

(−1)i
(
j

i

)
+ 2(−1)n

(
n

j

)]

=
1

(n− 1)!

n∑

j=⌈n+1

2 ⌉

[
2

(
n

j

)(
j − 1

n− j − 1

)
−
(
n

j

)(
j

n− j

)
− 2(−1)n

(
n

j

)]

=
1

(n− 1)!

n∑

j=⌈n+1
2 ⌉

[(
n

j

)((
j − 1

n− j

)
−
(

j − 1

n− j − 1

))
− 2(−1)n

(
n

j

)]
.(8)

The identity
(
n
j

)
=
(

n
n−j

)
allows us to write that

n∑

j=⌈(n+1)/2⌉

(−2(−1)n)

(
n

j

)
=

n∑

j=0

(
n

j

)
= 2n, n odd,

n∑

j=⌈(n+1)/2⌉

(−2(−1)n)

(
n

j

)
=

(
n

n/2

)
+

n∑

j=0

−
(
n

j

)
= −2n +

(
n

n/2

)
, n even.

Since
(
j−1
n−j

)
= 0 for j <

⌈
n+1
2

⌉
, we have

n∑

j=⌈n+1
2 ⌉

(
n

j

)((
j − 1

n− j

)
−
(

j − 1

n− j − 1

))

=
n∑

j=1

(
n

j

)((
j − 1

n− j

)
−
(

j − 1

n− j − 1

))
−
(

n

n/2

)
1 + (−1)n

2

By known formulas on hypergeometric functions, we have that:

n∑

j=⌈n+1

2 ⌉

(
n

j

)((
j − 1

n− j

)
−
(

j − 1

n− j − 1

))
= (−1)n+1 −

(
n

n/2

)
1 + (−1)n

2

Then, we substitute these last two expressions in Eq. (8) to obtain

αn = (−1)n
(1− 2n)1n≥1

(n− 1)!
,



26 L. DECREUSEFOND, E. FERRAZ, H. RANDRIAMBOLOLONA, AND A. VERGNE

and thus
∞∑

i=0

αnx
n = −xe−x + 2xe−2x.

Proceeding along the same line, βn is given by

βn =

n∑

j=⌈ n+1
2 ⌉


2

j∑

i=n−j+1

(−1)i+j2(n− i)(n− j)

(n− j)!(n− i)!(i + j − n+ 1)!

− 2(n− j)2

(n− j)!2(2j − n+ 1)!

]

= (−1)n
(
(−2 + 2n)1n≥1

(n− 1)!
− 21n≥2

(n− 2)!

)
,

and again we can simplify the power series
∑∞

n=0 βnx
n as

∞∑

n=0

βnx
n = 2xe−x − 2(x+ x2)e−2x.

Then, substituting αn and βn in Eq. (7) yields the result.

Appendix B. Proof of the third order moment

B.1. Proof of Theorem 19. From Lemma 14 , we know that the chaos decom-

position of the number of (k − 1)-simplices is given by

Ñk =

k∑

i=1

Ii(hi),

with

hi(v1, . . . , vi) =
1

k!

(
k

i

)
λk−i

∫

Xk−i

ϕ
(d)
k (v1, . . . , vk) dvi+1 . . . dvk,

and

Ii(hi) =

∫

Xi

hi(v1, . . . , vi) dω
(i)
Λ (v1, . . . , vi).

Then, we define denoting u = i+ j − s,

gi,j,s,t = t!

(
i

t

)(
j

t

)(
t

u− t

)
hi ◦u−t

t hj

and using the chaos expansion (cf Proposition 6), we have

Ñk

3
= (

k∑

i=1

Ii(hi))
3

=




k∑

i=1

k∑

j=1

Ii(hi)Ij(hj)



(

k∑

l=1

Il(hl)

)

=

k∑

i,j,l=1

i+j∑

s=|i−j|

u∧i∧j∑

t=⌈u
2
⌉

Is(gi,j,s,t)Il(hl).
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According to (1), we obtain:

EΛ

[
Ñk

3
]

= EΛ




k∑

i,j=1

i+j∧k∑

s=|i−j|∨1

u∧i∧j∑

t=⌈ u
2
⌉

Is(gi,j,s,t)Is(hs)




=

k∑

i,j=1

i+j∧k∑

s=|i−j|∨1

u∧i∧j∑

t=⌈ u
2
⌉

∫

Xs

gi,j,s,thsλ
s dv1 . . . dvs

=

k∑

i,j=1

i+j∧k∑

s=|i−j|∨1

u∧i∧j∑

t=⌈ u
2
⌉

λst!

(
i

t

)(
j

t

)(
t

u− t

)∫

Xs

(hi ◦u−t
t hj)hs dv1. . . dvs.

We denote J3(k, i, j, s, t) the following integral:

(9) J3(k, i, j, s, t) =

∫

X3k−t−s

ϕ
(d)
k (v1, . . . , vk)ϕ

(d)
k (v1, . . . , vt, vk+1, . . . , v2k−t)

ϕ
(d)
k (v1, . . . , v2t−i−j+s, vt+1, . . . , vi, v2k−j+1, . . . , v3k−t−s) dv1 . . . dv3k−t−s,

for i, j, s and t bounded as in the previous sums. We recognize the integral on three

(k − 1)-simplices with u− t, i− t, and j − t common vertices to only two of them,

and 2t− u common vertices to the three of them. Then, we can write:

EΛ

[
Ñk

3]
=

k∑

i,j,=1

i+j∧k∑

s=|i−j|∨1

u∧i∧j∑

t=⌈u
2
⌉

λ3k−i−j t!

(k!)3

(
k

i

)(
k

j

)(
k

s

)(
i

t

)(
j

t

)(
t

u− t

)

J3(k, i, j, s, t).

Finally, relaxing the boundaries on the sums conclude the proof.
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