Enumeration of corner polyhedra and 3-connected Schnyder labelings - Base de données, Automate, Analyse d'agorithmes et Modèles Access content directly
Preprints, Working Papers, ... Year : 2022

Enumeration of corner polyhedra and 3-connected Schnyder labelings

Abstract

We show that corner polyhedra and 3-connected Schnyder labelings join the growing list of planar structures that can be set in exact correspondence with (weighted) models of quadrant walks via a bijection due to Kenyon, Miller, Sheffield and Wilson. Our approach leads to a first polynomial time algorithm to count these structures, and to the determination of their exact asymptotic growth constants: the number p_n of corner polyhedra and s_n of 3-connected Schnyder woods of size n respectively satisfy (p_n)^1/n → 9/2 and (s_n)^1/n → 16/3 as n goes to infinity. While the growth rates are rational, like in the case of previously known instances of such correspondences, the exponent of the asymptotic polynomial correction to the exponential growth does not appear to follow from the now standard Denisov-Wachtel approach, due to a bimodal behavior of the step set of the underlying tandem walk. However a heuristic argument suggests that these exponents are −1 − π/ arccos(9/16) ≈ −4.23 for p_n and −1 − π/ arccos(22/27) ≈ −6.08 for s_n, which would imply that the associated series are not D-finite.
Fichier principal
Vignette du fichier
eocpa3csw.pdf (3.39 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03826426 , version 1 (24-10-2022)
hal-03826426 , version 2 (21-10-2023)
hal-03826426 , version 3 (16-11-2023)

Identifiers

  • HAL Id : hal-03826426 , version 1

Cite

Éric Fusy, Erkan Narmanli, Gilles Schaeffer. Enumeration of corner polyhedra and 3-connected Schnyder labelings. 2022. ⟨hal-03826426v1⟩

Collections

LIGM_ALGO LIGM_MOA
94 View
22 Download

Share

Gmail Facebook X LinkedIn More