L6DNet: Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small Datasets - Applications Domain, IRT b<>com
Article Dans Une Revue IEEE Robotics and Automation Letters Année : 2021

L6DNet: Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small Datasets

Résumé

Estimating the 3D pose of an object is a challenging task that can be considered within augmented reality or robotic applications. In this paper, we propose a novel approach to perform 6 DoF object pose estimation from a single RGB-D image. We adopt a hybrid pipeline in two stages: data-driven and geometric respectively. The data-driven step consists of a classification CNN to estimate the object 2D location in the image from local patches, followed by a regression CNN trained to predict the 3D location of a set of keypoints in the camera coordinate system. To extract the pose information, the geometric step consists in aligning the 3D points in the camera coordinate system with the corresponding 3D points in world coordinate system by minimizing a registration error, thus computing the pose. Our experiments on the standard dataset LineMod show that our approach is more robust and accurate than state-of-theart methods. The approach is also validated to achieve a 6 DoF positioning task by visual servoing.
Fichier principal
Vignette du fichier
root.pdf (2.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03148929 , version 1 (22-02-2021)

Identifiants

Citer

Mathieu Gonzalez, Amine Kacete, Albert Murienne, Eric Marchand. L6DNet: Light 6 DoF Network for Robust and Precise Object Pose Estimation with Small Datasets. IEEE Robotics and Automation Letters, 2021, 6 (2), pp.2914-2921. ⟨10.1109/LRA.2021.3062605⟩. ⟨hal-03148929⟩
238 Consultations
481 Téléchargements

Altmetric

Partager

More