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pour avoir été très appliqués en cours de soutiens et pour la frâıcheur et la bonne humeur
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mémorable.



Résumé

Les travaux effectués durant cette thèse de doctorat traitent le problème du codage vidéo

basé sur les régions d’intérêt. Ils ont pour but d’améliorer l’efficacité de codage dans HEVC

et de gagner en qualité de décodage globalement sur une séquence donnée mais aussi

localement sur des régions d’un intérêt particulier. Par conséquent, nous proposons d’une

part une modélisation précise du débit et de la distorsion, et d’autre part des méthodes de

contrôle de débit basées sur les régions d’intérêt et adaptées au standard HEVC.

Dans la première partie de ces travaux, nous proposons de nouveaux modèles débit-

distorsion pour HEVC. La modélisation proposée tient compte des caractéristiques du

contenu et de l’encodeur. Dans une première approche, les modèles sont développés pour

des blocs de type intra en tenant compte uniquement des dépendances spatiales entre les

pixels du bloc. Dans une seconde approche, on utilise les caractéristiques statistiques des

données à encoder pour obtenir des modèles plus efficaces pour le codage vidéo hybride

(intra et inter). Nos expériences montrent qu’une bonne représentation des coefficients

transformés des blocs d’une image donne une meilleure répartition du débit et un gain

global importants.

Dans la deuxième partie de la thèse, nous proposons de nouveaux algorithmes de

contrôle de débit pour HEVC qui introduisent le concept de la région d’intérêt. Assurer une

allocation de bits par région et calculer le paramètre de quantification indépendamment

sur des blocs de l’image de divers niveaux d’importance aident à améliorer la répartition

du budget sur les différentes régions. Cela peut être utile dans de nombreuses applications

où le traitement de l’image par régions d’intérêt est nécessaire, par exemple les systèmes

de visioconférence. Les méthodes proposées montrent une amélioration de la qualité de la

région d’intérêt tout en respectant la contrainte globale imposée par le réseau.

Mots clés : Codage vidéo, standard HEVC, région d’intérêt, tuile, contrôle de débit,

modèle débit-distorsion.
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Abstract

This PhD. thesis addresses the problem of region-of-interest-based video coding and deals

with improving the coding efficiency in High Efficiency Video Coding standard. We propose

both accurate rate distortion modeling approaches, and also region-of-interest-based rate

control methods adapted for High Efficiency Video Coding.

In the first part, we propose new rate-distortion models for High Efficiency Video

Coding at coding unit level. Proposed modeling takes into account content characteristics

and encoder features. In a first proposition models are based on spatial dependencies

between pixels of a coding unit while in a second proposition statistical characteristics of

the data are used to derive more efficient models. We show the benefits that can be drawn

from using content based rate-distortion modeling. A good fitting of transform coefficients

per unit gives us important gains in coding efficiency.

In the second part, we propose novel rate control algorithms for High Efficiency Video

Coding that introduces region-of-interest concept. Performing bit allocation per region

and computing quantization parameter independently per units of various importance

levels, help improving budget partitioning over regions of different interest. This can be

useful in many applications where region-based processing of the frame is required such as

videoconferencing systems. The proposed methods show an improvement in the quality of

the region-of-interest while the budget constraint is respected.

Keywords: Video coding, High Efficiency Video Coding, region-of-interest, tiles, rate

control, rate-distortion model.
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Introduction

Context

Video coding technologies defines different techniques that respond to audiovisual data

transmission challenges. As digital pictures and videos are captured, processed and then

transmitted over various communication channels of limited bandwidths and with different

conditions, encoders are meant to compress the input data to fit network and storage

requirements. On the other hand, the broadcasted multimedia data, finally presented

to the human observer should have a good visual quality. In other words, the problem

consists in the fact that signals with high information content are to be transmitted

through low-capacity channels or stored into low-capacity media. In these conditions, high

compression efficiency is required.

It is true that the evolution in network and in storage devices mitigates the needs of

compression. But, it does not remove it. Indeed, the improvement in acquisition devices,

in display, new formats and augmented needs of the users demand improved encoding

algorithms. Standardization bodies such as the Moving Picture Experts Group (MPEG)

under the authority of the International Organization for Standardization (ISO) and the

International Electrotechnical Commission (IEC) and the Video Coding Experts Group

(VCEG) under International Telecommunication Union (IUT-T) have been developing

video coding standards for a long time. Video coding technology has been re-standardized

every several years, and each time coding performance has been improved.

The latest video compression standard, known as High Efficiency Video Coding (HEVC),

is a successor to H.264/MPEG-4 AVC (Advanced Video Coding). It has been finalized

in January 2013 and aims of substantially improving compression efficiency compared

to H.264/AVC, reducing bitrate requirements by half with comparable image quality.

Today, significant efforts are being devoted to adapt HEVC coding to specific needs of

certain applications. Depending on the application requirements, HEVC aims to trade off

computational complexity, compression rate, robustness to errors and processing delay time.

Thus, non-normative tools in video coding standards are being developed. In particular,

due to its importance, rate control is being researched.

Rate control schemes have been recommended by standard during the development to

ensure a successful transmission of the coded stream in a limited bandwidth. Considering
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the bit budget constraint, the controller performs, first, bit allocation per frame and/or

per block. Then, using appropriate rate distortion models, optimal coding parameters such

as quantization parameters are computed. Due to more complicated coding structure and

the adoption of new coding tools, the statistical characteristics of transformed residues are

significantly different. Thus, rate control techniques have evolved greatly with the develop-

ment of video coding techniques. Different rate control methods have been implemented

and tested over video encoders, some of them based on simple rate expressions such as

in TM5 for MPEG-2, VM8 for MPEG4 and TMN8 for H.263 others on more complex

mathematical representations such as in H.264/AVC and HEVC. The accuracy of these

models has been enhanced by introducing the so-called complexity of the source and by

considering advanced video coding features.

Furthermore, in various fields such as videoconferencing systems, video surveillance

and telemedicine, the subjective visual quality mainly depends on some important areas,

called regions-of-interest (ROIs). In recent years, a large number of research works have

been done for ROI-based rate control. The main challenge of theses algorithms is to ensure

a bit partitioning over regions that respects both the ROI and the budget constraints.

Consequently, many contributions on H.264/AVC have introduced rate control algorithms

that consider ROIs for bit allocation. However, when we started our work, all the existing

RC algorithms developed for HEVC do not take into account the importance of particular

regions. Therefore, the work done in this thesis falls in the ROI-based HEVC coding

context.

The goal of our thesis is to develop new rate control tools on top of the HEVC reference

software to further improve on the first hand the coding efficiency of the whole frame

by proposing appropriate rate distortion models and on the second hand the quality of

particular regions by performing ROI-based bit allocation. In collaboration with Telecom

ParisTech, the young company AMIRIEL lunched a research program to build a high-

definition videoconferencing solution designed for domestic use. The work in this thesis was

performed in the Multimedia (MMA) group of the Signal and Image processing department

(TSI) of Telecom ParisTech and the LTCI laboratory (UMR 5141).

Contributions

Various rate-distortion (RD) models aimed at performing semantic video coding in HEVC

were developed during this thesis. They can be divided into two categories. The first

category includes new rate-distortion models that takes into account statistics of the

encoded sequence. We identify two contributions in this category:

• An RD model that accurately describes the relationship between the encoded bits

and the corresponding distortion for intra-coded frames. The proposed model is

adapted to independently decodable coding tree units (CTUs). It takes into account
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spatial dependencies considering the characteristics of HEVC coded stream.

• Operational rate and distortion models considering signal characteristics at both

high and low bit rates and for intra- and inter-coded frames. Model parameters

are generated by fitting transform coefficient distribution to a Bernoulli Generalized

Gaussian (BGG) model. The proposed models are used to minimize the RD cost per

frame and compute the optimal distribution of the quantization parameter (QP) at

CTU level.

The methods in the second category are ROI-based rate control schemes where appro-

priate bit allocation approaches and RD models are developed at region level. There are

three contributions in this category:

• A method that adapts an existing rate control scheme for ROI-based bit allocation

in HEVC inter-coded frames. Modifications in the quadratic region-based model

implemented in H.264/AVC are introduced to adapt it to HEVC test model 9 (HM.9).

• A method using a ROI-based R-λ model. The two major steps of the rate control

are modified: the bit allocation at both frame and CTU levels and the computation

of QP by the proposed model for both I and B frames. First, bits are allocated per

region. Then, independent R-λ models are derived for ROI and non-ROI to compute

QPs for different units. The proposed approach was implemented in HM.10 and

adapted to later version of HEVC test model 13 (HM.13).

• A method using a ROI- and tile-based R-λ model. Tiling is added to generate separate

regions and ROI-based R-λ approach is used for bit allocation and QP computing.

Independent rate allocation but also independent transmission and decoding of the

ROI and the non-ROI are introduced to overcome the limitation of our ROI-based

rate control algorithm.

Structure of the manuscript

This manuscript comprises three parts. The first part starts with a state-of-the-art in video

coding, and a detailed overview of HEVC coding tools. Then, the second part describes

the main features of rate control to end with a glossary of the proposed rate-distortion

models. Finally, in the third part, ROI-based rate control concept is introduced and our

contributions and experiments are detailed. More precisely, the manuscript is organized as

follows:

Part one

• Chapter 1 presents a state-of-the-art in video coding. It highlights the Necessity and

feasibility of data compression and describes fundamentals of image and video coding.
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It ends with a list of useful evaluation metrics.

• Chapter 2 summarizes the evolution of video coding standards by presenting major

features of each standard and justifying the usage of coding tools. A detailed

presentation of the last in date compression standard, HEVC, concludes this chapter

as it will serve as basis for comparison in manuscript.

Part two

• Chapter 3 presents the principles of rate control by introducing the rate distortion

theory and explaining the concept of rate distortion optimization (RDO). Different

rate-distortion models form the literature are described next, followed by important

features of rate control in video coding.

• Chapter 4 details classic rate control algorithms by putting the stress on the evolution

of their bit allocation processes and rate distortion models. It ends with a detailed

description of HEVC rate control algorithms and their corresponding rate-distortion

models (quadratic and R-λ models). A comparison of these two RD models concludes

this chapter to motivate the choices we made during our researches.

• Chapter 5 presents our contributions related to rate-distortion modeling. It starts

with a study of some models from the literature that we adapt to HEVC. Experiments

are performed for model validation at CTU level to motivate the efficiency of the

proposed model which takes into account spatial dependencies in an intra-coded

frame. Then, we provide a study on RD modeling for HEVC considering appropriate

probabilistic models for the transform coefficients. The method is then presented:

basically parameters of the probability density function are estimated by maximizing

the likelihood of the data under the model. The rate and distortion models are

derived at both high and low bit rates. They are used to minimize the RD cost

per frame and compute the optimal distribution of quantization parameters (QP)

at CTU level. For both intra- and inter-coded frames, the method gives significant

coding gains. The subjective and objective results are reported and interpreted,

which concludes the chapter.

Part three

• Chapter 6 introduces an important tool in ROI-based rate control which is ROI

detection and tracking. A state-of-the-art on this tool is presented to spot approaches

needed in our work. the chapter details in a second part different controllers that

have been proposed for H.264/AVC encoder. This review of available schemes helps

us chose appropriate models to compare with.
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• Chapter 7 presents our contributions related to ROI-based rate control. It starts

by introducing our first contribution in this category which is an evolution of an

ROI-based controller proposed for H.264/AVC standard using a quadratic RD model.

Then, details our second contribution which is a novel rate control scheme that

introduces ROI concept to HEVC R-λ model. This scheme has been introduced

first in HM.10 for only inter-coded frames then improved in a later version of HEVC

(HM.13) by considering ROI-based rate control for intra-coded frames. The evolution

of this method is described and experimental results given. This chapter ends with a

comparison of both contributions.

• Chapter 8 describes a novel ROI-based rate control method that uses tiling to perform

not only independent bit allocation, but also region coding and transmission over the

network. At video coding layer (VCL) tiling is performed to create separate regions,

then, ROI-based rate control is done. At network abstraction layer (NAL), units of

different regions are transmitted in separate streams. A packet loss model and error

concealment algorithm are proposed to simulate the transmission and the decoding

processes. Experiments are made to evaluates the impact of introduced features and

the efficiency of the proposed approach. The obtained results of the method are

reported and analyzed.

We end this manuscript with a summary of the proposed methods and their associated

results, as well as some perspectives for future work in this field.
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Part I

Background on video coding





Chapter 1

Image and video compression:

State-of-the-art

Contents

1.1 Necessity and feasibility . . . . . . . . . . . . . . . . . . . . . . . 10
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1.2.1 Transform coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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1.3.1 Visual quality evaluation . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 RD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

The work done in this thesis is aimed at proposing new approaches of semantic video

coding for High Efficiency Video Coding (HEVC). Consequently, we begin this thesis

manuscript by introducing fundamentals of image and video compression.

In this chapter, necessity as well as feasibility of image and video compression are

discussed. Then, basic concepts of image and video compression that could be useful in

our researches are reviewed. Finally, proposed algorithm should be evaluated comparing to

state-of-the-art approaches. We thus give details of metrics used to evaluate compression

algorithm performance.
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1.1 Necessity and feasibility

Image and video compression has been found to be necessary in data storage and transmis-

sion applications. In fact, the huge amount of data in these applications usually well-exceeds

the capacity of todays hardware. Moreover, visual information is important for human

being to help them perceive recognize and understand the surrounding word. Today,

demands of video services increase considerably, we talk about high video quality like

HDTV, 3D movies, video games, and so on.

Image and video compression methods have been proposed since a long time thanks

to statistical and psychovisual redundancy of the data set. Generally, it is achieved by

exploiting all these redundancies [2]:

• Statistical redundancy

Statistical redundancy represent both statistical correlation between pixels within a

frame (Spatial correlation) and statistical correlation between pixels from successive

frames in a video (Temporal correlation) as illustrated in Fig.1.1.

Most video coding methods exploit both temporal and spatial redundancies to achieve

compression. In the spatial domain, there is usually a high similarity between pixels

that are close to each other. Thus, the value of a pixel is typically close to the

neighboring ones. In the temporal domain, there is usually a high similarity between

frames of video that are captured at around the same time, especially if the temporal

sampling rate (the frame rate) is high. Consequently, successive frames can be

predicted from previous ones.

Figure 1.1: Spatial and temporal correlation in a video sequence
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• Psychovisual redundancy

Psychovisual redundancy stems from the fact that the human eye does not respond

with equal intensity to all visual information. The human visual system (HVS)

does not rely on quantitative analysis of individual pixel values when interpreting

an image. An observer searches for distinct features and mentally combines them

into recognizable groupings. In this process certain information is considered as

psychovisually redudant as it is relatively less important than other.

1.2 Fundamentals of image and video compression

Image and video compression is a process in which the amount of data used to represent

the image or the video is reduced to meet a bit rate requirement, while the quality

of the reconstructed image or video and computational complexity satisfy application’s

requirements. Considering, previously described redundancies, this objective can be reached

by removing redundancy and reducing irrelevance.

During the past two decades, various compression methods have been developed to

address major challenges faced by digital imaging. These techniques can be classified

broadly into lossless or lossy compression. Lossless compression gives only a moderate

amount of compression but can completely recover the original data. On the other hand,

lossy compression can achieve a high compression ratio, since it allows some acceptable

degradation. Yet it cannot completely recover the original data.

Figure 1.2: Lossy image compression scheme

Generally most lossy image compressors are implemented as three step algorithms as

shown in Fig.1.2, the first two exploit both psychovisual and statistical redundancy, wile the

third only statistical. The transform allows to concentrate information in as few coefficients

as possible; then, quantization allows to allocate coding resource in such a way that the

most relevant coefficient are finely represented, while the least important are coarsely

quantized. Finally, lossless coding is used to remove residual statistical dependencies among

quantize data.
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1.2.1 Transform coding

The transform is the first step in image and video encoding as shown in Fig.1.2. The

purpose of transformation is to convert the data into a form where compression is easier.

A transform has the goal of reducing correlation [3]. The transformed values are usually

smaller on average than the original ones which reduces the redundancy of representation.

For lossy compression, the transform coefficients can be quantized according to their

statistical properties, producing a much compressed representation of the original image

data.

Linear transforms

In order to recover the original signal, the transform has to be invertible. In fact, if A is a

linear transform matrix, A−1 is the matrix of its inverse transform. Considering an input

2-D signal X, transform coefficients in the encoder can be represented as follows:

Θ = A X (1.1)

At the decoder side, since transform coding implies the use of quanitzed transform

coefficients Θ̂ = Q(Θ), the reconstracted signal Y is:

Y = A−1 Θ̂ (1.2)

Practical transforms

Several linear and reversible transforms have been studied and used in transform coding,

such as, the Karhunen-Loeve transform (KLT), the Discrete-Fourier transform (DFT), the

Walsh transform, the Hadamard transform and the Discrete-Cosine transform (DCT) [4].

The optimal transform that decorrelates the data is the KLT [ 5]. It can compact the

most energy in the smallest fraction of transform coefficients. However, it depends on the

statistics of the encoded data. However, KLT assumes stationary signals. Knowing that

images, video and music are not stationary, KLT makes no sense on them and can not be

used in practice.

In practice, the DFT and DCT have been used. Studies have shown that DCT performs

better than all other transforms [2]. For natural images, it compacts the energy of the signal

in low frequency components. Then, it can be used for decorrelating the data. Differently

from KLT, it is not data dependent. Moreover, DCT has been found to be efficient not

only for still images coding but also for coding residual images in predictive coding.

1.2.2 Quantization

Quantization is essentially discretization in magnitude. It consists of the conversion of the

input data from a large alphabet to a shorter one, which is an important step in lossy
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compression of digital image and video. It introduces a reconstruction errors that can be

evaluated objectively or subjectively depending on the application needs and specifications

[6]. In general, scalar quantization is a mapping from a set S to C, a discrete subset of

cardinality N .

Q : x ∈ S → C = {y1, . . . , yN} (1.3)

This means that the set S is divided into regions Ri ⊂ R for i = 1 . . . , N , where

∪Ni=1Ri = S. A region Ri is defined as

Ri = {x ∈ S : Q(x) = yi} (1.4)

To conclude, encoding consists in mapping the value x ∈ Rk to the index k of the

region to which it is associated. While, decoding consists in mapping the index k to the

reconstruction value yk.

(a) Uniform quantization (b) Non-uniform quantization

Figure 1.3: Input-output characteristic of uniform and non-uniform quantizer

There are three different types of scalar quantization techniques: uniform quantization,

non-uniform quantization, and adaptive quantization.

Uniform quantization

If all the regions Ri have the same amplitude, and yi is the center of the region Ri as

represented in Fig.1.3(a), the quantization is then uniform. The length of the output

interval is called the quantization step, denoted by q. Uniform quantization is only optimal

for uniformly distributed signal. An alternative approach is to choose different quantization

steps and perform non-uniform quantization.
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Non-uniform quantization

In the case of non-uniform quantization (Fig.1.3(b)), Lloyd-Max algorithm gives the optimal

regions and the optimal reconstruction values according to the statistics of the input signal x.

Obviously, the range of values that is less probable is coarsely quantized than the most

probable region [2].

Fixed quantizers may yield minimum mean square error (MSE) when assuming that

signal is stationary. But this cannot be done in practical cases where signal is not stationary

and is fluctuating. Thus, it is possible to adapt the properties of the quantizer to the level

of the signal. This is called adaptive quantization.

Adaptive quantization

As said before, adaptive quantization attempts to make the quantizer design adapt to the

varying input statistics to achieve better performance. Many researches have been done for

performing adaptive quantization [ 7]. We distinguish two types of adaptive quantization.

Forward adaptive quantization is based on a statistical analysis of the input signal to set

up encoder and quantization. Then, side information are sent to the decoder quantize [ 8].

However, in backward adaptive quantization, statistical analysis is carried out with respect

to the output quantization at both encoder and decoder sides.

1.2.3 Entropy coding

Entropy means the amount of information present in the data. For additional compression,

an entropy coder encodes a given set of symbols with the minimum number of bits required

to represent them. After the data has been quantized into a finite set of values, it can be

encoded using an entropy coder. It is a lossless step of the compression scheme. Thus,

the inverse process is able to retrieve the exact coefficients. In practice, Huffman coding,

Lempel-Ziv (LZ) coding and arithmetic coding are the commonly used entropy coding

schemes [9].

For example, Huffman coding utilizes a variable length code in which short code words

are assigned to more common values or symbols in the data, and longer code words are

assigned to less frequently occurring values. Many variations of Huffman’s technique have

been studied such as modified Huffman coding and dynamic Huffman coding [10].

1.2.4 Differential coding

As shown in Fig.1.2, an encoder consists in three major steps: Transform, quantization, and

coding. The input information of the compressor can be a frame or a sequence. However,

it is not necessarily the most suitable format for encoding. In a frame or a sequence,

neighbor pixels are highly correlated as discussed in Section.1.1. They represent statistical

redundancies that can be reduced using differential coding. Instead of encoding a signal
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directly, the differential coding technique encodes the difference between the signal itself

and its prediction. Therefore it is also known as predictive coding.

Simple pixel-to-pixel scheme

The principle of the differential coding is to encode the difference dn between the actual

sample xn and the previous reconstructed sample x̂n−1 called predictor:

dn = xn − x̂n−1 (1.5)

In practice, in a simple pixel-to-pixel differential coding scheme the estimation of xn

depends on its own quantization error. This type of method is known as a Differential

Pulse Coded Modulation Scheme (DPCM). In the general case, the scheme is more complex

as the reference is predicted from the reconstructed signal.

General DPCM scheme

The general scheme of the DPCM system can be represented as in Fig.1.4. The used

reference qn is a function of the k previously decoded samples.

(a) Encoder (b) Decoder

Figure 1.4: DPCM system

Considering a prediction function f , the predictor is computed as following:

pn = f(xn−1, xn−2, .., xn−k) (1.6)

Thanks to a good predictor, we have a smaller variance of the data to be quantized.

Then, at the same rate, if dn is quantized instead of xn, we can obtain a smaller distortion.

Inter-frame differential coding

For image coding, DPCM is performed inside the same image considering spatial depend-

encies. They uses respectively pixels of the same scan line and pixels from different scan
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lines to generate the predictor. While, video coding involves a third dimension. Thus,

DPCM considers temporal dependencies between successive frames in addition to spatial

redundancy. Consequently, motion estimation and compensation techniques have been

introduced.

The objective of these techniques is to predict the frame Ik from a neighboring frame

Îm already decoded, by estimating and compensating the objects’ motion. Then, instead

of sending Ik, estimated motion vectors are sent for constructing the prediction. For

estimating the motion, the frame Ik is divided into blocks. A search is performed in the

reference image Îm for the block that is the most similar to the current one, as represented

in Fig.1.5. The vector v is called motion vector. The search is usually constrained to be

within a reasonable neighborhood so as to minimize the complexity of operation.

Figure 1.5: Motion estimation process

1.3 Evaluation criteria

In evaluating lossy compression methods, we first evaluate visual quality. If no difference in

quality is noticed, the one that requires less data is considered to be superior to the other.

Not only rate-distortion (RD) performance should be considered but also computational

complexity is important metric to choose the best method. Among the evaluation criteria

adopted by the community of image and video compression to highlight the performance

of a proposed approach, we cite the visual quality metrics, RD curves and the measure of

calculations’ complexity.
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1.3.1 Visual quality evaluation

As the definition of image and video compression indicates, image and video quality is

an important factor in dealing with compression. In many multimedia and industrial

applications, it is necessary to judge the quality of the compressed image or video with

respect to the initial version of the data [11]. There are currently three major types of

visual quality assessment:

• Subjective methods using a group of observers to describe the images quality.

• Objective methods that use the statistical properties of the signals. They are divided

into perceptual and non-perceptual metrics.

Mean absolute difference (MAD)

The MAD is a measure of statistical dispersion equal to the average absolute difference

between the original signal x and the reconstructed one x′:

MAD =
1

N

∑
i∈N
|xi − x′i| (1.7)

where N is the number of samples.

Mean Square Error (MSE)

It is common in image and video coding community to talk of losses information in terms of

MSE. The latter is a simple difference between the original signal x and the reconstructed

x′:

MSE =
1

N

∑
i∈N

(xi − x′i)2 (1.8)

where N is the number of samples.

Peak-Signal-to-Noise-Ratio (PSNR)

Another significant metric derived from the MSE is the Peak-Signal-to-Noise-Ratio (PSNR)[12].

This metric represents a gain expressed in dB, and is obtained by the following equation:

PSNR = 10 log10

(
2552

MSE

)
(1.9)

The PSNR indicates the degree of similarity between the original signal and the

reconstructed signal. It is generally calculated on the whole image, unit or group of units,

it is representative of the average quality but do not account for local defects.
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Structural Similarity Index (SSIM)

The structural similarity (SSIM) is a perception-based model that considers image de-

gradation as perceived change in structural information. SSIM metric and its multi-scale

extension (MS-SSIM) evaluate visual quality with a modified local measure of spatial

correlation consisting of three components: mean, variance, and cross-correlation [13].

To overcome the limitations of MSE/PSNR, perceptual objective video quality assess-

ment (VQA) has been developed. SSIM has been initially designed to measure the quality

of still images and then adapted to video quality assessment. It has appeared to be the

most widely spread method in recent years as an alternative quality measure of PSNR in

the video coding community [14]. In our work, we used the SSIM developed in [15].

1.3.2 RD performance

A visual quality metric such as the PSNR is not enough to analyze a coding situation since

it depends on another key parameter which is the bit rate measured in bpp. Thus, rate

distortion curves have been adopted to assess the trade-off between the gain in bit rate and

the quality of the reconstructed signal. A comparison between different coding approaches

can be done using a representation of their RD curves or some metrics such as Bjontegaard

metric. In fact, Bjontegaard metric (BD-PSNR) gives a single number that describes the

distance between two RD-curve [16]. It is also useful to determine how big is the gain

between two encoding versions, instead of curves that are more difficult to interpret.

1.3.3 Computational complexity

The computational complexity is another important performance parameter to be evaluated.

We use different methods to calculate the complexity such as encoding time and memory

occupancy. These criteria are used to calculate the complexity of a software and compare

it with other scheme.

1.4 Conclusion

In this chapter, we start Section 1.1 by explaining the importance of video coding and its

feasibility. We have then reviewed fundamentals of video coding in Section 1.2 and gave

some evaluation metrics in Section 1.3.

Previously presented tools are, to this day, used in video coding standards. The next

chapter will detail different image and video coding standards - from standard for continuous-

tone still image coding to high efficiency video coding - for a better understanding of the

evolution of coding tools. It ends with a detailed description of HEVC and its novelties.
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The two major international organization working on video compression standardization

are ITU-T (International Telecommunication Union) and the ISO/IEC (International

Standard Organization/International Electrotechnical Commission). The MPEG (Motion

Picture Experts Group) was formed by ISO and IEC to set standards for audio and video

compression. MPEG has standardized MPEG-1, MPEG-2 and MPEG-4. Meanwhile,

the VCEG (Video Coding Expert Group) of the ITU-T, has finalized H.261 and H.263

standards. Finally, both organizations collaborated together in a Joint Video Team (JVT)

and developped standard with better coding efficiency; H.264/AVC in 2003 and HEVC in

2013.

In this chapter, we make a summary of the evolution of video coding standards by

presenting major features of each standard and justify the usage of tools described in
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Section 1.2. Then, we give more details about the last in date compression standard,

HEVC, which will serve as basis for comparison in manuscript.

2.1 Evolution of image and video coding standards

2.1.1 JPEG - Standard for continuous-tone still image coding

JPEG (Joint Photographic Experts Group) is a widely used method for compression of

continous-tone still images (grayscale or color), standardized by ITU-T and ISO/IEC in

1992. To support a wide range of applications for storage transmission of digital images,

the JPEG encoder specifies two different systems: a lossy coding of images based on the

scheme represented in Fig.1.2, and a lossless compression using predictive methods [17].

For lossy compression the DCT is used in 8 by 8 non-overlapping blocks of the image.

Transform coefficients are then uniformly quantized. The 64-element DCT gives 1 DC

coefficient representing average color of the bloc and 63 AC coefficients representing color

change across the block. Low-numbered coefficients (low-frequency color change) and high-

numbered coefficients (high-frequency color change) are processed in zig-zag order. Then,

a lossless coding of quantized coefficients is performed using a variable length dictionary

(called Huffman coding) or an arithmetic encoder.

2.1.2 MPEG - Generic standard for coding moving pictures

To develop video coding standards, the ISO established the MPEG to find appropriate

representation for moving pictures and associated audio information. They first standardize

MPEG-1 in 1991 for digital media storage at 1.5 Mbits/s bit rate. Then, MPEG-2 came to

complete the first standard by allowing greater input format flexibility and higher data rate.

In 1999, MPEG-4 has been approved for standardization providing new profiles including

higher compression efficiency and many novel coding concepts such as interactive graphics,

object and shape coding [18].

New coding features have been introduced by MPEG to achieve high compression

ratio when encoding moving picture. First, the group of pictures (GOP) concept divides

the sequence into a sequence of frames of different types (I, P and B pictures) as shown

in Fig.2.1. I-frames are self-sufficient intra-coded pictures. P-frames or predictive-coded

pictures are coded using one directional motion compensation prediction from a previous

frame. B-frames can be coded using either past or future anchor images. Second, the

macro-block (MB) concept divides each frame in fixed-sized non-overlapped blocks. Each

MB contain one luminance (Y) block of 16 × 16 pixels and two chronimance (Cb and Cr)

blocks of 8× 8 pixels [19].

MPEG encoding scheme starts with an inter prediction per block. DCT is then used

for coding both intra pixels and predictive error pixels. At last, transformed coefficients

are quantized and coded by a variable length coder. Furthermore, rate control method



2.1. Evolution of image and video coding standards 21

Figure 2.1: Example of GOP

has been introduced in test model 5 (TM5) for MPEG-2 to adapt the MB quantization

parameter to bit rate limitation. TM5 algorithm will be detailed in Section 4.1.

2.1.3 H.261 and H.263 - Video coding standards for ISDN applications

H.261 standard was developed by ITU-T study group for low target rate applications

suitable for transmission of color video over integrated services digital network (ISDN). It

has been standardized in 1993 and present many common features with MPEG-1 standard.

Later on, an improved version of H.261 has been designed for low bit rate applications.

This standard is called H.263 and presents some novelties such as an advanced prediction

mode that allows up to four motion vectors to be used per MB [20].

2.1.4 H.264/AVC - Advanced video coding for high coding efficiency

The ISO/IEC and ITU-T VCEG collaborated together in a joint video team (JVT) and

developed a coding standard of high coding efficiency. Based on conventional block-based

motion compensated hybrid video coding concept, H.264/AVC provides approximatively

50% bit rate saving for equivalent perceptual quality relative to MPEG-4 for high resolutions

and a bit rate saving between 30-40% for low resolutions [21]. Experiments in [22] also

demonstrated that the H.264 standard can achieve 50% coding gain over MPEG-2, 47%

coding gain over H.263 baseline, and 24% coding gain over H.263 high profile encoders.

H.264 standard proposes a layered structure: a video coding layer (VCL) and a network

abstraction layer (NAL). At VCL, the input video is compressed into a bitstream which

is divided into NAL units that carries encoding informations [23]. In fact, NAL is a new

concept that offers efficient transmission of the compressed stream. Except many common

tools, the H.264/AVC includes many features able to improve coding efficiency. Variable

block size with smaller block sizes offer more flexibility to the encoder. The MB size can
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go from 4× 4 to 16× 16 pixels. Moreover, motion compensation uses multiple reference

pictures and weighted prediction. Directional spatial prediction is adopted for improving

intra-coding performance and new coding modes have been introduced for P-frames such as

skip and direct modes. In these modes, the reconstructed signal is obtained directly from

the reference frame with the motion vectors derived from previously encoded information.

There are also other technical tools such as deblocking filters, flexible MB ordering, new

entropy coding methods, etc [24].

H.264/AVC was designed for both low bitrate and high bitrate video coding in order to

accommodate the increasing diversification of transport layer and storage media. Many

works on new sets of extensions have been completed which gave a rise to a wide variety

of H.264-based products and services including video telephony, video conferencing, TV,

storage, video streaming, digital cinema and others [25].

2.2 High Efficiency Video Coding (HEVC)

In this section, we introduce the last developed video coding standard HEVC since it is

used in our experiments. The main objective of HEVC is high efficiency video coding for

ultra high definition (UHD) content. This new standard has introduced new tools to deliver

the same video quality at half bit rate comparing to H.264/AVC [26]. We provide an

overview of technical features of HEVC and review encoder performance using H.264/AVC

as a reference [27].

2.2.1 Codec structure

HEVC is based on the same hybrid spatial-temporal prediction system as its predecessor

H.264/AVC. Fig.2.2 shows the block diagram of the basic HEVC encoder. The main

structure of the HEVC encoder looks like H.264/AVC one [28]. The main key features of

HEVC can be summarized in the following 8 points:

• New coding, prediction and transform partitioning.

• Advanced motion vector prediction and introduction of motion sharing.

• Improvement of motion vector precision in inter-prediction.

• Up to 35 directional orientations for intra-picture prediction.

• Directional transform and quantization matrix adaptation.

• Simplified design of De-blocking filter (DBF) and sample adaptive offset (SAO) filter.

• Context adaptive binary arithmetic coding (CABAC) algorithm for entropy coding.

• Slice, tile structure and wavefront parallel processing (WPP) for parallel encoding.
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Figure 2.2: HEVC encoder and decoder structure
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2.2.2 Main technical features

To perform perceptual video coding, some technical tools should be studied. We describe

in this section HEVC encoder tools needed in our researches.

Coding, prediction and transform partitioning

Compared to the use of fixed size macroblock, different coding units’ sizes enable the codec

to be optimized for various content, applications and devices. It is especially useful for low

resolution video services, which is still commonly used in the market. HEVC uses advanced

quadtree-based approach [29]. It is based on choosing the size of largest coding unit (LCU)

or coding tree unit (CTU) and maximum hierarchical depth to construct a hierarchical

block structure that can be optimized in a better way for the targeted application as shown

in Fig.2.3.

The coding unit (CU) is the basic unit of region splitting used for both intra and inter

prediction modes. CUs ensure a sub-partitioning of an image into square regions of equal

or variable size (8x8, 16x16, 32x32 or 64x64). The prediction unit (PU) defines a basic

unit used for carrying the information related to the prediction processes. Each coding

unit is divided into PUs to perform prediction. Asymmetric splitting can be performed to

operate prediction efficiently as shown in Fig.2.3. PU splitting and the prediction type are

two concepts that describe the prediction method which make PU basically the elementary

unit for prediction. Finally, TUs are used for the transform and quantization processes

and they are arranged in a quad-tree structure. These three new concepts help the coding

to be as flexible as possible and to adapt the compression prediction to image peculiarities.

Figure 2.3: Hierarchical block structure
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This partitioning respects some rules: transform unit can have same or smaller size

than PU in intra prediction and same or smaller size than CU in inter prediction. For

intra prediction, a PU is the same size as CU, or it can be further divided only if the CU

is the Smallest CU. These flexible units used for compression have a hierarchy following

quad-tree block structure as represented below.

Directional transform and uniform reconstruction quantization (URQ)

Transform coding in HEVC standard has been a very important field of study during

its standardization. One of the most relevant changes with regards to previous coding

standards is the replacement of the discrete cosine transform (DCT) in favour of the

discrete sine transform (DST) for the 4× 4 intra prediction luma residuals. This change

provides approximately 1% bit rate reduction in intra-predictive coding.

Currently, HEVC selects the optimal residual in RD by choosing the best combination

of transform size and intra-prediction mode - in other words, by performing rate distortion

optimization (RDO). The URQ is used in HEVC, with quantization scaling matrices

supported for the various transform block size. The residual is represented in the transform

domain according to its TU size, that is, DST for 4× 4 luminance component and DCT for

all other cases. Transformed coefficients are quantized considering a particular quantization

step q. A quantization parameter QP is used per sequence, frame or CTU to determine

the q. In HEVC, QP can take 52 values from 0 to 51. The relationship between QP and

equivalent q is:

q = 2
QP−4

6 (2.1)

Slice and tile structures

In general cases, a bitstream is transmitted over a lossy channels. Once in the decoder side,

a loss in the stream leads to an inability to reconstruct the signal. Error is then propagated,

as all regions of the sequence are dependently decodable. To limit this propagation of error,

new structures that break dependencies in processing such as slices and tiles have been

introduced in HEVC [30].

Slices define groups of independently decodable CTUs. The units in a slice follow a

raster scan order as shown in Fig.2.4(a). However, tiles are rectangular independently

decodable sets of CTUs as represented in Fig.2.4(b). This new feature introduced in HEVC

standard offers a flexible classification of CTUs, a higher pixel correlation compared to

slice and better coding efficiency as tiles do not contain header informations [28].

The benefits of tiling have been assessed in [30]. First, tiles offer better R-D performance

in case of high level parallelization. Second, they facilitate improved maximum transmission

unit (MTU) size matching comparing to traditional slices. Then, tiling can be used for

additional region on interest (ROI) based functionality, to ensure that the ROI tiles are
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independently decodable from the non-ROI tiles and that temporal and spatial predictions

within the ROI do not refer to pixels outside the ROI [31]. ROI tile sections have been

studied in different works to ensure a good fitting of the region and its corresponding

tile [32]. They can be used for a tiled streaming for zoomable video, where all tiles are

temporally aligned for an efficient bandwidth utilization and ROI quality improvement [33].

Moreover, tiles can be used in video conferencing application with multiple people for an

efficient processing of the stream. In [ 34], faces are detected, placed in separate tiles and

reassembled in a customized virtual scene.

(a) Slice partitioning

(b) Tile partitioning

Figure 2.4: Examples of slice-based and tile-based partitioning

2.2.3 Encoder control of the HEVC test model

Besides the development of the specification text, a test model document is maintained

which describes the encoder control and algorithm implemented in the reference software.
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Different versions of HEVC test model (HM) have been proposed and their corresponding

implementation maintained in a subversion repository [35]. Three different versions of the

standard have been approved by the IUT. Each version of the encoder contains profiles

and levels that considers some evolutions by introducing extensions, reducing complexity

and improving RD performance. It supports appropriate configurations and control for

different applications. The latest update of the HEVC test model is HM-16.7 [36].

The HEVC profiles, tiers and levels

A profile defines a set of coding tools or algorithms that can be used in generating a

conforming bitstream, whereas a tier and a level place constraints on certain key parameters

of the bitstream, corresponding to decoder processing load and memory capabilities [28].

The first version of HEVC standard has been approved in 2013 and contains three

profiles: Main, Main 10 and Main Still Picture. The second version came one year after

and added 21 range extension profiles two scalable extension profiles, and one multi-view

extension profile. Finally in 2015, the third approved version of HEVC encoder added the

3D Main profile [37].

The HEVC standard defines two tiers, Main and High. The Main tier was designed

for most applications while the High tier was designed for very demanding applications.

Moreover, HEVC standard introduces thirteen levels that support different resolutions

from small picture sizes such as a luma picture size of 176× 144 (support by the first level)

to picture sizes as large as 7680 × 4320 called 4k and 8k resolutions (supported by the

thirteenth level) [28].

HEVC encoder configurations

All versions are based on three kinds of temporal prediction structures: intra-only, low-delay

and random access. The coding strategy changes from one configuration to another. It

helps to choose which prediction to use for encoding one particular frame and fix the

reference images for inter prediction. The reference picture list management depends on

the configuration set before the coding. Moreover, the configuration file generated at the

start of the encoding defines prediction parameter decision detailed in the software manual

[38] such as the CTU maximum size, the quadtree depth, images hierarchy, quantization

and filters’ parameters, etc.

• Intra-only configuration

Using the Intra-only coding configuration, each picture in a video sequence is encoded

as instantaneous decoding refresh (IDR) picture unused for reference. Each GOP

of the video contains only one image with an empty reference buffer, because, the

decoding is based on intra prediction only. In fact, the I-frame period is equal to one.

The encoding order is the display order and no temporal references are used.
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• Low-delay configuration

Two kinds of low-delay coding configurations have been defined for testing coding

performance in low-delay mode: low-delay P and low-delay B. For these low-delay

coding conditions, only the first picture in a video sequence is encoded as IDR picture,

while the other successive pictures are encoded as generalized P- and B-pictures

(GPB). The GPB are encoded using inter prediction. They use reference pictures

with smaller picture order count (POC) than the current image and which are kept

in two memory buffers List0 and List1. In fact, all reference pictures in these lists

are temporally previous in display order relative to the current picture. The contents

of the two lists are identical, and they are updated with sliding-window management

process. The size of the reference picture list and the positions of references to chose

are defined in the configuration file initially generated. The reference picture list

combination is derived from the entries of List0 and List1 and used for reference

index management and entropy coding.

• Random-access configuration

For the random-access test condition, hierarchical B structure is used for coding. The

images are not any more coded in their display order like in low-delay configuration.

The QP levels are used to define an hierarchical ordering of the frames in each GOP.

In this kind of configuration, the inter prediction can be made using frames of smaller

and/or bigger POC. In fact, the configuration file contains negative and positive

references’ indexes. Intra frame period is defined such as an I-picture is inserted

cyclically per about one second. The first intra picture of a video sequence is encoded

as IDR frame, but, the other intra images are encoded as non-IDR intra pictures.

The images located between successive intra pictures in display order are encoded as

B-pictures.

2.2.4 HEVC performance and applications

The introduction of larger block structures has impact on motion vector compression, added

to PU and TU structure, deblocking filters, and all previously described tools contribute

to the improvement of coding performance of HEVC. It has shown to be especially

effective for low bit rates, high resolution video content, and low-delay communication

applications. According to multiple studies, HEVC should deliver up to 50% better

compression than H.264 in interactive applications such as videoconferencing, which means

similar quality at half the bitrate as presented in comparative works described in [39] and

[26]. Furthermore, HEVC can perform real time coding thanks to reduced computational

complexity. Alternatively, HEVC can also be used for interactive applications as it well

performs coding of high resolution videos and enable larger resolution movies, whether 2K

or 4K.



2.3. Conclusion 29

Essentially, these are the two benefits of HEVC in the streaming space. The first relates

to encoding existing SD and HD content with HEVC rather than H.264, enabling cost

savings and the ability to stream higher quality video to lower bit rate connections. The

second relates to opening up new markets for ultra-high-definition (UHD) videos. Finally,

the development of many extensions enhance the utility of HEVC standard and broaden

its range of applications [40]. In fact, scalability extension to HEVC (SHVC) enables

spatial and coarse gain SNR scalability and 3D and multiview extensions enable efficient

compression of stereo and multiview video content.

2.3 Conclusion

In this chapter, we have presented an overview of all published video coding standard.

Section 2.1 introduces main technical features of previous codecs such as MPEG-1, MPEG-2,

H.261, H.263 and H.264/AVC. While, Section 2.2 exposes novelties of HEVC coding and

main technical normative tools.

The rate control algorithm is often not standardized, since it can be independent of the

decoder structure. However, it plays a critical role in perceptual video coding. Thus, it is

important to study rate control in video coding, specially in high efficiency video coding.

The next two chapters introduce rate control principles and detail different scheme adopted

the state of the art. Among previously described standards, Section 4.2 focuses on rate

control problem in HEVC.
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In image and video coding systems, compression rate fluctuation depends on the amount

of data we accept to lose. The spatial and temporal variability of video content cause

variations in coding efficiency, resulting in important fluctuations in bit rate and quality

of the encoder output. Rate control is therefore an important step in data coding and

transmission.

In this chapter, we first introduce the basics of rate-distortion (RD) theory and describe

the trade-off between lossy compression rate and the resulting distortion. We introduce

the rate distortion function and explain the process of rate-distortion optimization (RDO).

Then, we study different rate distortion models proposed in the literature. Finally, rate

control key techniques used to maintain consistent quality under transmission channel

constraints are detailed.
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3.1 Rate distortion theory

Rate distortion theory was created by Claude Shannon [41]. It is the branch of information

theory that describes the compromise between the compression rate and the resulting

distortion for a lossy source coding to ensure a stable coding efficiency. Knowing that a

decrease in the bit rate leads to an increase of the output distortion and vice versa, this

theory addresses the problem of determining the minimal amount of information that

should be communicated over a channel such that the source can be reconstructed at the

receiver side with a given distortion.

RD theory gives an analytical formulation for the problem. It models how much

compression can be achieved using lossy compression methods. Before being transmitted in

the network, signals such as audio, image and video are compressed using techniques based

on transform and quantization procedures that capitalize on the shape of a rate distortion

function.

3.1.1 Rate distortion function

The amount of information at a discrete probability distribution pi is measured by the

entropy:

H = −
∑

pi log pi (3.1)

and the mutual information between the source signal X and the reconstructed one X̂ is

defined as:

I(X; X̂) = H(X)−H(X|X̂) (3.2)

The RD problem was introduced by Claude Shannon in a first paper in 1948 [41], and

extensively studied in his 1959 paper [42]. As rate distortion function reflects the mutual

information between source signals and decoded ones, the fundamental theorem of RD

theory can be formulated as follows:

Theorem. The rate distortion function for an i.i.d. source X with distribution p(x) and

bounded distortion function d(x, x̂) is equal to

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x|x̂)≤D

I(X; X̂) (3.3)

where R(D) is the achievable rate at distortion D.

In fact, for a given source a closure of achievable rate distortion pairs (R,D) represents

the rate distortion region. A rate distortion function R(D) is defined as the infimum of

rates, such that for a given distortion, the couple is in the rate distortion region of the

source. R(D) and D(R) are two equivalent functions that include the same information

and that are used in video coding to find the optimal (R,D) couple.
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3.1.2 Rate distortion optimization

Video coding usually incorporates rate distortion optimization (RDO) techniques, to solve

the previously described problem (3.3). For each image or region, the optimization task

consists in finding the most efficient coded representation (prediction mode, motion vector,

quantization level, etc.) in the rate distortion sense. This task is complicated by the fact

that various options show varying efficiency at different bit rates and with different scene

content [43]. The objective of rate distortion optimization is to find the minimum number

of bits needed to represent the source data at a given distortion. Or, equivalently, the

minimum expected distortion achievable at a particular rate as demonstrated in Fig.3.1 by

horizontal and vertical arrows.

Figure 3.1: Rate-distortion optimization

Knowing that quantization consists in reducing the bit rate of the compressed video

signal by accepting a loss in information (or, a certain distortion of th reconstructed signal),

one of the major roles of rate control algorithms is thus to find for each transform coefficient

the appropriate quantization step q under the constraint R(q) ≤ Rmax. The fixed bit

budget is Rmax and R(q) is the number of coding bits for the source data. If we note

D the distortion measure between the original and the reconstructed samples, the RD

optimization problem can be formulated as:

min
q
D(q) subject to R = (q) ≤ Rmax (3.4)

In practice, the minimization problem is reformulated using the Lagrangian multiplier
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as follows to compute an optimal q per sample (frame for example):

min
q
J(q), where J(q) = D(q) + λ R(q) (3.5)

where the Lagrangian rate distortion functional J minimized for a particular value of the

multiplier λ. Each obtained quantization step q for a given λ corresponds to an optimal

solution [43] [21].

If the sample is partitioned into N subsets (for example regions or coding units) in a

way that different quantization steps qi are associated to different subsets and an additive

distortion measure D(qi) is used, the minimization problem can be written as:

min
qi∈[1;N ]

J(qi∈[1;N ]), where J(qi∈[1;N ]) =

N∑
i=1

(D(qi) + λ R(qi)) (3.6)

The optimal solution of this optimization problem is a set of quantization steps qi∈[1;N ]

that minimizes the global RD performance.

3.2 Rate distortion models

3.2.1 Rate modeling

RDO technique helps finding the best representation in the rate distortion sense. This

problem needs explicit models that relate the average bit rate and the distortion to the

quantization parameter (QP) or the quantization step q. In video coding, several works

have been done in perceptual quality, for estimating the distortion, and in rate modeling.

Different rate models have been developed, some of them based on simple linear expressions,

others on more complex mathematical representations.

Simple linear rate distortion model

The traditional linear model introduced in [44] was employed in the final test model of

MPEG-2 (TM5) and is defined as follows:

R(q) =
X

q
(3.7)

where X is the model parameter.

Quadratic model

A quadratic rate quantization model has been adopted later on. It is represented as:

R(q) =
a

q
+

b

q2
(3.8)
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This so-called quadratic rate model has been used for rate control in VM8 for MPEG-4

reference encoder [45] to calculate the quantization step q. We note that by choosing

the appropriate a and b, this model can realize the inverse power model of the linear

representation with any γ ∈ (1, 2).

In order to enhance the accurancy of the RD model, d the mean absolute difference

MAD between the original frame and the reconstructed one is considered for H.264/AVC

[46] and also for HEVC [47] as follows:

R(q) =
a× d
q

+
b× d
q2

(3.9)

Model coefficients a and b are updated after encoding each frame. Here, q is the

quantization step size defined in the standard by a function of the quantization parameter

QP. The accuracy of these models has been enhanced by introducing the so-called complexity

of the source, using the per pixel gradient value in the R-q model in [48].Alternatively, the

sum of absolute transformed differences (SAD) has been adopted in [49].

ρ Domain linear model

In a different way, the RC was improved by considering a representation in the ρ domain

[50] as proposed in [51]. The proportion of the coefficients after quantization to zero, ρ,

increases in a monotonic way with the growth of the quantization step, which leads to a

new representation of the problem based on R-ρ relationship:

R(q) = θ(1− ρ(q)) (3.10)

where θ is a constant. However, this model does not provide explicit relation between q

and ρ. It does not lend itself to theoretical understanding of the impact of the quantization

parameter on the rate.

Exponential model

In [52], an intra-only rate control scheme based on an exponential R-q model is proposed.

Through experiments based on extensive testing data, the relationship is modeled as follows:

R(q) = αe−βq (3.11)

where α and β are the model parameters.

Rate model under variable frame rate

In [53], a model was built considering on the first hand, the impact of frame ratet on the

bit rate R, under the same quantization stepsize q, and in the second hand, the impact
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of q on the rate, when the video is coded at a fixed frame rate. This leads to a different

representation of the RD model based on the variation of q and t, and can be written as:

R(q, t) = Rmax(
q

qmin
)−a(

t

tmax
)b (3.12)

where qmin and tmax are chosen based on the underlying application, Rmax is the actual

rate when coding a video at qmin and tmax, and a and b are the model parameters.

The R-λ model

The most recent rate distortion model in the HEVC reference software is the R-λ model

expressed as follows:

λ = α Rβ (3.13)

where α and β are the model parameters [54]. We note that this model defines a relationship

between the rate in bits per pixel, R, and the Lagrange parameter λ which is used in RDO

to decide the coding mode. Using this R-λ model, λ is generated first at frame and/or

coding tree unit (CTU) level, and then used to compute the QP.

The R-λ has been proposed to characterize the relationship between R and λ and

also between λ and QP. Previous investigations in [55] have put stress on the importance

of the Lagrangian parameter and have shown that the QP and ln(λ) are in good linear

relationship:

QP = 4.2005× ln(λ) + 13.7122 (3.14)

Research done in [56] has shown that the relationships between λ and QP (or q) depends

on the type frame (I, P or B) and its hierarchical level represented by the QP factor p.

The model is defined as follows:

λ = p× 2
QP−12

3 (3.15)

For example for intra-frames p = 0.57× (1−max(0,min(0.5, 0.05×NB))) where Nb is the

number of B frames in the GOP.

3.2.2 Distortion modeling

For visual quality, a distortion model is usually developed to help predicting the relationship

between the quality degradation D and the quantization step q. In fact, as the used

distortion metrics vary from one work to another, different D-q models have been proposed.

For example the sum of squared errors between the original source and the predicted

one (SSE) is used in [57]. The model is defined as:

SSE = a qb (3.16)

where SSE is the sum of squared errors between the original source and the predicted one,
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a and b are the model parameters.

In other contributions such as [58] and [59], the mean square error (MSE) is modeled

as follows:

MSE =
q2

12
(3.17)

3.3 Rate control techniques

Rate control is a necessary part of the encoder, and has been widely applied in standards.

The objective of RC is to achieve a target bit rate as close as possible to a given constant

over time while ensuring minimum quality distortion. Rate control usually incorporates

RDO, for better coding efficiency. It is a way to deal with varying bit rate and keep a good

visual quality of the decoded video.

(a) Encoder without rate controller (b) Encoder with rate controller

Figure 3.2: Comparison of encoding schemes with and without rate controller

As shown in Fig.3.2(a), if no RC is performed, the encoder takes as input the original

video and a fixed QP. In that case decoding quality will be fairly constant depending on

the video content while output bitrate will be varying depending on the input complexity.

When introducing a rate controller (Fig.3.2(b)), the QPs are computed by the controller

considering different constraints and the source complexity. The output bitrate will be

constant. In this process, there are two major steps: bit allocation and QP calculation [60].

3.3.1 Bit allocation

Before transmission, all rate fluctuations must be effectively controlled, since the actual

network bandwidth and storage capacity are limited. Bit allocation problem arises in many

situations where the rate constraints are driven by the total bit budget and transmission

delay.

Budget-constrained allocation

Networks and storage media can operate in constant bit rate (CBR) or variable bit rate

(VBR). In both cases, the encoding of the video sequence must be adjusted to meet the
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network bandwidth and storage media capacity requirements such that the number of

bits used for encoding all the N frames of the sequence,
∑N

i=1 ri, does not exceed network

limitations Rmax.

Delay-constrained allocation

Some applications can introduce delay constraints. In fact, when a sequence is streamed,

each coding unit is subject to a delay constraint. The video encoder ensures that the rate

selection per frame is such that no frame arrives too late at the decoder.

Buffer-constrained allocation

In both CBR and VBR networks, data is stored in buffers at the encoder and decoder sides.

Bit allocation does not let buffer occupancy B(i) exceed physical buffer storage limitation

Bmax at time i.

3.3.2 Quantization parameter calculation

After DCT transformation, the residual signal is quantized to form a final estimate. It is

then important to chose in this second step the appropriate quantization step q, the one

that optimizes the RD performance of the encoder. This step consists in using allocated

budget, R-q models and input data complexity to calculate the appropriate quantization

step q or parameter QP. Once q computed the unit is encoded and rate control process

parameters are updated. This approach is detailed in the next section for High Efficiency

Video Coding standard.

3.4 Conclusion

This chapter is a brief introduction of rate control principles. It starts with a global

description of the rate-distortion problem to end with an appropriate rate control scheme

for video coding.

Each described model and method has been commanded by a standard during the

development, e.g. TM5 for MPEG-2, VM8 for MPEG-4, TMN8 for H.263 and quadratic

model for H.264/AVC. All these algorithms are studied in the next chapter and different

HEVC rate control algorithms are detailed, evaluated and compared in Section 4.2.
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In video coding systems, rate control is a non-normative tool that has being studied

and incorporated in video codecs. Rate control modules have been developed to adjust the

output bit rate and ensure high visual quality of the decoded video in constrained network

conditions. Furthermore, for each standardized encoder a rate control algorithm has been

proposed and studied taking into account the new features introduced by each codec. Thus,

it is important to study different proposed approaches and evaluate the HEVC controller

before introducing our ROI constraint.

This chapter summarizes classic rate control algorithms by putting the stress on the

evolution of their bit allocation processes and rate distortion models. It ends with a

detailed description of HEVC rate control algorithms. HEVC controllers are tested and

their performance are evaluated to motivate the choices we made during our researches.
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4.1 Evolution of rate control schemes

In video coding, controllers have been designed to achieve the main goals of high coding

efficiency and accurate matching of the target rate. The classical algorithms or models are

the TM5 in MPEG-2, the VM8 in MPEG-4 and TMN8 in H.263.

Rate control in recent standards such as H.264/AVC and HEVC are more complex

than these classical algorithms. In fact, statistics of the current frame are not available for

the rate control. This is because the quantization parameters are involved in both rate

control and RDO, while, they are only involved in rate control in MPEG-2, MPEG-4, and

H.263. Consequently, a new procedure has been developed for H.264 to solve this so-called

“chicken and egg” dilemma [46]. The same controller has been extended to HEVC and then

replaced by a recent rate control algorithm based on an hyperbolic R-λ model [54]. The

accuracy of these models has been enhanced in different propositions.

4.1.1 Classical rate control schemes

Rate control of TM5

TM5 is the final test model of MPEG-2. Its rate controller consists of three steps at three

operating layers to adapt the MB quantization parameter for controlling the bit rate [61]:

• Target bit allocation at GOP and frame level : This step first allocates a bit budget

to the GOP, based on the target rate. Then, a number of bits is allocated per

picture considering several factors: frame type (I,P or B), buffer fullness, and picture

complexity.

• Rate control at MB level : Within a picture, the bit budget allocated in the previous

step is divided to its MBs. Consequently, the quantization step qj of the jth MB is

derived from the target bit rate Rmax, the frame rate f and the virtual buffer fullness

Vj when encoding the current block:

qj =
Vj × f
2 Rmax

(4.1)

• Adaptive quantization : The last step consists in modulating the quantization

step considering the MB complexity. In fact, as human eyes are not sensitive to

quantization noise for active areas, q is increased in this regions and reduced for

smooth areas.

Rate control in VM8

The rate control algorithm in MPEG-4 verification model VM8 follows almost the same

bit allocation scheme as in MPEG-2 test model TM5 [45]. However, a new rate model

has been introduced to improve QP optimization over different MBs. In fact, a target bit



4.1. Evolution of rate control schemes 43

rate is allocated per frame considering frame rate, the target budget and the complexity

of the previous frame. Then, once the budget is divided between MBs, the quantization

parameter QP is computed using the quadratic model given by Equation (3.8) and clipped

from 1 to 31. After encoding each frame, the model parameters are updated.

This algorithm presents some limitations as it considers statistical information of

previous frame, without any consideration of the real complexity of the current frame.

Moreover, it skips the next frame when the buffer fullness riches 80%.

Rate control in TMN8

In TMN8, the controller includes two major steps. First, a bit budget is allocated per

picture considering the maximum rate, the frame rate, the buffer status and the skip

frame threshold. Here again, a number of frames are skipped considering a fixed threshold.

Second, an adaptive computation of the quantization step q per MB is performed [62]. The

controller uses the following RD model:

R(q) =

{
1
2 log(2e2 δ2

q2
), δ

2

q2
> 1

2e
e

ln 2
δ2

q2
, δ

2

q2
≤ 1

2e

(4.2)

Contrary to VM8, this model considers statistics of the current frame as it depends on

the standard deviation δ of the residue in the current MB.

4.1.2 Rate control in H.264/AVC

GOP level rate control

In this level, a total number of bits is allocated for the current GOP and a QP value is

initialized. Using the number of bits of the GOP, an initial bit budget is allocated to the

jth frame Tg(j). It is computed using sequence frame rate f , available bandwidth R(j) and

the number of frames per GOP N as follows:

Tg(j) =

{
R(1)
f N + Tg−1(N) , j = 1

Tg(j − 1)− T ′g(j − 1) + R(j)−R(j−1)
f (N − j + 1), j = 2, 3, ..., N

(4.3)

where Tg−1(N) is the budget allocated to the last frame of the previous GOP, T ′g(j) is

the real encoding bits of the jth frame.

Moreover, an initial quantization parameter is initialized per GOP considering QPs of

all the frames of the previous GOP and the GOP length.

Frame level rate control

At frame level, previously computed bit budget and QP are adapted to frame type (reference

or non-reference). For frames not used for reference a QP is computed through a linear
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interpolation of QPs of the previously decoded frames. However, if the frame is used as

reference, the picture budget is adjusted according to the buffer occupancy and picture

complexity.

The final frame bit budget Tf (j) calculated in (4.6) is a weighted sum of a first target

bit budget T̂f (j) which is based on the total budget Tg(j), and a second target bit budget

T̃f (j) based on the status of buffer occupancy, target buffer level, and initial buffer level.

T̂f (j) =
wr(j − 1)× Tg(j)

wr(j − 1)×N ref
g + wn(j − 1)×Nnref

g

(4.4)

where wr(j) and wn(j) are the average complexity weights, N ref
g and Nnref

g are

respectively the number of left reference frames and number of left non-reference frames.

T̃f (j) =
R(j)

f
+ µ Vf (j) (4.5)

where Vf (j) is the virtual buffer capacity when encoding the jth frame and µ is model

parameter, set to 0.5 when there is no non-stored picture and to 0.25 otherwise. Therefore,

using (4.4) and (4.5), we get

Tf (j) = γ T̂ (j) + (1− γ)T̃f (j) (4.6)

This frame budget is then bounded to maintain the quality of the decoded frame.

Basic unit level rate control

For the ith MB, the number of bits left per frame T ′i (j) is computed then weighted according

to Equation (4.7) to obtain the MB bit budget Ti(j):

Ti(j) = T ′i (j)×W (4.7)

The current distortion di(j) is computed using the MAD of the ith MB of the last

stored frame di(j − L− 1) and the following prediction model:

di(j) = c1 di(j − L− 1) + c2 (4.8)

where c1 and c2 are the model parameters. The quadratic model (3.9) is then used to

compute a QP. Finally, the QP is bounded by 0 and 51.

4.2 Rate Control in HEVC

This section will basically describe the rate control schemes in the HEVC standard since

they are the starting point of our research. It is important to evaluate the key elements
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of the controller before introducing the ROI constraint. Comparative tests are made to

evaluate the performance of existing RD models in HEVC.

In the HEVC reference software two different RC algorithms have been proposed. The

first one is based on a quadratic rate-distortion model and the mean absolute difference

(MAD) between the original and the reconstructed signal [63] [64]. In the second algorithm,

an R-λ model that takes into account the hierarchical coding structure has been adopted

[54]. This model, initially introduced in version 10 of the reference software (HM.10) has

been improved in a more recent version (HM.13). Adaptive bit allocation at frame level

has been introduced in [65] by considering variable weights for each hierarchical level, that

depend on the video content characteristics. Then, in [66], the intra frame rate control

has been modified by enabling bit allocation and QP computing at CTU level. All these

features have been used in our work to perform an ROI-based rate control.

4.2.1 General scheme

The different rate control algorithms proposed for HEVC have the same scheme which is

illustrated in Fig. 4.1.

Figure 4.1: Rate control scheme for HEVC

As it can be seen, the controller operates at three main levels: GOP, frame and CTU.

It performs the bit allocation at the three levels to obtain a target bit rate per unit, and,

then compute an optimal QP using rate distortion models. For all propositions the global

process can be described as follows:
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GOP level

The input parameters are the global target bit rate (budget constraint in bpp), the sequence

frame rate in fps, the GOP size in number of frames and the virtual buffer occupancy. The

rate control algorithm uses then all these input parameters to allocate an average number

of bits per GOP.

Frame level

Considering the average number of allocated bits per GOP, a target bit rate is fixed for the

current frame. For B-frames, the bit allocation can introduce equal, hierarchical or adaptive

weights, while for I-frames the initial budget is refined using a predefined multiplication

weight. Then, the rate quantization (R-Q) model is used to compute the frame QP.

CTU level

At CTU level, the process is divided into three main steps. First, the required number

of allocated bits for the CTU is computed using the frame budget, the cost of the coded

CTUs of the same frame and the complexity of the CTUs. The complexity is measured

using the MAD [54] or the sum of absolute transformed differences (SATD) [ 66]. Second,

the budget is used in the R-q model to compute a QP for each CTU. The QP variation

is clipped in a pre-defined range. Finally, the last step consists in finding the optimized

mode decision [67] using RDO and the obtained QP. The unit is then coded and all the

parameters are updated.

The particularity of each method lies in theR-Q model chosen for QP computing and

the parameters used for bit allocations. The two rate control algorithms implemented in

HM are detailed and compared in the following section.

4.2.2 Quadratic URQ model

Based on the quadratic R-Q model proposed for H.264/AVC and described in Section 4.1,

a unified R-Q model was proposed in [63] for HEVC. It is called quadratic pixel-based

unified rate-quantization (URQ) model. This model considered the new feature that the

size of prediction unit varies so the bit allocation must be accordance with the number of

pixels. It performs bit allocation at GOP, frame and unit levels. The units can be CTUs

or group of CTUs. This algorithm has been introduced in HM.5 and improved in the

future versions of the encoder [64]. The refinement of this rate control algorithm has been

implemented on HM.6 and evaluated under diverse conditions.

GOP level rate control

The total bit budget in a GOP, Tg(j) should be distributed according to various parameters.

The bit budget allocated for the jth frame of the GOP is calculated with the following
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formula:

Tg(j) =


R(j)
f ×Ng − Vg(j), if j = 1

Tg(j − 1) + R(j)−R(j−1)
f × (Ng − j + 1)− T ′g(j − 1), if j = 2, 3, ..., Ng

(4.9)

where the available bandwidth R(j) changes with a VBR encoding, Ng is the number

of frames in a GOP, Vg(j) is the occupancy of the virtual buffer, T ′g(j − 1) is the effectively

generated bits of the last decoded frame in the GOP and f is the frame rate.

Frame level

At the frame level, three cases need to be considered when making bit allocation and QP

computing: first frame of the GOP, reference frame and non-reference frame.

• Strategy for the first frame of the GOP:

The QP of the initial frame of the sequence is set by the value of the initial bit rate

per pixel r which is computed as follows:

r =
R(1)

f ×Nf
(4.10)

where Nf indicates the number of pixels in the frame. The QP is then computed

referring to the following table.

Condition QP

0.7780 < r 12

0.3200 < r ≤ 0.7780 17

0.1220 < r ≤ 0.3200 22

0.0469 < r ≤ 0.1220 27

0.0213 < r ≤ 0.0469 32

0.0102 < r ≤ 0.0213 37

0.0049 < r ≤ 0.0102 42

0.0024 < r ≤ 0.0049 47

r ≤ 0.0024 51

Table 4.1: Initial frame QP

The QP of the first frame of each GOP is the mean of the QPs of reference frames of

the last decoded GOP. To keep smoothness, the QP value is clipped, so that it is

within ±2 of the QP of the last frame in the previous GOP.

• Strategy for reference frames:
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For reference frames, the QP computing is different, as the QP is derived from a

pixel-based URQ model. Frame complexity of this model is represented by the MAD.

As in H.264, it is predicted using a linear model as follows:

c̃(j) = a1 × c(j − 1−M) + a2 (4.11)

where M is the number of non-reference frames between consecutive reference frames,

c̃(j) and c(j) denote the predicted complexity of the jth frame and the real complexity

of the last decoded reference frame computed using formula (1.7) and (a1, a2) are

the model parameters.

As in H.264/AVC, to compute the frame budget, first T̂f (j) is calculated referring to

Equation (4.4) where wr(j) and wn(j) are the average weighting factors proposed

in [64]. Second, the occupancy bit budget T̃f (j) is computed using Equation (4.5).

It takes into account the status of buffer occupancy Vf (j), the target buffer level,

and the initial buffer level. µ is model parameter set to 0.25 for random access

configuration and to 0.5 for low delay configuration.

The final bit budget Tf (j) is calculated as in Equation (4.6) using a weighted sum of

a target bit budget T̂f (j) and an occupancy bit budget T̃f (j). The weight γ is set to

0.6 for random access case and to 0.9 for low delay case.

Finally, the quantization step q(j) of the jth frame is computed using the quadratic

model bellow, the QP is obtained using Equation (2.1). Then, it is clipped as done

for the first frame.

Tf (j)

Nf
= α

c̃(j)

q(j)
+ β

c̃(j)

q(j)2
(4.12)

• Strategy for non-reference frames:

QP values of non-reference frames are derived without using buffer status. The QP

of the (j + 1)th frame is computed as follows:

QP (j + 1) =


QP (j)+QP (j+2)+2

2 , if QP (j) 6= QP (j + 2)

QP (j) + 2, otherwise
(4.13)

CTU level

At the CTU level, bit allocation is performed per unit. The initial bit budget of the first

unit is exactly the allocated budget for the frame Tf (j), while for the ith CTU,

Tinit(i) = Tinit(i− 1)− T ′(i− 1) (4.14)

where T ′(i− 1) represents real encoding bits of the (i− 1)th unit in the frame.
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Here again the final bit budget T (i) allocated for a unit of order i is a weighted sum

derived from two budgets. The first one T̂ (i) takes into the account left budget and is

computed as follows:

T̂ (i) =
Tinit(i)

Nf (i)
Nu (4.15)

where Nf (i) and Nu denote respectively the number of pixels left in the frame after

encoding the ith unit and the total number of pixels in the unit.

The second bit budget depends on the buffer status T̃ (i) and is computed as follows:

T̃ (i) =
Tf (j)×Nu

Nf
− V (i)

Nu(i)
(4.16)

where V (i) is the virtual buffer occupancy and Nu(i) is the number of remaining units

in the frame when encoding the ith CTU. Thus, using (4.15) and (4.16),

T (i) = 0.5 T̂ (i) + 0.5 T̃ (i) (4.17)

This allocated budget and collocated MAD value in the previous reference frame for

the unit are used to compute the quantization step as done in Equation (4.12), with Nf

replaced by Nu.

4.2.3 Hyperbolic R-λ model

The latest contribution was based on an R-λ model and proposes a different bit allocation

process [54]. The first version of the algorithm was implemented in HM.8. Improvements

have been introduced in the later versions of HM.

GOP level

At GOP level, bit allocation takes into account the target bit rateRmax, the frame rate f

and the number of frames in a GOP Ng. The target number of bits in a GOP is determined

by:

Tg = Ng

(
Rmax

f
+

(Rmax
f )×N ′s − T ′s

Sw

)
(4.18)

where the smoothing window Sw is equal to 40, N ′s is the number of pictures already

encoded and T ′s is the bit cost of these pictures. The target bit rate Rmax
f and the current

buffer status represented by the second item (Rmax
f )×N ′s − T ′s are jointly considered in

this allocation.
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Frame level

In this contribution, both inter and intra picture bit allocation are supported in HEVC

rate control algorithm. The allocated budget is first initialized considering picture weights

and the left budget in the GOP. Then, it is refined and used for QP computing. In this

algorithm, all I-frames belong to the same level. Thus, the same factor is used to refine

their allocated budget, while the cost of inter pictures is determined according to different

weights wf for possible hierarchical levels [54].

• Frame budget initialization:

The initialization step consists in calculating Tf . This bit budget is allocated per

frame, using Tg computed in (4.18) and the bit cost of already coded pictures in the

current GOP, T ′g,

Tf =
Tg − T ′g∑
i≥f wi

wf (4.19)

• Weighted bit allocation for inter pictures:

There are three main ways of bit allocation for inter coded frames: equal, hierarchical

and adaptive allocation.

Equal and hierarchical bit allocations have been introduced in HM.10. Equal bit

allocation method considers the same weight for all inter pictures of the sequence,

while hierarchical bit allocation consists in giving a predetermined weight to each

frame B or P referring to its level in the GOP and the target bit rate. In a later version

of HEVC test model (HM.13), adaptive bit allocation has been added to improve

the model performance [65]. Using adaptive bit allocation importance weights are

updated for each GOP considering the Lagrangian parameter λ computed as in

Equation (3.13).

In Table 4.2, we compare the global performance of the controller using equal,

hierarchical and adaptive bit allocations. We compute the RD performance of the

hierarchical method then of the adaptive one compared to equal bit allocation. The

comparison is made with low delay configuration and using test sequences of class E

with video-conference content [68].

Hierarchical bit allocation Adaptive bit allocation
Y U V Y U V

Class E -6,7% -12,1% -12,3% -8,3% -16,0% -16,0%

Enc Time 101% 108%

Dec Time 99% 110%

Table 4.2: RD performance of R-λ algorithm using hierarchical and adaptive bit allocation, compared
to equal bit allocation
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Results show that the hierarchical and adaptive methods are slightly better then the

equal bit allocation. Furthermore, the adaptive allocation gives the best performance,

with 1.6% of gain compared to the hierarchical one.

• Budget refinement for intra pictures

In the R-λ controller implemented in HM.10, the refinement is done considering a

weight W that depends on the number of bits per pixel as specified in Table 4.3 [54].

Bit rate R R > 0.2 0.2 ≥ R > 0.1 0.1 ≥ R
W 5 7 10

Table 4.3: Intra bit allocation refinement weights

If Tf is the non refined budget computed in Equation (4.19), the final allocated

budget per picture Tp is then:

Tp = W × Tf , (4.20)

In HM.13, intra picture bit allocation has been improved by replacing the old

refinement method by:

Tp = a×
(
wI
Tf

)b
× Tf + 0.5, (4.21)

where a = 0.25, b = 0.5582 and wI is the complexity measure of the frame as defined

in Equation (4.32).

• Frame QP computing:

Once the bit budget is computed, the R-λ model is used for λ and thus for the QP

computing.

λ = α

(
Tf
Nf

)β
(4.22)

To keep quality consistency, the determined λ and QP are clipped in a narrow range.

They are guaranteed that:

2−1λl ≤ λ ≤ 2λl

2
−10
3 λp ≤ λ ≤ 2

10
3 λp

QPl − 3 ≤ QP ≤ QPl + 3

QPp − 10 ≤ QP ≤ QPp + 10

(4.23)

where (λl, QPl) and (λp, QPp) denote respectively λ and QP values of last decoded

frame of the same hierarchical level and λ and QP values of last decoded picture.
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Once the QP computed and the frame encoded, the real encoding bit cost T ′ and

real λ value are used for model parameters (α and β) update.

λ′ = α

(
T ′

Nf

)β
(4.24)

α′ = α[1 + δα(ln(λ)− ln(λ′))] (4.25)

β′ = β + δβ(ln(λ)− ln(λ′)) ln

(
T ′

Nf

)
(4.26)

CTU level

Rate control at CTU level can be enabled. In HM.10, bit allocation at CTU level was

performed for only inter-coded frames. All the units of intra frames have the same QP

obtained at frame level. In HM.13, to better control the rate allocation of intra-coded

frames rate control at CTU level was introduced.

• QP computing for inter-coded units

The target bit budget per CTU is then determined by:

Tu =
Tf − Th − T ′f∑

i≥uwi
wu (4.27)

where Th is the estimated bits of all headers according to previous coded picture of

the same hierarchical level, T ′f is the coded bits of the current frame and wi is the

weight of the ith CTU.

The unit weight was at the beginning estimated by the prediction error (in form of

MAD) of the last decoded picture of the same level as described in (1.7). However,

in new versions of the reference software (such as HM.13) [69], the CTUs weight for

B-frames has been modified. It depends on the model parameters αu and βu at CTU

level, the λ of the picture and the number of pixels N :

wB = N

(
λ

αu

) 1
βu

(4.28)

Once the allocated budget per CTU is computed, theR-λ model described in (4.22)

is used to compute λ and QP per CTU. Tf and Nf are respectively replaced by Tu

and Nu. The model parameters are updated after encoding each CTU using the same

process as in Equations (4.24) (4.25) (4.26).

To keep quality smoothness over a frame, the determined λ and QP are clipped as
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follows:

2
−1
3 λl ≤ λ ≤ 2

1
3λl

2
−2
3 λp ≤ λ ≤ 2

2
3λp

QPl − 1 ≤ QP ≤ QPl + 1

QPp − 2 ≤ QP ≤ QPp + 2

(4.29)

where (λl, QPl) and (λp, QPp) denote respectively λ and QP values of last decoded

CTU and λ and QP values of current picture.

• QP computing for intra-coded units

The R-λ model has been modified to better control the rate allocation of intra-coded

frames.

λu = α

 wI(
Tu
Nu

)
β

(4.30)

For an intra-coded CTU, λu depends on model parameters at frame level. The

parameters α and β remain constant for the entire frame, however the number of

allocated bits per pixel
(
Tu
Nu

)
is computed per CTU. The complexity measure wI

for this model is calculated by deriving the sum of absolute Hadamard transformed

difference (SATD) as described in [66]:

SATD =

7∑
k=0

7∑
`=0

|hk`| (4.31)

where hkl are the coefficients obtained after applying the Hadamard transform to

the original 8× 8 block. The weight wI of a CTU is defined as the sum of SATD

calculated for all 8× 8 blocks within the CTU (Nb is the number of 8× 8 units in

the CTU).

wI =

Nb−1∑
j=0

SATD(j) (4.32)

4.2.4 Comparison between URQ based and R-λ based controllers

According to experimental results given in [54], R-λ method has better RD performance

and reduced bit rate error than earlier rate control algorithms in HM. We made comparative

tests using our test data set (Class E sequences with video-conference content) to choose the

appropriate model for our work. The obtained results confirm the document conclusions.

They show that the global RD performance is improved using the R-λ model. Referring to
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Fig.4.2 the gain goes from -22.6% to -79.6% for Class E sequences [68], using a low delay

configuration with an intra period equal to 60.

(a) Johnny (BD - Rate Gain -79.6 %)

(b) KristenAndSara (BD - Rate Gain -60.8 %)

(c) FourPeople (BD - Rate Gain -22.6 %)

Figure 4.2: R-D performances of R-λ algorithm, compared URQ model

Furthermore, Fig.4.3 shows some per-frame bit cost comparing the R-λ model and the

old URQ model. For example, for the test sequence “Johnny” at different bit rates, the

R-λ model gives a better bit distribution over GOPs and a smoother repartition of the bit

budget at frame level.
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(a) 128 kbps

(b) 256 kbps

(c) 1.5 Mbps

Figure 4.3: Comparison of bit fluctuation per frame ofR-λ and URQ models for sequence Johnny
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4.3 Conclusion

In this chapter, we studied the evolution of different rate control algorithms such as TM5

for MPEG-2, VM8 for MPEG-4, TMN8 for H.263 and the quadratic model for H.264/AVC

in Section 4.1. Although HEVC still adopts the traditional hybrid coding framework, in

which many rate control algorithms have been proposed before, yet these rate control

schemes cannot work well if they are applied directly to HEVC without considering the new

coding tools. Thus, new rate control models have been proposed for HEVC and presented

in Section 4.2.

In the next chapter, we study different rate-distortion models from the literature. Then,

we propose new models based on signal characteristics that can be used to perform efficient

bit allocation over regions. Moreover, existing controllers evaluated in this chapter are

exploited to perfom ROI-based rate control in Part III of this thesis.
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Accurate rate-distortion modeling at different levels of the encoder (frame and CTU

levels) plays an important role in optimal bit allocation for HEVC coding. Due to the

different characteristics of frames, as well as the evolution of compression techniques, several

analytic RD models have been proposed and validated for bit allocation at frame level
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in hybrid video coding. These models can be appropriate for ROI-based rate control for

HEVC.

In this chapter, we study some models from the literature. The first section introduces

two useful RD models studied in [70] for H.264/AVC: 1/R model and exponential model.

Then, we propose an extended version of the exponential model for intra-coded frames at

CTU level. Proposed solution and performed experiments are detailed for model validation

for HEVC. In a second part of the section, we provide a study on RD modeling for HEVC

considering appropriate probabilistic models for the transform coefficients. We derive

models based on the signal characteristics for both intra- and inter-coded frames and at

low and high bit rates. Comparatives tests conclude this chapter to show that a good

fitting of the transform coefficient distribution give efficient RD models.

5.1 Validation of models from the literature for HEVC

5.1.1 Glossary of models used at frame level

1/R model

In [71], an analytical framework for frame-level dependent bit allocation is proposed. Two

different RD models for both inter and intra frames have been designed. In our work, we

use the intra frame RD function that takes into account the average gradient G of the

frame, its encoding bit rate R and the corresponding distortion D measured by the mean

square error (MSE) between the original frame and the reconstructed one:

D =
a G

R− c G
− b. (5.1)

where (a, b, c) are model parameters given in [72]. This model makes sens when (R−c G) > 0.

In this work, we evaluated the fitting performances of this model at CTU level when the

previous condition is respected.

Exponential models

According to the classical R-D theory [73], at frame level and for high bit rate, the

relationship between R and D can be expressed as following:

D = ασ22−2R (5.2)

where α and σ2 are, respectively, the PDF shape factor and the variance of the residual DCT

coefficients. D is measured as the MSE between the original frame and the reconstructed

one. However, such type of analytic formula may not be accurate for hybrid video coders

and may be replaced by a similar R-D model studied in the team past work [70] or spline

based models introduced in [74] [75].



5.1. Validation of models from the literature for HEVC 59

The RD model in Equation (5.2) has been adapted for optimal bit allocation in hybrid

video coding. Again both I-frames and P-frames have been considered, but, we focus on

intra-frame rate allocation only and employ the following RD function:

D = ασ2 2−β R, (5.3)

where σ2 is the variance of the coded I-frame and (α, β) are model parameters estimated as

explained later. This model has shown better fitting performances at frame level than the

previous ones [70]. Moreover, it has been proved in [76] that this exponential model can be

used, at high bit rate, for sparse sources. Thus, we propose to use it at CTU level, adopt it

to HEVC intra-coded units and compare its performance with model in Equation (5.1).

5.1.2 Proposed extension at CTU level

To make comparative tests between model (5.1) and model (5.3), both RD functions are

extended at CTU level. The considered distortion Di is the MSE between the i-th original

CTU and the reconstructed one and Ri is the corresponding bit rate.

For (5.1), we use the parameters computed in [72] and the average gradient G of each

coded CTU. Then, we verify if this function describes the relationship between R and D of

each CTU. Moreover, the model in Equation (5.3) is modified to perform bit allocation

at CTU level. For each CTU of index i, the variance σ2
i is computed, the distortion Di

and bit rate Ri are measured. Then, a fitting algorithm is used to generate the parameters

(αi, βi) and model the required relationship between the rate and the distortion at CTU

level:

D̃i = αi σ
2
i 2−βiRi , (5.4)

where D̃i is the estimated distortion.

5.1.3 Validation process

Implementation and test condition

Our experiments consist in comparing the two RD models described before at CTU level.

We used all the test sequences from class A to E [68]. We encode two frames per sequence

with an all intra configuration and a CTU size that goes from 16x16, 32x32 to 64x64.

We use independently decodable CTUs. Each CTU corresponds to one slice and in-loop

filtering is deactivated across slice boundaries. Consequently, only spatial dependencies

inside a CTU are considered while encoding the unit.

Moreover, we estimated the model parameters (αi, βi) of Equation (5.4) and the variance

σ2
i of each CTU by encoding the sequences using HEVC test model (HM.16) [77]. The rate

control disabled, in order to manually fix different quantization parameters: 1, 2, 3, . . . , 50.
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For each CTU, we recorded the values of Di and Ri produced at the encoder output. We

estimated the model parameters and compute the new distortion.

Finally, a fitting function is used to verify if each model well describes the relationship

between CTU encoding bit rate Ri and the corresponding distortion D̃i.

Evaluation metric

As said before our experimental analysis consists in comparing the proposed RD model

with the one in [72]. The validation was performed on the basis of the ρ metric, defined as:

ρ = 1−
∑

i(Xi − X̂i)
2∑

i(Xi − X̄)2
(5.5)

where Xi and X̂i are the real and the estimated values of one data point, and X̄ is the

mean of all data points. ρ was designed to quantitatively measure the degree of deviation

from a given model [78]. The closer the value of ρ is to 1, the more accurate is the model.

5.1.4 Validation results

Table 5.1 shows the ρ values associated to the RD function of intra coded CTUs given in

both 1/R model traduced by equation (5.1) and Exp model defined by the RD Equation (5.3).

For all the tested sequences, the proposed Exp model shows superior fitting performance,

giving ρ values very close to 1 and higher than ρ values given by 1/R model.

The fitting performance are presented for different CTU size and at high bit rate coding.

We also notice that the fitting is better for bigger CTUs in most of the sequences; the

average of ρ is equal to 0.8459 when the CTU size is 64x64 and it is reduced to 0.7652

when the CTU size is equal to 16x16. This is due to the fact that statistical models are

less efficient when the data set is reduced.

A second table is given to summarize the fitting performance of the two models at

lower bit rates. Table 5.2 shows that ρ values decrease for both RD models at low bit

rate. However, Exp model is still having better fitting performance than the 1/R model for

QPs from 26 to 50. Moreover, as explained previously, to have a valid estimation of the

distortion using Equation (5.1) the real bit rate R should be higher than a certain limit

(R− c G) > 0. Experiments have shown that 1/R model is not valid for many CTUs. This

condition cannot be verified for 60% of the cases.

To better evaluate the fitting performances, Fig. 5.1 reports the RD curve per CTU for

sequences from different classes. The RD curves represented in the figures are given by:

• HEVC encoding: the black line represent the real output values of the encoder Ri

and Di of a CTU of index i.

• 1/R model: the blue line report real bit rates Ri and distortion generated using (5.1).
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class Sequence CTU 64x64 CTU 32x32 CTU 16x16
Exp model 1/R model Exp model 1/R model Exp model 1/R model

A Nebuta
Festival

0.9269 0.5836 0.8878 0.5410 0.8106 0.4955

People On-
Street

0.8897 0.7096 0.8140 0.6340 0.7158 0.4637

Steam
Locomot-
iveTrain

0.8845 0.5429 0.8347 0.5248 0.7376 0.5113

Traffic 0.8580 0.6669 0.8000 0.5473 0.7168 0.3830

Average class A 0.8898 0.6258 0.8341 0.5618 0.7452 0.4634

B Basketball
Drive

0.9148 0.5894 0.8974 0.5398 0.8387 0.3039

BQTerrace 0.8341 0.5385 0.7931 0.4683 0.7121 0.4208
Cactus 0.8590 0.4858 0.8828 0.4278 0.8290 0.3009
Kimono1 0.8378 0.7037 0.7891 0.6008 0.7145 0.3571
ParkScene 0.8885 0.4841 0.8790 0.3991 0.8263 0.2765

Average class B 0.8668 0.5603 0.8483 0.4872 0.7841 0.3318

C Basketball
Drill

0.9118 0.6155 0.8843 0.3854 0.8125 0.2509

BQMall 0.6183 0.5396 0.7762 0.4595 0.7724 0.3632
PartyScene 0.8760 0.5617 0.9117 0.4191 0.8244 0.3198
RaceHorses 0.8841 0.5894 0.8286 0.4236 0.7168 0.3114

Average class C 0.8226 0.5766 0.8502 0.4219 0.7815 0.3113

D Basketball
Pass

0.8678 0.6635 0.7916 0.4846 0.7126 0.3105

Blowing
Bubbles

0.9480 0.4467 0.9026 0.2840 0.8213 0.2402

BQSquare 0.9407 0.6234 0.9014 0.4836 0.7808 0.3821
RaceHorses 0.9194 0.5825 0.8613 0.4319 0.7447 0.3057

Average class D 0.9190 0.5790 0.8642 0.4210 0.7649 0.3096

E Four
People

0.8046 0.6936 0.8126 0.6124 0.7426 0.4491

Johnny 0.7061 0.7129 0.8035 0.5361 0.7489 0.3757
Kristen
&Sara

0.6840 0.5102 0.7832 0.4681 0.7594 0.3164

Average class E 0.7316 0.6389 0.7998 0.5389 0.7503 0.3804

Average all sequences 0.8459 0.5961 0.8393 0.4861 0.7652 0.3593

Table 5.1: ρ values of the R-D functions at CTU-level for QP ∈ [1, 25]

class QP ∈ [26, 39] QP ∈ [40, 50]
Exp model 1/R model Exp model 1/R model

A 0.7589 0.5490 0.5282 0.4434
B 0.6150 0.4152 0.4652 0.4941
C 0.7829 0.4088 0.5626 0.1469
D 0.7842 0.3457 0.5819 0.2577
E 0.4686 0.5305 0.4071 0.0992

Table 5.2: ρ values of the R-D functions at CTU-level for different bit rate levels and for CTU size
equal to 64x64

• Exp model: the red line describes the relationship between real bit rates Ri and

estimated distortion D̃i of Equation (5.4).

These results show that the rate distortion relationship achieved with the proposed ex-

ponential method is close to real values given by HEVC encoder. The results prove that

the proposed RD model with appropriately chosen parameters can accurately describe the

relationship between the encoded bits and the corresponding distortion for independently
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decodable CTUs.

(a) PeopleOnStreet CTU 3 (Class A) (b) Cactus CTU 4 (Class B)

(c) BQMall CTU 4 (Class C) (d) BasketBallPass CTU 5 (Class D)

(e) FourPeople CTU 3 (Class E)

Figure 5.1: Model fitting at CTU level for QP ∈ [1, 25] and CTU size equal to 64x64
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5.2 Study on statistical distribution of HEVC transform

coefficients

5.2.1 Probabilistic distributions

It is important to have a clean and precise probability model that can sufficiently describe

images. Different statistical distributions are studied and parameters of the probability

density function are estimated by maximizing the likelihood of the data under the model.

Normal, Laplacian, Generalized Gaussian (GG) and Bernoulli-GG (BGG) distributions

have been studied and their parameters have been estimated to find the best fitting. The

GG probability density function (PDF) is given by [79],

∀ξ ∈ R, f(ξ) =
β

2αΓ( 1
β )
e(
|ξ|
α

)β (5.6)

where Γ(.) is the gamma function,i.e, Γ(z) =
∫ inf

0 e−ttz−1dt, z > 0. Here α models

the width of the PDF peak (standard deviation), while β is inversely proportional to the

decreasing rate of the peak. Sometimes, α is referred to as the scale parameter while β is

called the shape parameter.

Figure 5.2: Probability density function for different β

The GG model contains the Normal and Laplacian PDFs as special cases, using

respectively β = 2 and β = 1. As represented in Fig.5.2, this family allows for tails that

are either heavier than normal (when β < 2) or lighter than normal (when β > 2). When

β → inf, the density converges to a uniform density.

In addition, the differential entropy of this distribution can be written as follows:

hβ(ω) = ln

(
2Γ( 1

β )

βω1/β

)
+

1

β
(5.7)

When the data to be modeled is sparser a Bernoulli-GG can be adopted. Considering a
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mixture parameter ε ∈ [0, 1] the BGG distribution is defined as a combination of a Dirac

distribution δ (i.e., point mass at 0) and a GG distribution f :

∀ξ ∈ R, g(ξ) = (1− ε)δ(ξ) + εf(ξ) (5.8)

5.2.2 HEVC transform coefficient distribution

The transform designed for HEVC needed to be efficient in both software and hardware

versions of HEVC. Thus, an integer approximation of DCT and DST transforms are

implemented in the encoder and a clipping is added to deal with hardware limitations.

Consequently, the obtained coefficients’ distribution is discrete but can be fitted by a

continuous distribution. To select the appropriate probabilistic models, we carried out a

study on transform coefficients distribution X of HEVC. In fact, we studied histograms of

non-quantized transform coefficient per transform level at frame level and per unit at CTU

level. The distribution has been evaluated for both intra- and inter-coded frames. The

impact of TU partitioning, prediction type and QP are then evaluated.

Impact of transform level

The transform unit (TU) is a square region of size 4× 4, 8× 8, 16× 16 or 32× 32 luma

samples/pixels defined by a quadtree partitioning of a leaf CU as represented in Fig.2.3

of Chapter 2. The quadtree partitioning of the CU into one or more TUs is known as a

residual quadtree (RQT). In general, each TU is associated with a partitioning depth and

a transform matrix. Thus, we studied 4 transform levels ; level 0, leve 1, level 2 and level 3

that corresponds respectively to transform size 32× 32, 16× 16, 8× 8 and 4× 4.

Figure 5.3: Comparison of distributions of different level of transform
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Fig.5.3 represents the histograms of transform coefficients for different sizes of TU. It is

shown that the smaller is the size of the TU, the shorter and the wider is the coefficient

distribution. In fact, big units (for example of size 32× 32) corresponds to smooth regions,

so residuals are around 0 which explain the fact that the distribution is tall and narrow.

Impact of prediction type

In HEVC, both the intra and the inter coded pictures use predictive coding. However, for

intra pictures, only a spatial prediction using neighboring pixels of the previously encoded

unit is used for a given CTU to be encoded. The inter prediction uses pixels from previously

encoded pictures and has much greater prediction ability compared to the intra prediction.

(a) Level 0 (b) Level 3

Figure 5.4: Transform coefficients’ histograms for different transform levels of an I-frame at QP=22

(a) Level 0 (b) Level 3

Figure 5.5: Transform coefficients’ histograms for different transform levels of a B-frame at QP=22

In fact, Fig.5.4 and Fig.5.5 shows histograms of transform coefficients at 2 different

levels for both I-frames and B-frames. These normalized histograms are obtained after

encoding the sequence “BaseketBallDrive” at a QP = 22. We notice that they have different

characteristics when a given video source is intra-coded versus inter-coded. In fact, for I-

frames the distribution of transformed coefficients have the shape of a Generalized Gaussian

distribution. For B-frames it is more like a BGG distribution as it is a combination of

a dirac and a Gaussian. This is due to the nature of intra and inter prediction residual.
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Thanks to temporal redundancy between successive frames, inter prediction tends to reduce

considerably the cost of the residual. Transform coefficients are then concentrated in 0.

This analysis can be confirmed by evaluating the percentage of zero coefficients per unit.

Experiments have shown that the percentage of zero coefficients per unit is important

in inter coded frames. Referring to Table.5.3 the zero coefficients probability can go up to

13.92% for “ParkScene” coded in inter prediction mode. However, it is only 1.3% when

encoding the sequence in intra mode. Consequently, for I-frame the percentage of zero

coefficient is not very relevant. (1− ε) is very small so the transform coefficient distribution

can be represented by a GG. While, for B- and P-frames (1− ε) is bigger so the transform

coefficient distribution should be represented by a BGG as described in Equation (5.8).

Sequence Intra prediction Inter prediction

“BasketBallDrive” 2.56% 9.27%
“BQTerrace” 4.42% 13.59%

“Cactus” 1.12% 9.93%
“Kimono1” 2.17% 11.60%

“ParkScene” 1.30% 13.92%

Table 5.3: Percentage of zero coefficients for different prediction types at QP=1

Impact of quantization parameter

The study of the impact of the QP on transform coefficients has been done at CTU level.

The quantization parameter selection has an indirect effect on the non-quantized DCT

coefficient distribution via the predictive coding. The reconstructed picture distortion is

proportional to the quantization level used while encoding it. It represents less details and

smoother texture. Considering the fact that inter and intra prediction is done referring

to compressed units of the picture, the prediction produce a smaller residue when the

reference picture is of low quality (i.e. with a bigger QP).

(a) QP=10 (b) QP=27

Figure 5.6: Impact of QP on transform coefficients’ histograms of and intra coded CTUs

Fig.5.6 confirms our hypothesis. It illustrates two histograms of DCT-transformed

coefficients at two different quantization levels. It shows that DCT coefficients concentrated

around zero statistically when the QP is bigger. Moreover, the tail of the DCT coefficient
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distribution is lighter than when the reference is encoded with a smaller QP. Thus, in our

experiments, we managed to reduce the impact of quantization in transform coefficients

distribution by setting the QP to 1.

5.2.3 Transform coefficients modeling

The modeling of the distribution of transformed coefficients in HEVC are performed using

previously detailed distributions; Normal, Laplacian, GG and BGG. The transformed

coefficients are derived after mode decision. Modeling are performed in two steps. Firstly,

the coefficients from the whole frame are collected. Secondly, they are grouped per CTU.

Then modeling is performed on each group. The model representing the best fitting is

considered and its parameters are estimated.

Fitting evaluation metric

All studied distributions are tested for transform coefficient modeling. To evaluate fitting

performance and select the appropriate probabilistic distribution, we use a root mean

square error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2

(yi)2
(5.9)

The distribution giving the smallest RMS is the one that better models the transform

coefficient distribution. This evaluation has been done at both frame level and CTU level.

Generalized Gaussian fitting for intra-coded units

As explained before, intra-coded units have a short and wide distribution. Experiments have

shown that the percentage of 0 coefficients does not exceed 5% of the distribution (Table.5.3).

To select the appropriate probabilistic model that fits the coefficient distribution, Laplacian,

Normal and Generalized Gaussian models are tested.

Fig.5.7 shows an example of modelling the distribution of the DCT coeffcients from the

first frame of the sequence “BasketBallDrive” under an all intra configuration using the

three distributions. We notice that the GG distribution gives the best fitting approximation

as it suits the data well and gives the smallest RMS comparing to Normal and Laplacian

distributions. In fact, experiments show that a good PDF approximation for HEVC

transform coefficients of an intra-coded unit can be achieved by adaptively varying two

parameters (α, β) of the Generalized Gaussian density defined in Equation (5.6), the GG

distribution is used in our work when intra prediction is performed. This is useful to

estimate the distribution parameters per CTU of I-frames and perform rate distortion

optimization per unit. To evaluate the GG fitting, ClassB sequences has been coded in all

intra mode.
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Figure 5.7: Example of transform coefficients histogram of “BasketBallDrive” intra-coded frame
fitted with Normal, Laplacian and GG densities

Models “BasketBallDrive” “BQTerrace” “Cactus” “Kimono1” “ParkScene”

Normal 16 22 9.86 14 11
Laplacian 11 18 6.43 7.77 7.10

GG 6.93 15 6.34 7.54 6.45

Table 5.4: RMSE ×104 of tested distributions

Table 5.4 gives the obtained RMS after fitting different probabilistic models to all

transform coefficients obtained after encoding all units of all ClassB sequences in intra

mode. We can see that the GG distribution has the smallest error for all sequences.

Consequently, it gives the best fitting. If we represent the obtained modeling of these

transform coefficients using the GG distribution as in Fig.5.8, we notice that the GG model

gives a good representation of non-quantized transform coefficients for different textures.

(a) “ParkScene” (b) “Cactus”

Figure 5.8: GG fitting of residual of different intra-coded CTUs
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Bernouilli Generalized Gaussian fitting for inter-coded units

Inter-coded units represent a transform coefficient distribution tall and narrow with an

important number zero coefficients. In that case, the percentage of 0 coefficients exceeds

5% of the distribution. Thus, the best fitting of this data is a BGG model. The final model

is then a sum of a Dirac and a GG as explained in Equation (5.8).

The fitted distribution has been obtained after encoding in inter mode a CTU using a

quantization parameter equal to 1 (Here again we need to minimize the quantization effect

when performing motion estimation referring to the appropriate decoded unit). Fig.5.9(a)

shows the fitted Dirac and GG distributions for respectively zero coefficients and non-zero

coefficients. The combination of both distributions gives a BGG model that perfectly fits

the studied data as represented in the example given in Fig.5.9(b).

(a) Dirac + GG

(b) Final BGG

Figure 5.9: BGG fitting of residual of different inter-coded CTUs

However, as show in Fig.5.9, the histogram represents some regular pics that appears

because a shifting and clipping step is preformed by HEVC during the transform process.

The residual obtained after inter prediction is more sensitive to this shifting.
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5.3 Proposed operational rate-distortion modeling for HEVC

At this stage of our researches, we derive operational rate-distortion functions at high and

low bit rates considering signal characteristics. This has been done in the literature such

as in [80], where a simplified rate model for texture has been derived based on a Laplacian

PDF model. In our work, new rate and distortion models are derived [76] for both inter

and intra coded units and using a more accurate fitting based on a BGG distribution.

5.3.1 Rate distortion models parameters

For inter- and intra-coded units and at low and high resolutions, asymptotic expressions

of the distortion for a pth-order moment error measure and close approximations of the

entropy are provided considering the source characteristics. Consequently, for an accurate

representation of the rate and the distortion, parameters of the source distribution are

introduced as shown in [76]. These RD models are adapted to HEVC coding and simplified

versions are proposed in our work. Here is a summery of used parameters and notations:

• p : the order of the moment error measure is equal to 2 is our cas as MSE is used as

a distortion metric.

• ζ : the offset parameter indicating the shift of the reconstruction is equal to 0 as a

midpoint reconstruction is performed in HEVC.

• ν : is equal to 1/4 in our experiments.

• ε : the mixture parameter defined in Equation (5.8). It is fixed at 1 when using a GG

distribution in intra mode. However, it should be computed per CTU in inter model

to estimate the appropriate parameters of the BGG distribution. It corresponds to

the percentage of non zero coefficients.

• Hε : the entropy of a Bernoulli can be written as Hε = −ε ln ε− (1− ε) ln(1− ε) it is

equal to 0 when ε = 1 (Intra case).

• µp : is written as µp =
Γ( p+1

β
)

Γ( 1
β

)
and for p = 2, µ2 =

Γ( 3
β

)

Γ( 1
β

)
.

• β : is the exponent parameter of the model (shape) defined in Equation (5.6) . It

should be estimated in our experiments.

• α : is a model parameter representing the scale defined in Equation (5.6). It should

be estimated in our experiments.

• ω : the scaling factor is ω = α−β.

• q : represents the quantization step-size.

• q̄ : is the normalized quantization step-size q̄ = q/α.
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• q̃ : is defined as q̃ = (2−β q̄β + 1− 1/β)1/β = (( q
2α)β + 1− 1/β)1/β.

5.3.2 Proposed rate distortion models for intra-coded units

For frames of type I, the GG model is used to fit the transform coefficient distribution

per CTU and (α, β) are estimated. These parameters are introduced in the proposed RD

model for both low and high resolutions.

Low bit rate

• The R-q model at low bit rate is a function of the normalized quantization stepsize q̄

and distribution model parameters. It can be represented as follows :

d̄p,ζ(q̄) = µp −
q̄p+1e−q̄

β/2β

2p+1Γ( 1
β )q̃β

× (1− (1 + 2ζ)p +
p

βq̃β
× (1 + (1 + 2ζ)p−1)) (5.10)

Considering midpoint reconstruction in HEVC quantization ζ is set to 0 and MSE

for error measure p is set to 2, the equation can be then simplified:

d̄2,0(q̄) = µ2 −
q̄3e−q̄

β/2β

2βΓ( 1
β )q̃2β

(5.11)

The final distortion model d̄(q) at low bit rate is a function of the quantization

stepsize and can be written as follows:

d̄(q) = µ2 −
( qα)3e−( q

2α
)β

2βΓ( 1
β )q̃2β

(5.12)

knowing that q̃β = 2−β q̄β + 1− 1/β = ( q
2α)β + 1− 1/β, we get

d̄(q) =
Γ( 3

β )

Γ( 1
β )
−

( qα)3e−( q
2α

)β

2βΓ( 1
β )(( q

2α)β + 1− 1/β)2
(5.13)

It is important to note that d̄(q) should be positive.

• The R-q model at low bit rate is:

Rp(ε, q̄) = ε
βq̄2β−p

2β−p+1p
(5.14)

It also depends on the normalized quantization step and GG distribution parameters.

Considering p = 2 and ε = 1, the equation can be then simplified:

R2(1, q̄) =
βq̄2β−2

2β
(5.15)
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Finally,

R(q) =
β( qα)2β−2

2β
(5.16)

High bit rate

• The D-q model at high bit rate is:

d̄p,ζ(q̄) =
νq̄p

p+ 1
(5.17)

For the chosen configuration of high efficiency video coding, we replace p, ζ and ε by

respectively 2, 0 and 1, we get:

d̄2,0(q̄) =
q̄2

12
(5.18)

Finally as the normalized quantization stepsize is q̄ = q
α ,

d̄(q) =
1

12
× (

q

α
)2 (5.19)

• The proposed R-D model at high bit rate is a logarithmic function of d̄ :

Rp(ε, d̄) = Hε + ε

(
hβ(1)− hp(1)− 1

p
ln(

pd̄

ε
)

)
(5.20)

As shown before, the mixture parameter ε = 1 as we are considering a GG distribution.

Consequently, the entropy Hε = 0.

R2(1, d̄) =

(
hβ(1)− h2(1)− 1

2
ln(2d̄)

)
(5.21)

To obtain the needed R-q model, we replace d̄ from Equation (5.19). Finally, the

rate model can be written at high bit rate as following:

R(q) =

(
hβ(1)− h2(1)− 1

2
ln

(
1

6
(
q

α
)2

))
(5.22)

5.3.3 Proposed rate distortion models for inter-coded units

For P and B frames, the BGG distribution is used, three parameters need to be estimated

(α, β, ε). The same distortion models as intra coded frames are used at both low bit rate

(Equation (5.13)) and high bit rate (Equation (5.19)). However, different rate models are

introduced taking into account the mixture parameter ε.
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Low bit rate

The R-q model at low bit rate defined in Equation (5.14) is used and can be simplified as

follows:

R(ε, q) = ε
β( qα)2β−2

2β
(5.23)

High bit rate

The R-q model at high bit rate is derived from Equation (5.20) by replacing the distortion

d̄ by Equation (5.19). Thus, it can be written as:

R(ε, q) = Hε + ε

(
hβ(1)− h2(1)− 1

2
ln

(
1

6ε
(
q

α
)2

))
(5.24)

5.3.4 Optimization problems and algorithms

Cost function

The previously obtained rate and distortion models are used to compute optimal QPs of

all CTUs of the sequence. The optimization process uses the Lagragian cost J of each

frame. It corresponds to:

J(q) =

N∑
i=1

d(qi) + λr(qi) (5.25)

where, N is the number of CTUs per frame, q = qi∈[1,N ] is the vector of quantization steps

of all CTUs of a frame, d(qi) and r(qi) denote respectively the distortion in MSE and the

rate in bpp of the ith CTU. However, in practice, the cost per CTU should respect bit rate

condition. Thus, depending on the qi value, the distortion d(qi) and the rate r(qi) used are:

• for intra-coded frame : Equations (5.13) and (5.16) at low bit rate or Equations

(5.19) and (5.22) at high bit rate.

• for inter-coded frame : Equations (5.13) and (5.23) at low bit rate or Equations

(5.19) and (5.24) at high bit rate.

To compute optimal q per frame, we investigated different convex optimization ap-

proaches. We started with a non optimal approach based on the gradient descent algorithm

that minimizes the cost J without considering particular constraints on the QP value.

Then, we used interior-point methods to properly minimize the cost J considering required

constraints on the QP value, mainly to limit the QPs in a limited range and to reduce the

QP variation inside a frame [81].
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Minimization without constraints on the QPs

• Minimization problem :

The problem considered in our work uses a convex and differentiable Lagrangian cost

function J : Rn → R. The unconstrained minimization problem can be written as

follows,

minimize
q

J(q) (5.26)

• Gradient descent :

An unconstrained minimization can be solved by the Gradient descent algorithm [82].

Using the gradient ∇J(q) at location q points toward direction where the function

increases, this method finds the minimum of our cost J . It starts from an initial

point q0, then iteratively takes a step along the steepest descent direction −∇J(q)

that can be scaled by a step-size α, until convergence. The algorithm used in our

experiments can be described as following:

Algorithm 1 Gradient descent algorithm

Input: Strating point q , a function J , stepsize α, tolerance θ
Output: A q vector minimizing J

1: Repeat
2: q ← q − α∇J(q)
3: Until ∆J < θ

Minimization with constraints on the QPs

• Minimization problem :

In a practical case, our optimization problem should consider particular constraints.

First, in HEVC coding, the quantization parameter (QP) cannot exceed a certain

range fixed by the encoder (QP ∈ [0, 51]) and r and d are positive values. Second, for

a smooth and regular quality of the sequence it is possible to introduce a constraint to

limit spatial and temporal variation of QP i.e. between CTUs of the same frame and

between successive pictures. Furthermore, to evaluate obtained results it is important

to test the algorithm at different rate levels. Thus, we tested differentλ values that

corresponds to the initialized QP. To obtain the appropriate quantization step q with

respect to all these constraints, the problem can be represented as follows:

minimize
q

J(q)

subject to qmin ≤ qi ≤ qmax, i = 1, . . . , N

|qi − qmean| ≤ L, i = 1, . . . , N

(5.27)
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In this constrained optimization problem L corresponds to the limit of q variation.

In the I frames, we have chosen a QP variation limited to ±2 comparing to the mean

QP of the whole frame. While, in the B frames, the variation between successive

frames is limited to ±10 compared with an I picture and ±3 compared to a B picture.

A simple extension of the unconstrained minimization method does work well. The

idea is to solve a sequence of unconstrained minimization problems, modify the

last point found and use it as a starting point for the next iteration. Thus, in our

experiments, we first use the gradient descent algorithm which is an unconstrained

minimization approach and we just perform a clipping of the obtainedq values. We

also tested constrained minimization methods such as interior-point algorithm for

faster convergence [81].

• Proposed algorithm based on Gradient descent :

Given the cost function J(q) defined in (5.25). We want to find its minimum using the

Gradient descent algorithm and considering particular cases and required restrictions.

In fact, considering that in the practical case q values are defined in a limited set,

a clipping of q values is added at each iteration of the Gradient descent algorithm.

λ is fixed during the full process. However, the cost J is updated at each iteration

considering appropriate RD models at high or low bit rate. The number of iterations

have been chosen empirically. Experiments have shown that 10000 iterations could

be enough as in many cases the algorithm converges before.

Algorithm 2 Modified gradient descent algorithm

Input: An initial quantization step qint , stepsize α, tolerance θ , clipping range qmin and
qmax , Number of iterations M

Output: A q vector minimizing J
1: Compute λ and q considering initial Qint
2: J(q)←

∑N
i=1 d(qi) + λr(qi)

3: Repeat
4: q ← q − α∇J(q)
5: q ← clip(q, qmin, qmax)
6: Update cost J(q)
7: Until ∆J < θ for M iterations in frame
8: Compute qmean
9: q ← clip(q, qmean − L, qmean + L)

• Interior-point algorithm :

The studied optimization problem includes inequality constraints. The Interior-point

method formulate the inequality constrained problem as an equality constrained

problem. Then, it solves the problem in Equation (5.27) by applying Newton’s

method to a sequence of equally constrained problems [81]. The Matlab function

“fmincon” with algorithm option “Interior-point” is used in our experiments.
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5.4 Experimental results

5.4.1 Experimental setting

In this part of the work, the data set used for experiments are Class B sequences represented

in Fig.5.10. They are tested to analysis impact of different factors in transform coefficient

distribution and to evaluate proposed model performance.

(a) “BaseketBallDrive” (b) “BQTerrace” (c) “Cactus”

(d) “Kimono1” (e) “ParkScene”

Figure 5.10: Class B sequences (1920x1080)

In fact, test sequences are encoded using HM.16 reference software. Non-quantized coef-

ficients are generated per transform level and per CTU. First, we evaluate the performance

of our model in intra-coded units with CTU size equal to 64× 64. All-intra configuration

is used to encode the sequence with a Q = 1. We estimate α and β parameters of the GG

distribution per CTU. Second, we evaluate the performance of our model in inter-coded

units. Low-delay configuration is used with a Q = 1 to encode test sequences. Hierarchical

levels are not considered and each frame take as reference the last decoded frame. The

BGG distribution parameters (α, β, ε) are estimated per CTU to be used in our RD models.

For each configuration, we run the optimization algorithm and analyze the obtained

quantization maps. Then, we introduce the optimized QP map to encode the sequence with

the corresponding configuration. Finally, we make comparative tests between proposed

model and R-λ model by evaluating their RD performance.

5.4.2 Gradient descent algorithm behavior

Gradient descent algorithm is performed to compute appropriate QP per unit. Now we

study the behavior of the proposed optimization algorithm and the evaluate the obtained

QP selection. At each iteration, the algorithm find the QP map that reduces the cost
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J and improve RD performance. In other words, at each iteration RD performance

increases until we reach an optimum value. Fig.5.11 represents RD curves at 4 iterations

of the optimization algorithm (Iteration 1, 10, 100 and 500). Seven rate levels are tested

(Qint ∈ {1, 10, 15, 20, 25, 30, 35}) to plot the RD curve. The figure shows and improvement

in RD performance from one iteration to another. If we compute Bjontegaard metric

between the RD curve at iteration 1 and the one obtained at iteration 500, we notice an

increase in PSNR of 6 dB and a bit rate saving of 20%.

Figure 5.11: Improvement of RD performance at each iteration of proposed gradient descent
algorithm - Example of the first frame of “BasketBallDrive” sequence

It is also possible to evaluate the evolution of the cost J when optimizing QPs per

frame. In Fig.5.12 and Fig.5.13, we plot the cost value per iteration (a) and the list of

QPs per iteration (b). We notice that depending on rate level, the minim cost can be

reached after 10000 iteration 5.12(a) or 1448 iterations 5.13(a). In both cases the algorithm

converges to a minim cost and give a new QP map for the frame.

(a) J evolution for Qint = 10 (b) QP evolution for Qint = 10

Figure 5.12: Evolution of frame cost J and QP of all CTUs over gradient descent algorithm iterations
at low bit rate
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(a) J evolution for Qint = 30 (b) QP evolution for Qint = 30

Figure 5.13: Evolution of frame cost J and QP of all CTUs over gradient descent algorithm iterations
at high bit rate

In Fig.5.12(b) and Fig.5.13(b) we represent the QP evolution per iteration. When we

start with an overall Qint = 10 as shown in the first figure, λ is so equal to 0.41 and after

10000 iterations the mean of the overall obtained QPs is equal to 25. While, if we start

with an over Qint = 30 5.13(b), the fixed value of λ = 48.31 and after 1448 iterations the

mean of the overall obtained QPs is equal to 42.

5.4.3 Optimal QP selection

The proposed model gives different QP maps than the one given by R-λ model. In this

section, we evaluate the QP repartition over different frames of “BasketBallDrive” sequence

coded in intra and inter mode. As the QP computing is done at CTU level, we start by

showing in Fig.5.14 the used CTU partitioning. CTU size is equal to 64× 64 and the frame

resolution is 1920× 1080. Thus, the obtained QP map is a matrix of 30× 17 values.

Figure 5.14: CTU partitioning of “BasketBallDrive” sequence
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All-intra configuration

In intra case, the proposed RD model parameters (α, β) models local characteristics

(texture) of the frame as they are computed by CTU and spatial dependencies between

units as they are generated by fitting transform coefficient after intra prediction. This

results in a texture based QP map. From Fig.5.15, we notice that the smallest QPs are

assigned to very textured regions such as the walls (QP values from 5 to 20), medium

values are selected for regions with regular texture for example the floor (QP values around

30), while the highest QPs are used for encoding smooth regions such as player t-shirt (up

to 41). The obtained QP range goes from 5 to 41. It can be reduced to have smother

quality over a frame by introducing a constraint when performing QP optimization.

Figure 5.15: Optimal QP map using proposed unconstrained model of an intra-coded frame of
“BasketballDrive” sequence

Fig.5.16 shows in (a) the QP map obtained using our model after performing a con-

strained rate distortion optimization. While, (b) shows the QP repartition given by the

R-λ model. We notice that our method gives a texture based repartition which is not the

case with the R-λ model used in HEVC.

(a) Proposed constrained model (b) R-λ model

Figure 5.16: Comparison of obtained QP maps using proposed constrained model and R-λ model
of an intra-coded frame of “BasketballDrive” sequence
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Low-delay configuration

In inter case, the proposed RD model parameters (α, β, ε) are generated by fitting transform

coefficient after inter prediction. Consequently, they model temporal dependencies between

successive frames. Fig.5.18 shows that the optimization process gives smaller QP values to

moving objects (moving player) where a motion estimation should be performed and higher

QPs to regions where no movement is noticed over time (background). An important QP

range is obtained using our model (Q ∈ [13; 44]).

Figure 5.17: Optimal QP map using proposed unconstrained model of an inter-coded frame of
“BasketballDrive” sequence

Here again a range constraint was introduced to limit QP variation between successive

frames. This results in the reduction of the QP range in the given example to [14; 32]

(Fig.5.18(a)). Our model is more relevant as small QPs are used to encode CTUs in the

moving edges. However, in the R-λ model foreground and background CTUs are coded

using the same QP value (b).

(a) Proposed constrained model (b) R-λ model

Figure 5.18: Comparison of obtained QP maps using proposed constrained model and R-λ model
of an inter-coded frame of “BasketballDrive” sequence
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5.4.4 Comparison of RD performance of the proposed model and R-λ

model

The proposed RD model has been compared to the R-λ model. The optimized QP map is

used in HEVC to encode the sequence in both all-intra and low-delay configurations.

All-intra configuration

In intra case, we notice from Fig.5.19 that clipping the optimized QP map is important to

get better RD performance. The quality fluctuation over CTUs of the same frame may

affect the encoding process and reduce the global quality.

(a) “BaseketBallDrive” (b) “BQTerrace”

(c) “Cactus” (d) “Kimono1”

(e) “ParkScene”

Figure 5.19: Comparison of RD performance of R-λ model and proposed model in all-intra mode
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As shown before the proposed constrained model gives a different QP partitioning than

the R-λ model. The obtained QP map helps improve slightly the RD performance. The

bit rate gain goes from −1.16% to −4.75% as shown in Table.5.5.

Sequence Percentage of bit rate gain PSNR gain (dB)

“BasketBallDrive” -1.38% 0.04
“BQTerrace” -1.48% 0.07

“Cactus” -4.75% 0.18
“Kimono1” -1.70% 0.04

“ParkScene” -1.16% 0.04

Table 5.5: RD performance of the proposed model compared to R-λ in all-intra mode

The importance of the clipping can be explained by the fact that neighboring CTUs

are dependent and a big quality difference may affect the intra prediction and consequently

costs a lot.

Low-delay configuration

Using a low-delay configuration, only the first frame is coded in intra mode. All following

frames are B-pictures. From Table.5.6, we notice an important bit rate gain comparing to

R-λ model. Depending on the encoded sequence our unconstrained model have a bit rate

gain from -45.10% up to -88.79%. In fact, our model gives a better bit repartition over

CTUs of the same frame but also over successive frames.

Introducing a constraint in the QP range reduces the RD performance in some cases.

In fact, the selection is then limited and foreground and background units may have too

close QP values. In that case, the selection in not anymore optimal.

Sequence Unconstrained optimization Constrained optimization
Percentage of bit
rate gain

PSNR gain (dB) Percentage of bit
rate gain

PSNR gain (dB)

“BasketBallDrive” -55.00% 1.48 -36.51% 0.58
“BQTerrace” -88.79% 5.60 -2.82% 0.03

“Cactus” -49.17% 2.25 -52.88% 2.49
“Kimono1” -51.28% 2.48 -44.42% 2.32

“ParkScene” -45.10% 1.89 -40.05% 1.60

Table 5.6: RD performance of the proposed model compared to R-λ in low-delay mode

Furthermore, the proposed model can reach low bit rates that the R-λ model cannot

respect. Fig.5.20 represents RD curves of all tested sequences obtained using proposed

unconstrained model and R-λ model in HEVC. It shows that for each sequences 4 bit

rate points are tested and in many cases the R-λ model is not able to respect the budget

constraint. The R-λ given QP selection is not optimal and our algorithm show considerable

rate and quality gain.

Furthermore, experiments have shown an improvement in encoding quality. For the

same bit budget, an increase in PSNR is measured for all decoded sequences (Table.5.6).

We notice that considering the proposed model we obtain a better bit partitioning than the
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(a) “BaseketBallDrive” (b) “BQTerrace”

(c) “Cactus” (d) “Kimono1”

(e) “ParkScene”

Figure 5.20: Comparison of RD performance of R-λ model and proposed model in low-delay mode

R-λ model. Fig.5.21 shows that for the same bit rate we better code the moving objects

such as the ball (red square) and the numbers in players’ t-shirts (blue square). In Fig.5.22,

the sequence is decoded at 3Mbps, the eye is correctly decoded using our model (closed

eye in the blue square) and the trees have better texture (red square).
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(a) Original frame

(b) Proposed model

(c) R-λ model

Figure 5.21: Comparison of subjective encoding quality of “BasketballDrive” frame using R-λ and
proposed models at 6Mbps
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(a) Original frame

(b) Proposed model

(c) R-λ model

Figure 5.22: Comparison of subjective encoding quality of “Kimono” frame using R-λ and proposed
models at 3Mbps
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5.5 Conclusion

In this work, we studied different content-based RD models. In a first part (Section 5.1), we

adapted appropriate models to CTU level bit allocation by approximating their parameters

by considering HEVC at independently decodable CTUs of type I. The obtained results

demonstrate that the proposed exponential RD model allows us to accurately describe

the spatial dependencies over an intra coded CTU. The proposed model can be useful for

optimal bit rate allocation at CTU and frame level to perform efficient rate control for

HEVC.

In a second part (sections 5.2, 5.3 and 5.4 ), the rate-quantization equations proposed

in [76] are adapted for high efficiency video coding (HEVC). A simplified GG model is used

for intra-coded frames while a BGG model is appropriate for inter-coded frames. They

are commonly used probabilistic models. However, they have never been used to evaluate

HEVC transformed residual and they well fit the transform coefficient distribution. Novelty

in our work consists in estimating model parameters based on BGG and GG distributions,

evaluating obtained values considering different configurations, and, proposing RD models

for QP computing at CTU level for HEVC.
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Region-of-Interest (ROI) based perceptual video coding has been established for a long

time. The main idea is straightforward: enhance visual quality by improving fidelity of

human interested regions. Since the standardization of H.264/AVC, several improvements

and variations to the original algorithms have been done. Several ROI-based coding

strategies have been proposed providing effective rate controlled image compression over

regions. Given a particular ROI of a fixed or varying shape, proposed schemes are able to

compress a given image by a required ratio.

This chapter presents a state-of-the-art review on the available schemes for rate control

in ROI-based video coding. In the first section, we introduce different ROI detection and

tracking techniques. Then, we describe in the second section the ROI-based rate control

algorithms implemented in earlier standards such as H.264/AVC.
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6.1 ROI detection and tracking

Many algorithms have been proposed for automatic ROI detection. They can be classified

into two categories: bottom-up methods assume that human eyes skirt rapidly across the

entire image and select small areas, while top-down methods suppose that people pay

more attention to areas corresponding to semantic objects of the image [83]. Top-down

approaches mainly consist in generating a saliency map taking into account the importance

of semantic objects such as text, faces, eyes, etc.

Generally, researches on object detection and tracking have focused on the pixel domain

approach since it provides powerful tracking capability. In pixel domain the ROI can be

detected using different models, such as visual attention models, object detection models

and face detection models.

6.1.1 Visual attention models

Visual attention models refer to the ability of a human to concentrate his attention on

a specific region of the image. This involves selection of the sensory information by the

primary visual cortex in the brain by using a number of characteristic, such as intensity,

color, size and orientation in space. Actually, the visual attention models simulate the

behavior of the Human Visual System (HVS), and in turn enable to detect the ROI within

the image [84] as represented in Fig.6.1. It often represents a semantic object such as a

human face, a flower, a car, a text, etc.

Figure 6.1: Example of concentrating the attention on a specific region of an image

6.1.2 Movement detection

Detecting, classifying as well as tracking objects and human motions are important tools in

image processing used in security systems. Several approaches for moving-object detection
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and tracking have been proposed during the last decades using image processing techniques,

because computer vision lets us to manipulated videos to extract useful information

contained in the coded stream. These algorithms consist in estimating the location of each

object in each frame and keeping track of it. In [85], the proposed system detects movements

of objects and persons based on video sequence processing. A movement trace is estimated

referring to motion vectors to determine whether tracking should be carried or not. In

[86], the proposed moving-object detection method combines both temporal variance of

the pixel intensities as temporal thresholding approach with background modeling. Then,

tracking is performed by combining motion and appearance information.

6.1.3 Object and Face detection

Automatic object detection methods locate objects in an image and extract the regions

containing them (the extracted regions are ROIs). The detection is performed using

particular features of the object. In fact, having a good feature-based representation of

objects increases the effectiveness of the detector. The ROI detection is especially useful

for medical applications, video surveillance systems, etc.

The face detection is a specific case of object detection. In object-class detection, the

task is to find the locations and sizes of all objects in an image that belong to a given

class. One of the earliest works in face detection is a real-time system developed in [87] to

emphasize the face region. The proposed method is based on a shape recognition algorithm.

The system is able to detect and track human faces considering skin color segmentation and

contour evaluation. Face detection can be combined with silent features (color, intensity

and orientation) as done in [88] to improve ROI detection accuracy.

Furthermore, Viola and Jones object detector [89] is a famous and successful tool, widely

used for face detection. For specific applications, such as video-conference or supervision

systems, this algorithm is appropriate as it has shown strong power in detecting faces,

while for other applications, some improvement has been introduced to Viola and Jones

algorithm by introducing new feature images. This framework used a set of Haar-like

features in which each characteristic was described by a template. OpenCV library has

included different implementations of Viola and Jones object detector algorithm [90].

In our work, we focus on face detection as we are studying videoconferencing systems.

We need a simple and rapid method to detect the ROI and perform ROI-based bit allocation

at real time. Consequently, we use OpenCV library for face detection as shown in Fig.6.2.

We do not aim at making a perfect segmentation of the face at pixel level. Our algorithm

requires a classification of CTUs in different regions. Thus, once the faces are detected a

binary mask is generated to register if each CTU of the frame belongs to the ROI or not.
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(a) Johnny (b) KristenAndSara

(c) FourPeople

Figure 6.2: Face detection using OpenCV library

6.2 ROI-based rate control for H.264

With rapid demands for ROI in applications like videoconferencing, video surveillance and

telemedecine, ROI-based rate control has gained increasing attention from researchers.

Previously described ROI detection and tracking techniques make ROI-based video coding

possible. In a ROI video coding scheme, smaller quantization parameter is used to represent

the ROI with lower distortion which could significantly contribute to the subjective quality

of the ROI and the overall video. Different controllers have been proposed for different

situations and implemented in the H.264/AVC reference software. This review of available

schemes helps us chose appropriate model to compare with.

6.2.1 ROI quality adjustable rate control scheme

In [91], a ROI quality adjustable rate control algorithm has been proposed. Bit allocation

is initially done according to user’s interest level and available budget. The proposed

quadratic RD model defined in(3.8) considers the bit rate constraint and possible quality

levels to define a QP margin. A number of bits is then allocated for each region and the

QP is refined. Finally, the quadratic R-q model is used to assign a QP per region. MBs of

the same region get the same QP.
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The particularity of this method consists in reordering MBs. In fact, ROI is processed

first, then the non-ROI areas. This approach cannot be adapted to HEVC coding as it

processes units in raster scan order.

6.2.2 ROI-based rate control for traffic video-surveillance

In [92], a ROI-based rate control was designed for traffic surveillance systems. A fast

ROI extraction method for the real time video compression is used to generate the ROI

map. A linear function has expressed the relation between the bit-stream length and the

quantization step (3.7). This model helps to predict the frame level bit allocation and the

region level QP determination. In this work, the model is applied for each macroblock.

Thus, a QP is computed for each macroblock.

This method is based on linear rate quantization model which is not the case in HEVC.

6.2.3 ROI-based rate control for low bit rate applications

In [93], a complete ROI-based controller is proposed. The scheme includes five steps,

starting with region dividing using the RD characteristics of each MB. Macroblocks with

similar characteristics are classified in the same basic unit and an overall bit allocation is

performed using two linear models: a rate quantization (R-q) model and and a distortion

quantization (D-q) model. A QP is computed for each basic unit. Finally, RDO is performed

for each MB and models’ parameters are updated as done in previous propositions.

Here again linear rate distortion models are used for QP computing which not adapted

to HEVC coding.

6.2.4 ROI-based rate control scheme with flexible quality on demand

In [94], the same quadratic model described in (3.8) is used. Faces are considered as ROIs.

However, new features are introduced comparing to previously detailed proposition. First,

human psycho-visual clues are used to compute a saliency map for each frame, which is

used for rate control. A quality factor is defined and the bit budget is allocated for ROI

and non-ROI separately. Finally, the quadratic model is used to assign a QP for each

region considering a clipping range for smooth visual quality along the temporal direction

and across region boundaries.

The RC algorithm proposed in [94] is the most appropriate for HEVC. It is possible to

adapt it to the HEVC controller, as it uses a quadratic model for QP computing which is

not the case in [92] and keeps processing blocks in encoding order, which is not the case in

[91]. Consequently, we implemented the proposed ROI-based controller in [94] in HM.9

and compared it to our algorithm. A detailed description of these algorithms is given in

the next section.
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6.3 Conclusion

In literature, different ROI detection algorithms have been proposed as shown in Section

6.1. they have been afterworld used to improve perceptual quality of important areas in a

video sequence.

The above-mentioned algorithms in Section 6.2 provide a bit rate repartition that takes

into account the high priority of the ROI. They have been developed considering linear

and quadratic models and implemented in the H.264/AVC software. In next chapters, we

propose a new ROI-based rate control scheme for HEVC characterized by several features.

We used Viola and Jones algorithm for face detection and we compare obtained performance

with ROI-based rate control approach described in Section 6.2.4.
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This chapter presents novel rate control scheme designed for HEVC, and aimed at

enhancing the quality of ROIs for a videoconferencing system. The proposed approach

has been compared to the reference controller implemented in HM.10 and to a ROI-based

rate control algorithm initially proposed for H.264/AVC that we adopted to HEVC and

implemented in HM.9.

In the first section of this chapter, we motivate the introduced modifications in the

quadratic model proposed in [94] and described in Section 6.2.4 to adapt it to HEVC. In

the second section, we explain the proposed ROI-based R-λ model. Main features of the

proposed algorithm and different versions are detailed. The chapter ends with experimental

results related to all proposed algorithms and interpretation of obtained results.
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7.1 ROI-based quadratic model

The ROI-based controller proposed in [94] for H.264/AVC standard consists in estimating

the bit count per region by using a quadratic RD model. We adopted this algorithm to the

quadratic URQ controller presented in HEVC contributions [63] [64] and implemented in

HM.5 and later versions. The proposed algorithm has been enhanced with several features.

In fact, bit allocation is performed per region. Then, quadratic URQ mode is used to

compute a QP per CTU as done in H.264/AVC. Finally, QP is adjusted and the unit is

encoded.

7.1.1 Bit allocation per region

At frame level, separate bit allocation per region is performed. First, the initial budget

fixed by the network is divided into two parts using a quality factor K assigned by users or

control systems. Target bit counts Tr and Tn are initialized to ROI and non-ROI referring

to Equation (7.1) , then used for bit allocation at frame and CTU level.

Tp = Tr + Tnwith,
Tr
Nr

= K × Tn
Nn

(7.1)

where Nr and Nn denote respectively number of pixels of ROI and number of pixels of

non-ROI. The final target bit left budget T̂r(i) for the ith CTU from the ROI is based on

the remaining bits in ROI (Tr − T ′r) , the number of pixels in the current CTU N(i) and

the number of pixels left in ROI:

T̂r(i) =
(Tr − T ′r)×N(i)∑

j∈Ir
j>i

N(j)
(7.2)

The final target bit occupancy T̃r(i) for CTU from the ROI is computed using the

initialized bit count in ROI and ROI virtual buffer occupancy Vr(i):

T̃r(i) = Tr −
Vr(i)

Ur(i)
(7.3)

where Ur(i) is the number of units left in ROI after encoding CTU of index i.

The final bit budget is a weighted average of the target bit left and the target bit

occupancy:

Tr(i) = β × T̂r(i)× (1− β)× T̃r(i) (7.4)

where β is the weight defined in [64]. Depending on the application needs this paramater

can give more weight to the target bit left or the target bit occupancy. The same process

is done for CTUs of the rest of the frame.
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7.1.2 Quadratic model for QP determination

The strategy for intra pictures and non-reference frames is kept as described in HM

document [64] Howver, for referenced B-frames the ROI-based URQ model is used at CTU

level. In this case, the final bit target T fr (i) is refined as follows:

T fr (i) = Tr(i)×
wB(i)∑
j∈Ir
j≥i

wB(j)
(7.5)

where wB(i) is the MAD of the current CTU as expressed in Equation (1.7). After

estimating this target bit count for the considered CTU, the preliminary QP value is

determined as in [64] by the quadratic model introduced in Chapter 3 by Equation (3.8).

The obtained QP using the quadratic RD model is then modified by considering the

smoothness issues over the temporal and spatial domains. The four constraints proposed

in [94] are respected. All QPs are then clipped between 0 and 51 as proposed in the URQ

reference controller implemented in HM.9.

7.2 ROI-based R-λ model

The proposed approach is based on the R-λ model presented in HEVC. The relationship

between R and λ represented in Chapter 3 by Equation (3.13) is used to compute QP of

the frame and each CTU of the image. As shown in Section 4.2, this model gives better

performance than the quadratic one. Our contribution proposes a ROI-based rate control

algorithm where bit allocation at CTU level depends on the number of bits allocated per

region and on the weights of CTUs of the same region [95] [96].

In this section, we describe the proposed approach that has been implemented in HM.10

and how we adapted it to a later version of HEVC test model 13 (HM.13). We focus on

the two main steps of the rate control: the bit allocation at both frame and CTU levels

and the computation of QP by the proposed model for both I and B frames.

7.2.1 Proposed ROI-based scheme

Fig. 7.1 shows the proposed ROI-based rate control scheme. The first step consists in

detecting the faces in the scene and generating automatically a binary ROI map per frame,

which will be given as input to our controller. The target bit rates allocated for the GOP

and the current frame are obtained using the reference algorithm described in [54] and

improved in [66].

Then, the frame budget is divided into two parts according to a fixed factor K which

is the desired ratio between the bit rate of the ROI and the bit rate of the rest of the

frame (non-ROI). At the CTU level, the binary ROI map is used to make a separate bit

allocation for CTUs of different regions. The R-λ model is then applied for each CTU

using the allocated bit budget for the corresponding region (ROI or non-ROI). Once the
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CTU is encoded, the model parameters of the corresponding region are updated, and the

next CTU is processed in a similar way.

Figure 7.1: ROI-based rate control scheme for HEVC

In the first implementation of the controller (in HM.10), the described process is only

used for B-frames of different hierarchical levels. Then, it was adapted to HM.13 and

introduced in both I-frames and B-frames, considering some differences in CTUs’ weights

computing and model parameters update.

7.2.2 Main features of the proposed ROI-based controller

Region bit allocation for inter-frames

We introduce the region bit allocation at two levels; at frame level to initialize a target

amount of bits for each region, and at CTU level to make independent bit allocation of

CTUs of different regions. At frame level, the positive constant K is selected. It represents

the desired ratio between the ROI and non-ROI bit rates:

Rr = K ×Rn (7.6)

where the subscript r denotes the ROI and n the non-ROI. We assume that the current

number of allocated bits per frameTp is the sum of the number of bits of the two regions,
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Tr for the ROI and Tn for the non-ROI:

Tp = Tr + Tn (7.7)

Tn = Rn ×M × Pn (7.8)

where M is the total number of pixels of the frame and Pn the area of non-ROI. From

Equations (7.6), (7.7) and (7.8), the non-ROI bit rate Rn is computed as follows:

Rn =
Tp

M (1 + Pr (K − 1))
(7.9)

At CTU level, the bit allocation for B-frames depends on the number of bits allocated

per region and on the weights of CTUs of the same region. For CTU of index i of the ROI,

the allocated bits are:

Tr(i) =
Tr − T ′r∑
j∈Ir wr(j)

wr(i) (7.10)

where T ′r is the effective number of bits of already encoded CTUs of the ROI, Ir is the

set of indexes of ROI CTU that have not yet been coded, and wr(i) is the weight of the

current CTU of the ROI computed referring to Equation (1.7). The same process is applied

independently to CTUs of the rest of the frame (non-ROI). In fact, if T is the effective

number of bits used to code the current CTU, the following test is performed; if the encoded

CTU is in the ROI, then Tr = Tr − T else Tn = Tn − T .

Region independent rate control models

For B-frames, once the rate of each CTU is found, the QP is computed using the R-λ

model. Our proposal separates the models of the different regions. Consequently, the

model parameters of CTUs from the ROI r are independent from the ones of CTUs of the

non-ROI n. In fact, we have two models; in ROI, using the effective number of bits per

pixel Rr(i) of each unit of index i ∈ Ir ,

λr(i) = αrRr(i)
βr (7.11)

and for CTUs from the non-ROI (of index j ∈ In), using the effective number of bits per

pixel Rn(i),

λn(j) = αnRn(j)βn (7.12)

The model parameters are then updated separately. For the ROI, the parameters αr

and βr are updated referring to the original rate control algorithm [54], as follows:

λ′r = αrR
′βr
r (7.13)

α′r = αr + 0.1(lnλr − lnλ′r)αr (7.14)
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β′r = βr + 0.05(lnλr − lnλ′r) lnR′r, (7.15)

where α′, β′ and λ′ are the updated values of α, β and λ. In Equation (7.13) and Equation

(7.15), R′r is the effective number of bits per pixel after encoding the unit. The same

update process is used for the CTUs of the non-ROI.

QP and λ variation

The last modification compared to the reference algorithm consists in considering new

clipping ranges for λ and QP, at CTU level. As we try to make independent QP computing

for each region, the QP of the current CTU depends on the QP of the last CTU of the same

region and the QP of the current frame. We allow a larger QP range than in the reference

algorithm, to accommodate differences in quality between the ROI and the non-ROI. We

define ∆QPp > 2 and ∆QPu > 1 that guarantees

QPp −∆QPp ≤ QPu ≤ QPp + ∆QPp (7.16)

QPu′ −∆QPu ≤ QPu ≤ QPu′ + ∆QPu (7.17)

where QPu, QPp and QPu′ are respectively the QPs of the current CTU, the current

picture and the previously encoded CTU of the same region. It is also possible to consider

different clipping ranges for CTUs of different regions and use asymmetric clipping.

7.2.3 Extended version of the proposed ROI-based controller

Modifications have been introduced to our initial approach taking into consideration

the evolution of the controller in HEVC test model 13 (HM.13). There are two main

modifications in the new proposal: ROI bit allocation for inter coded frames uses a novel

complexity metric and ROI bit allocation for intra coded frames at CTU level is introduced.

Region bit allocation for inter-frames

In the new version of the controller, the weight of a CTU is computed by Equation (4.28).

Thus, in our updated ROI-based controller the weight of a CTU from the ROI of index i is

expressed as follows,

wr(i) = N

(
λPic

αr

)βr
(7.18)

where αr and βr are the R-λ model parameters for CTUs of the ROI and λPic is the current

picture λ. This weight is then used to compute an initial target allocated bit rate Tr(i):

Tr(i) =
Tr wr(i)∑
j∈Ir wr(j)

(7.19)

The target allocated bits for a CTU T̃r(i) takes into account Tr(i), the allocated budget
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for the rest of CTUs of the same region, the effective number of bits of already encoded

units of the ROI T ′r and a smoothing window W fixed at 4 in our simulations:

T̃r(i) = Tr(i)−

(∑
j∈Ir
j≥i

Tr(j)− (Tr − T ′r)
)

W
+ 0.5 (7.20)

The number of bits per pixel for a CTU of the ROI is then:

Rr(i) =
T̃r(i)

N
(7.21)

Region bit allocation for intra-frames

At frame level, the refinement of the initial number of bits is done referring to Equation

(4.21) then the K factor is considered to make ROI based budget repartition as represented

in Equation (7.20) and compute Tr and Tn. At CTU level, the weight of a unit is its cost

and is calculated by deriving the SATD as descibed by Equations (4.31) and (4.32). This

weight is used to compute an initial target allocated bits Tr(i) as in Equation (7.19). Then,

the number of bits left to encode the ith CTU T̃r(i) is defined as:

T̃r(i) = (Tr − T ′r) +

(
(Tr − T ′r)−

∑
j∈Ir
j≥i

Tr(j)

)
(Lr − i)

W
(7.22)

Finally, the number of bits per pixel for an intra CTU of the ROI is:

Rr(i) =
T̃r(i) wI(i)

N
∑

j∈Ir
j≥i

wI(j)
(7.23)

7.3 Experimental results of R-λ ROI-based rate control

7.3.1 Experimental setting

First, we implemented the URQ ROI-based model described in Section 7.1 in HM.9 [97].

Second, we implemented the proposed rate control scheme proposed in Section 7.2 on

HM.10 available on [98] and described in [99]. Then, we introduced the extended version on

HM.13 encoder presented in [100] and available on [69] by taking into account the evolution

of the controller. We evaluated the obtained results of each ROI-based rate control method.

Then, we make comparative tests to evaluate the performance of the proposed methods.

Test conditions

To compute a binary map as represented in Fig. 7.2, we used face detection method

described in Section 6.1. We introduce in HEVC software the Viola and Jones object
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detection algorithm [89].

(a) Johnny (ROI represents
13%)

(b) Kristen&Sara (ROI repres-
ents 14%)

(c) FourPeople (ROI represents
10%)

Figure 7.2: Test sequences and ROI maps

Since videoconferencing applications require typically low coding delay, all pictures

were coded in display order. Three different configurations have been used to test the

first and the second ROI-based controller: All-B, All-I and an hybrid configuration that

considers GOPs of B-frames and introduces an intra picture each second. In the first

and the third algorithms (HM.10 and HM.9), I-frame bit allocation at CTU level has

not been yet introduced, so, all the frames were considered as B-frames except the first

one (I-frame), while, for the extended version of our code in HM.13, we tested all the

configurations. We tested an all intra configuration to evaluate our algorithm in I-frames

and a low delay configuration where all the frames are coded as B-pictures to evaluate

the ROI-based algorithm in inter pictures. The CTU size is equal to 64x64 and different

bit allocation approaches at frame level are tested. So, if the frame rate is equal to 60

frame per second, the intra period is then equal to 60. Here we use low-delay hierarchical

prediction structures with groups of four frames (BBBB coding structure) and a CTU size

equal to 64x64.

Three HD 720p sequences from class E have been tested: “Johnny”, “Kristen&Sara”,

“FourPeople” [68]. As we can see in Fig. 7.2, the selected test sequences have typical

videoconferencing content and different characteristics, like number of faces and ROI size.

We used different bit rates, budget partitioning per-region and QP ranges to evaluate the

performance of our approach.

Implementation and performed tests

The introduced modifications have been done mainly in rate control class of the reference

softwares HM.9 [97], HM.10 [98] and HM.13 [69]. A reference test “Ref” is performed using

the rate control algorithm described in [54] and improved in [65]. While evaluating the
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URQ model the reference used is described in [64]. These first tests give us the reference

performance: the ratio between ROI bit rate and non-ROI bit rate K, the bit budget used

for encoding each region, the PSNR and the structural similarity (SSIM) index [14] of each

region that goes from 0 to 100. Second, we activate all modified functions: we introduce a

new bit repartitioning between regions by fixing a factor K and a large QP margin. Then

we perform an evaluation test of our method that we note “New”.

7.3.2 Performance of ROI-based controller in HM.10

Table 7.1 summarizes the results of the performed test at 128kbps and 256kbps. Both equal

and hierarchical bit allocations are tested. The table shows that introducing a K factor for

bit repartitioning between regions does not impair the rate-distortion performance. We can

increase the effective ratio comparing to the reference by keeping an output bit rate close

to the assigned value. Moreover, the overall PSNR is practically the same as the reference

encoder.

Equal bit allocation
Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR(dB) ∆SSIM

Ref New Ref New Ref New Ref New ROI non-
ROI

ROI non-
ROI

Johnny 128.01 127.89 36.48 36.04 92.76 92.07 5.82 10.41 0.76 -0.40 0.60 -0.90
256.01 255.80 39.17 38.72 94.96 94.53 6.11 9.89 0.53 -0.46 0.30 -0.55

Kristen
&Sara

128.04 128.02 33.96 33.74 92.20 91.94 3.35 5.10 0.70 -0.77 0.69 -0.43

256.08 256.06 37.04 36.75 94.50 94.33 3.25 4.67 0.61 -0.68 0.43 -0.27
Four
People

128.05 128.06 31.47 31.28 88.26 88.03 4.41 6.67 0.61 -0.33 1.22 -0.42

256.07 256.06 34.48 34.27 92.28 92.09 4.33 6.16 0.61 -0.35 0.87 -0.33

Hierarchical bit allocation
Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR(dB) ∆SSIM

Ref New Ref New Ref New Ref New ROI non-
ROI

ROI non-
ROI

Johnny 128.96 127.73 37.15 36.64 93.46 92.74 5.47 9.27 0.65 -0.38 0.45 -0.91
256.01 255.84 39.48 39.20 95.21 94.91 5.95 9.62 0.66 -0.34 0.37 -0.41

Kristen
&Sara

128.19 128.11 34.40 34.21 92.66 92.46 2.89 4.51 0.73 -0.85 0.63 -0.34

256.32 256.23 37.36 37.18 94.77 94.66 3.00 4.43 0.62 -0.53 0.44 -0.21
Four
People

128.01 129.05 31.75 31.56 88.80 88.54 4.30 7.06 0.70 -0.34 1.23 -0.45

256.05 257.70 34.94 34.59 92.73 92.51 4.35 6.33 0.72 -0.40 0.89 -0.36

Table 7.1: Control accuracy comparison of the reference and the proposed controller for inter frames
using HM.10

Now we examine the quality of ROI and non-ROI for different ratios K. In Table 7.1,

∆PSNR ROI is the difference in quality of the ROI using the proposed controller and the

reference one and ∆SSIM ROI is the difference in similarity of the ROI using the proposed

controller and the reference one (and the same for non-ROI). We notice that the overall

quality of the ROIs is improved using different configurations but also different target rates.

The global gain in the ROI goes from 0.5 to 0.7dB in terms of PSNR and from 0.3 to 1.2

in terms of SSIM. However, as we reduce the number of allocated bits in the non-ROI, its

quality decreases.
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Figure 7.3: ∆PSNR ROI and non-ROI (dB) for the last 25 GOPs of FourPeople at 128kbps and
using hierarchical bit allocation

In Fig. 7.3, we plot ∆PSNR of the ROI and ∆PSNR of the non-ROI per GOP. Overall,

the bigger is K the better is the global quality of the ROI in the sequence and the lower

is the PSNR of the non-ROI. The quality of the ROI is improved in all the GOPs (and

frames) while the quality of the non-ROI is slightly decreased. The curves show that for

each region the difference in quality between the proposed scheme and the reference RC

[54] is more important when K is bigger. This means that our method leads to allocate

more bits to the ROI by improving its quality and respecting the bit rate constraint.

(a) Reference scheme K=3.77 (b) Modified scheme K=5.89

Figure 7.4: Subjective comparison for ”Johnny” coded at 100kbps

Experimental results show both advantages in objective (PSNR and SSIM) and sub-

jective evaluation for ROI as represented in figure 7.4. We notice that using our proposed

scheme we can distinguish more details in the face and less artifacts. However, our ratio can

not reach relatively big values. The non-ROI does not represent noticeable deterioration,

which means that the background requires a minimum coding budget to keep the balance.
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7.3.3 Performance of ROI-based controller in HM.13

Intra picture ROI-based algorithm performance

Using an all intra configuration of the encoder, we tested the performance of the proposed

algorithm. Three different rate points are used per sequence (640kbps, 1280kbps and

2560kbps). The budget constraint is respected and the global quality is not altered as

shown in Table 7.2.

Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR ∆SSIM
Ref New Ref New Ref New Ref New ROI

(dB)
ROI

Johnny 640.00 639.99 28.78 28.90 83.61 83.70 2.60 2.90 0.35 0.94
1280.04 1279.97 31.77 31.84 87.08 86.88 2.62 3.04 0.44 0.91
2560.05 2559.93 34.84 35.00 91.44 91.00 2.41 2.88 0.74 1.04

Kristen
&Sara

649.46 649.26 26.46 26.47 83.04 83.08 1.48 1.49 0.01 0.01

1280.02 1280.07 29.31 29.44 87.27 87.17 1.21 1.31 0.40 0.65
2560.02 2560.02 32.72 32.80 91.38 91.15 1.23 1.57 0.30 0.29

Four
People

666.27 665.42 25.17 25.17 74.17 74.17 1.57 1.57 0.00 0.00

1280.01 1279.88 27.10 27.09 78.99 78.80 1.40 1.32 -0.17 -0.35
2559.98 2559.74 29.75 29.83 85.16 85.10 1.31 1.23 -0.19 -0.42

Table 7.2: Control accuracy comparison of the reference and the proposed controller for intra frames
using HM.13

In intra case, units from the ROI are coded from other units of the non-ROI. Con-

sequently, our novel bit repartition affects the non-ROI and so the ROI. the more affected

units of the ROI are CTUs at the edge of the region of interest. Thus, the algorithm is

working well when we have one big ROI. However, when we have multiple and small ROIs,

important CTUs are more affected by the quality decrease of the non-ROI.

Inter picture ROI-based algorithm performance

A low delay B configuration is used to evaluate the performance of ROI-based allocation

for B-frames. We first evaluate the global performance as done in HM.10. Results are

given at 128kbps and 256kbps to compare the performance with the first version of the

controller and equal, hierarchical and adaptive bit allocations are tested.

From Table 7.3, we can deduce the same conclusions as in the previous version of our

controller implemented in HM.10: the bit budget constraint is respected and ROI quality

is improved proportionally to the repartition factor K. Here again, we notice that, using

different bit allocation approaches at frame level, the bigger is the K the better is the

quality of the ROI and the lower is the quality of the non-ROI. Making a differential

bit repartitioning improves the quality of the ROI. The effective K can be increased by

introducing higher repartitioning factor and larger QP ranges.
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Equal bit allocation
Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR(dB) ∆SSIM

Ref New Ref New Ref New Ref New ROI non-
ROI

ROI non-
ROI

Johnny 128.00 127.91 37.01 36.56 93.17 92.54 7.14 11.45 0.53 -0.69 0.39 -0.80
256.01 255.82 39.49 39.01 95.20 94.75 6.57 11.01 0.53 -0.70 0.31 -0.56

Kristen
&Sara

128.03 128.02 34.89 34.58 92.77 92.44 3.59 5.45 0.91 -0.59 0.81 -0.53

256.05 256.01 37.75 37.46 94.84 94.60 3.15 5.21 0.89 -0.54 0.62 -0.38
Four
People

128.03 128.03 32.36 32.13 90.07 89.83 4.71 7.51 0.84 -0.46 1.64 -0.48

256.07 256.03 35.15 34.87 93.13 92.89 4.17 6.96 1.03 -0.53 1.32 -0.44

Hierarchical bit allocation
Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR(dB) ∆SSIM

Ref New Ref New Ref New Ref New ROI non-
ROI

ROI non-
ROI

Johnny 128.01 127.94 37.36 36.88 93.60 92.91 6.99 10.33 0.56 -0.75 0.43 -0.87
256.01 256.32 39.74 39.26 95.40 94.98 6.94 10.72 0.55 -0.71 0.32 -0.54

Kristen
&Sara

128.09 128.10 35.13 34.89 93.30 92.75 3.29 4.99 0.92 -0.50 0.79 -0.47

256.10 256.08 37.91 37.65 95.01 94.80 3.19 4.92 0.92 -0.51 0.64 -0.35
Four
People

128.02 128.27 32.58 32.35 90.42 90.15 5.16 7.34 0.88 -0.45 1.69 -0.52

256.03 254.80 35.43 35.10 93.46 93.20 4.77 6.86 0.93 -0.55 1.14 -0.43

Adaptive bit allocation
Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR(dB) ∆SSIM

Ref New Ref New Ref New Ref New ROI non-
ROI

ROI non-
ROI

Johnny 128.00 127.87 37.48 37.00 93.74 93.05 6.53 9.93 0.54 -0.76 0.37 -0.86
256.00 255.41 39.84 39.35 95.48 95.07 6.86 10.59 0.55 -0.73 0.33 -0.53

Kristen
&Sara

128.05 128.09 35.21 34.96 93.14 92.84 3.19 4.87 0.94 -0.52 0.79 -0.48

256.07 256.03 37.95 37.71 95.06 94.87 3.19 4.89 0.93 -0.50 0.63 -0.33
Four
People

127.98 127.45 32.66 32.44 90.57 90.30 5.08 7.42 0.85 -0.43 1.47 -0.49

255.98 253.94 35.50 35.17 93.55 93.28 4.85 6.93 0.90 -0.54 1.04 -0.43

Table 7.3: Control accuracy comparison of the reference and the proposed controller for inter frames
using HM.13

At CTU level the proposed approach gives a new QP distribution. Fig. 7.5 represents

the ROI map of Johnny at CTU level, the QP partitioning at CTU level using HM.13

reference rate control algorithm and the QP partitioning when using our algorithm. The

encoding of the given result is done at 128kbps. Fig. 7.5(c) shows that smaller QP values

are assigned to Johnny’s face (QP = 30), while, the rest of the frame takes bigger QPs

that go from 34 to 38.

Proposed algorithm has shown improvement in ROI quality for both intra- and inter-

coded frames. Thus, next step consists in evaluating an hybrid configuration that considers

both I and B frames.



7.3. Experimental results of R-λ ROI-based rate control 107

(a) ROI map

(b) Reference RC

(c) Proposed RC

Figure 7.5: Comparison of QP repartition at CTU level of Johnny

ROI-based algorithm performance using hybrid configuration

For a videoconferencing systems a low delay configuration is the most appropriate as we have

the real time constraint. However, to reduce packet loss effect and limit error propagation,
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an intra frame is introduced every second. Consequently, the final configuration of our

encoder is the hybrid one. It handles a GOP of four B-frames coded in display order and

an I-frame after 60 inter pictures. We choose the adaptive bit allocation at frame level

as it gives the best RD performance and we tested four different rate points per sequence

(128kbps, 256kbps, 512kbps and 1500kbps).

From Table 7.4, we conclude that the controller global performance is maintained and

the quality of the ROI is improved. At low bit rate, we can gain up to 2dB in the ROI.

Moreover, SSIM of the ROI is improved considerably when picture SSIM is smaller than

95. We can reach an improvement in the ROI quality of 3.18 dB for example. As SSIM is

saturated when it gets close to 100, ∆SSIM is reduced when the picture index is higher

than 95. We still in that case have noticeable improvement in ROI quality as the SSIM

index goes from 0.20 to 0.92.

Seq Bit rate (kbps) PSNR Y (dB) SSIM K ∆PSNR (dB) ∆SSIM
Ref New Ref New Ref New Ref New ROI non-

ROI
ROI non-

ROI
Johnny 128.00 128.02 35.95 36.11 92.59 92.25 5.50 9.06 1.59 -0.38 1.50 -0.56

256.00 255.90 39.00 38.90 94.97 94.74 6.60 9.97 0.69 -0.33 0.30 -0.31
512.01 511.34 41.09 40.84 96.16 96.86 6.58 10.71 0.48 -0.41 0.20 -0.24
1500.01 1492.79 42.81 42.62 96.96 96.86 4.88 11.70 0.68 -0.35 0.26 -0.16

Kristen
&Sara

129.86 128.18 33.21 33.72 91.76 91.93 2.71 4.30 1.91 -0.07 1.83 -0.11

256.07 256.10 36.87 36.91 94.38 94.37 3.03 4.72 1.48 -0.34 1.06 -0.21
512.07 512.00 39.76 39.60 95.97 95.89 3.03 4.76 0.95 -0.41 0.54 -0.18
1500.10 1496.62 42.61 42.42 97.13 97.07 2.43 4.97 0.75 -0.39 0.34 -0.13

Four
People

129.57 128.05 30.52 31.15 88.60 88.54 5.30 7.43 2.03 -0.22 3.18 -0.47

256.00 255.48 34.29 34.26 92.64 92.33 5.02 7.10 1.46 -0.39 1.86 -0.59
511.97 509.40 37.58 37.30 95.18 94.90 4.55 6.65 1.02 -0.55 0.92 -0.43
1499.97 1484.96 41.46 41.18 97.05 96.93 3.87 6.70 0.78 -0.47 0.37 -0.18

Table 7.4: Control accuracy comparison of the reference and the proposed controller in HM.13

Experimental results show advantages in objective PSNR, in SSIM that predicts

subjective opinion with high precision and visual evaluation for ROI as represented in

Fig. 7.6, Fig. 7.7, Fig. 7.8, Fig. 7.9, Fig. 7.10 and Fig. 7.11. We notice that for both intra

and inter pictures and using our proposed scheme we can distinguish more details in the

face and less artifacts, while the non-ROI does not present noticeable deterioration in

visual quality as in videoconferencing system the background is not changing in most of

the cases.

Locally the SSIM index has been evaluated and an SSIM map has been computed for

each frame to prove quality improvement in the ROI. Fig. 7.12, Fig. 7.13 and Fig. 7.14

represent the SSIM index over the whole frames (SSIM values goes from 0 for high distortion

to 1 for high similarity). We notice that considering the proposed method SSIM index in

the faces is closer to 1 (white faces). It shows an improvement in the details of the faces of

the three tested sequences.
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(a) Reference RC

(b) Proposed RC

Figure 7.6: Subjective comparison of Johnny coded at 128kbps for an I frame
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(a) Reference RC

(b) Proposed RC

Figure 7.7: Subjective comparison of Johnny coded at 128kbps for a B frame
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(a) Reference RC

(b) Proposed RC

Figure 7.8: Subjective comparison of Kristen&Sara coded at 128kbps for an I frame
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(a) Reference RC

(b) Proposed RC

Figure 7.9: Subjective comparison of Kristen&Sara coded at 128kbps for a B frame
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(a) Reference RC

(b) Proposed RC

Figure 7.10: Subjective comparison of FourPeople coded at 128kbps for an I frame
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(a) Reference RC

(b) Proposed RC

Figure 7.11: Subjective comparison of FourPeople coded at 128kbps for a B frame
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(a) Original frame

(b) SSIM maps

Figure 7.12: SSIM map comparison Johnny
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(a) Original Frame

(b) SSIM maps

Figure 7.13: SSIM map comparison Kristen&Sara
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(a) Original Frame

(b) SSIM maps

Figure 7.14: SSIM map comparison FourPeople
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7.3.4 Comparison with quadratic model

The last experiment consists in comparing the performance of our algorithm to a stat-

of-the-art approach. The used reference method is a ROI-based RC algorithm initially

proposed for H.264/AVC and based on the quadratic model which we adapt to HEVC as

described in Section 7.1. The performed tests in this section use a low delay configuration

with all frames are coded in bidirectional mode (B-frames). We tested the three sequences

at four different bit rates (128kbps, 256kbps, 512kbps and 1500kbps).

We notice from Fig.7.15 that the URQ ROI-based method implemented in HM.9

respects the budget constraint at both low bit rate and high bit rate.

(a) Johnny (b) Kristen&Sara

(c) FourPeople

Figure 7.15: RD performance of R-λ ROI-based algorithm and URQ ROI-based model compared
to URQ reference RC algorithm

RD performance evaluation shows an important improvement in rate control perform-

ances. Introducing a K factor improves bits partitioning in different regions of the frame,

which leads to an improvement in the quality of the whole sequence. The obtained RD

curve is better than the reference URQ model and comparable to the one given by our

R-λ algorithm implemented in HM.13. Moreover, Table 7.5 shows that URQ ROI-based

method improves the quality of the ROI while using higher bit ratio K.

Fig. 7.16 shows bit distribution over GOP at low and high bit rates for Johnny sequence.

We conclude that the proposed R-λ method gives a smoother bit allocation compared to



7.3. Experimental results of R-λ ROI-based rate control 119

Seq K Bit rate
(kbps)

PSNR
Y (dB)

SSIM
ROI

PSNR
ROI
(dB)

SSIM PSNR
non-
ROI
(dB)

SSIM
non-
ROI

Johnny Ref 3.93 130.48 36.94 93.66 32.60 94.18 38.28 93.59
New 7.90 129.19 37.54 93.59 35.25 95.21 38.04 93.39

8.54 129.08 37.56 93.59 35.45 95.25 38.00 93.38
Kristen
&Sara

Ref 2.13 130.92 35.10 93.10 31.74 93.75 36.04 93.02

New 4.26 130.73 35.54 93.24 34.02 94.35 35.85 93.10
4.59 130.65 35.60 93.30 34.29 94.49 35.87 93.15

Four
People

Ref 4.31 129.87 33.25 91.38 29.92 82.86 33.94 92.46

New 6.08 129.69 33.30 91.38 30.68 84.30 33.80 92.28
6.42 129.94 33.28 91.36 30.87 84.67 33.73 92.21

Table 7.5: Rate control results using URQ model at 128kbps

the URQ methods at low bit rate with no unsettled bit picks, while at high bit rate the

three algorithms gives comparable distribution over GOPs. The same conclusion is valid

for all tested sequences.

(a) 128 kbps

(b) 1.5 Mbps

Figure 7.16: Comparison of bit fluctuation per GOP of R-λ and URQ ROI-based models at low
and high bit rate for sequence Johnny
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Fig. 7.17 represents RD performance of all evaluated methods. It gives the overall ROI

PSNR for each bit rate. For the three tested sequences, the reference URQ controller has

the worst RD performances. Once introducing the ROI, both URQ-based method and

R-λ-based method show better RD performance compared with the reference.

(a) Johnny

(b) Kristen&Sara

(c) FourPeople

Figure 7.17: Comparative ROI-based RD performance of different methods
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Finally, in the URQ scheme, ROI-based bit allocation is only performed for referenced

frames of type B. Our algorithm (based on R-λ method) makes ROI-based allocation for

all frame types, which leads to a better QP repartition over regions in the full sequence.

With our algorithm we can reach higher ratios K, as shown in Fig. 7.17.

7.4 Conclusion

We have presented in this chapter ROI-based rate control methods for HEVC. In Section 7.1,

a method taken from the literature has been studied adapted to HEVC and implemented in

HM.9. This first algorithm that uses a ROI-based quadratic R-Q model for QP computing

in referenced inter pictures has shown improvement in ROI quality comparing to the

reference quadratic URQ controller. Then, in Section 7.2, we present our ROI-based rate

control method. Novelty consists in using the R-λ model for computing QPs of CTUs of

different regions, performing rate control in both intra- and inter-coded frames and making

independent bit allocation between ROI and non-ROI. The proposed algorithm has been

initially introduced in HM.10 then improved in a second version implemented in HM.13. It

shows important gain in ROI quality while respecting the global bit rate constraint.

Section 7.3 of this chapter has detailed obtained results of different encoder configur-

ations. We conclude that activating ROI-based rate control helps improve ROI quality

considering differentiated bit allocation between regions and independent R-Q models.

Moreover, compared to the quadratic R-Q model, the R-λ model offers higher quality

increase in ROIs and better global RD performance. This work has been published in [95]

and [96]. However, this approach presents some limitations. In fact, improving the ROI

quality while respecting the total budget decreases the non-ROI quality. Knowing that all

CTUs are dependent, in some cases the decrease of non-ROI quality may affect the quality

of the ROI. Furthermore, at transport layer a loss of any unit of the frame leads to the loss

of the whole frame and dependent ones. Consequently, in next chapter we introduce tiles

to perform rate control over independently decodable regions and reduce error propagation.
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Chapter 8

Tiling for ROI-based Rate control
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Tiling is a new feature introduced in the HEVC standard to ensure picture partitioning

into independently decodable rectangular regions. As described in Chapter 2, tiles increase

the capability of parallel processing and facilitate encoding based on the region-of-interest.

Thus, tiles can be an interesting tool to separate ROIs from non-ROIs when encoding the

frame and can ensure independent rate control over regions.

This chapter describes a new approach in ROI-based rate control that takes into account

tiling for region partitioning to ensure an improvement of ROI encoding and transmission

over the network. The aim is to reduce error propagation inside a frame and limit it to the

affected region. The first section presents the main features of the proposed method at

both video coding layer (VCL) and network abstraction layer (NAL). In the second section,

performed tests are detailed and obtained results are analyzed. We end with a conclusion

and an evaluation of the proposed tile- and ROI-based rate control algorithm.
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8.1 Tile- and ROI-based controller for HEVC

8.1.1 Possible rate control configurations

Depending on the controller requirements, we can propose different partitioning configura-

tions based on two features: ROIs and tiles. When ROI detection is activated, ROI-based

bit allocation is performed as represented in Fig.7.1. In addition, dividing the frame in

tiles gives independently decodable regions. Fig.8.1 represents possible configurations for

“Kristen&Sara” sequence encoding.

(a) No ROI nor tile (Stream 1) (b) No ROI but tile (Stream 2)

(c) ROI but no tile (Stream 3) (d) ROI and tile (Stream 4)

Figure 8.1: Possible rate control configurations

In our work, we studied four possible configurations:

• “No ROI nor tile”: Configuration (a) is used when no ROI-based processing is needed.

The frame is divided into CTUs to perform bit allocation per unit. We used this

configuration when testing the reference controller of HEVC represented in Fig.4.1.

• “No ROI but tile”: Configuration (b) is also used when no ROI-based processing is

needed. Tiles delimit independently decodable regions for parallel processing. In this

case tiles are not considered when performing rate control.

• “ROI but no tile”: To perform ROI-based rate control it is important to delimit the

region of interest as represented in (c). More bits are allocated for the ROI and
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independent R-Q models are used for QP computing. This configuration has been

used in all performed tests of the previous chapter (Chapter 7). As tiling is not

considered all units are dependently decodable.

• “ROI and tile”: Considering both ROIs and tiles to perform bit allocation is the

novelty introduced by our work and described in this chapter (used configuration

is (d)). In fact, ROI detection is used to perform differentiated bit allocation over

regions at VCL layer and transmit independently decodable tiles of different regions.

8.1.2 Rate control at Video coding layer

At the VCL layer, we proposed a tile partition of the different sequences of class E

(“Johnny”, “Kristen&Sara”, “FourPeople”) to identify faces as in the example represented

in Fig.8.2. Tiles containing faces are classified as ROIs. The tested sequences has different

characteristics for example one tile is lying within the ROI for “Johnny”, two tiles for

“Kristen&Sara” and four tiles for “FourPeople”.

(a) Johnny (9 tiles) (b) Kristen&Sara (15 tiles)

(c) FourPeople (24 tiles)

Figure 8.2: Tile partitioning of tested sequences

The structure of the proposed HEVC controller is represented in Fig.7.1. As explained in

the previous chapter, we introduce a new level for region bit allocation and QP computing.

At this level called“region level”, the number of bits allocated per frame is allocated between
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the two regions, considering a factor K as defined in equation (7.6). These bit budgets of

the ROI and non-ROI are used independently to compute the number of encoding bits of

CTUs of each region. Two independent R-λ models are then used for ROI and non-ROI.

Thus, the allocated bits per CTU is used as input to the RD model of the corresponding

region, to assign a QP per unit.

The novelty in the current work is not only independent rate allocation but also

independent transmission and decoding of the ROI and the non-ROI which overcome the

limitation of our ROI-based rate control algorithm. The ROI covers separate tiles from the

non-ROI. Consequently, they are not affected by the quality decrease of the non-ROI when

performing ROI-based bit allocation.

8.1.3 Adaptation at Network abstraction layer

Fig.8.3 represents the number of allocated bits per tile (15 tiles in the given example), while

encoding “Kristen&Sara” sequence at low (a) and high (b) bit rates using the reference

controller and tiling (“No ROI but tile” configuration represented in Fig.8.1(b)).

(a) 128 kbps

(b) 1.5 Mbps

Figure 8.3: Number of encoding bits per tile (“Kristen&Sara” sequence) at low and high bit rates
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Each line corresponds to an encoded frame (600 frames per sequence). The figure

shows that the number of bits to encode different tiles (for both I and B frames) is not

homogeneous, as tiles have different sizes in the proposed partitioning. Moreover, the

number of bits per tile may exceed the MTU size of the network.

By matching tiles and slice segments it is possible to divide each tile into data streams

to fit the MTU size (12000 bits for IP network and 800 bits for wireless environment) [101].

Thus, tiles of the ROI and tiles of the rest of the frame (non-ROI) would be encapsulated

in different NAL units. The video stream would contain two kinds of NALs to transmit in

the channel. If we consider the partitioning presented in Fig.8.2(b) and if the number of

bits allocated per tile does not exceed the MTU size, tile number 6 and tile number 7 will

be encapsulated in separate NALs as illustrated in Fig.8.4.

Figure 8.4: NAL unit formats

8.1.4 Packet loss and error concealment algorithm

Channel characteristics

For modeling the error characteristics of a wireless channel between two stations, a simple

and widely used model is adopted, the Gilbert-Elliott model [1]. It considers two Markov

chain with a good (G) and a bad (B) state, see Fig.8.5. Every state has a specific constant

bit error rate, eG in the good state and eB in the bad one. The bit error in general depends

on environmental conditions. Furthermore, the state transitions are determined by the

values 1 − p(G→B) (for the probability that the next state is the be good state given that

the current state is also good) and 1− p(B→G) (for the probability that the next state is

the be bad state given that the current state is also bad).

Figure 8.5: A two state Markov channel
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Each NAL unit is then packetized and transmitted over Gilbert-Elliott channels. For

our experiments we use parameters represented in Table 8.1.

1− p(G→B) 1− p(B→G) eG eB
0.995 0.96 10−4 10−3

Table 8.1: Gilbert-Elliot model parameters [1]

Error propagation and concealment

Two algorithms are proposed and compared to show the effectiveness of ROI- and tile-based

controller:

• No ROI nor tile based coding (Configuration 8.1(a)): If one packet is lost, all the

following packets of the same frame are lost and all dependent frames are not decoded.

Considering temporal dependencies between successive images, error is propagated

till the next intra frame. At the decoder side, each corrupted frame is replaced with

the last correctly decoded frame.

• ROI- and tile-based coding (Configuration 8.1(d)): Since packets of the same tile are

dependent, we decide that if one packet of a tile is lost, all packets of the same tile

are considered as lost. Considering temporal dependencies between tiles in the same

spatial position, error is propagated inside tiles of the same position till the next

intra frame. Consequently, at the decoder side, each corrupted or lost tile is replaced

with the tile of the last decoded frame and at the same spatial position. This is a

simple way to conceal errors in corrupted streams.

8.2 Experimental results

The proposed algorithm has been implemented in HM.13. We tested class E sequences

(“Johnny”, “Kristen&Sara”, “FourPeople”) with the resolution of 1280 ×720 pixel, a frame

rate equal to 60 fps and 600 frames per sequence [68]. We used a low delay configuration

as the algorithm is designed for videoconferencing systems. We used open GOPs of size 4

and an intra period equal to 60 to limit temporal error propagation.

This section evaluates the impact of introduced features; ROI-based bit allocation and

tiling. First, we study the impact of the K factor in the RD performance the encoder and

visual quality of the ROI. Then, we analysis the effect of tiling in the visual quality of the

sequence. We end up with a study of the performance of the proposed ROI- and tile-based

rate control algorithm in a lossy network. To do so four streams are encoded using the

four proposed configurations and their appropriate controllers:

• Stream 1 is the reference stream. It is obtained when using R-λ reference controller

where no ROI neither tile are considered (Fig. 8.1(a)).
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• Stream 2 is obtained when the R-λ reference controller is used without considering

ROIs for bit allocation. However, tile partitioning is performed for independently

decodable regions (Fig. 8.1(b)).

• Stream 3 is obtained with ROI-based R-λ controller proposed in the previous chapter.

Tiling is not activated. All regions are dependently decodable (Fig. 8.1(c)).

• Stream 4 is the final stream. It represents the result of the proposed ROI- and

tile-based R-λ controller (Fig. 8.1(d)).

8.2.1 Impact of the K factor in the RD performance

First test consists in evaluating the impact of the K factor in the RD performance when

tiling option is activated by comparing visual quality and bit cost of stream 2 and stream 4.

Table 8.2 gives the RD performances for the three tested sequences and at low (128 kbps)

and high (1.5 Mbps) bit rates, at various K factors, together with the improvement in the

ROI quality. One can also remark that the budget limit is respected with good accuracy.

Moreover, for repartitioning factors K bigger than the reference (gray lines represent

stream 2), the quality of the ROI is improved. At low bit rates, we can have an increase in

ROI peak signal-to-noise ratio (PSNR) up to 1.5 dB.

To conclude, introducing a bit allocation factor K helps improve budget partitioning

between tiled regions. Depending on the encoded sequence and the tiling, ROI- and

tile-based RC algorithm (Stream 4) gives equivalent or improved quality of ROI comparing

to tile-based reference controller (Stream 2).

“Johnny” sequence at 128 kbps “Johnny” sequence at 1.5 Mbps
K Bitrate PSNR ∆PSNR K Bitrate PSNR ∆PSNR

(kbps) (dB) ROI (dB) (kbps) (dB) ROI (dB)
0.85 128.01 35.35 0.81 1500.03 42.78
1.11 128.02 35.59 0.87 1.67 1498.22 42.72 0.07
1.33 127.98 35.66 1.37 2.02 1493.17 42.68 0.04
1.41 127.95 35.68 1.52 2.25 1487.54 42.64 0.01

“Kristen&Sara” sequence at 128 kbps “Kristen&Sara” sequence at 1.5 Mbps
K Bitrate PSNR ∆PSNR K Bitrate PSNR ∆PSNR

(kbps) (dB) ROI (dB) (kbps) (dB) ROI (dB)
0.95 130.59 32.38 0.92 1500.27 42.58
1.16 129.56 32.58 0.60 1.66 1499.67 42.50 0.17
1.37 129.00 32.65 0.97 1.89 1498.42 42.46 0.19
1.47 128.77 32.68 1.00 1.99 1496.83 42.43 0.21

“FourPeople” sequence at 128 kbps “FourPeople” sequence at 1.5 Mbps
K Bitrate PSNR ∆PSNR K Bitrate PSNR ∆PSNR

(kbps) (dB) ROI (dB) (kbps) (dB) ROI (dB)
2.05 136.09 28.85 2.07 1499.96 41.31
2.40 138.38 29.02 0.43 2.78 1499.68 41.22 0.15
2.83 130.95 29.11 0.93 3.24 1497.48 41.19 0.16
3.06 129.47 29.27 1.25 3.46 1493.06 41.15 0.12

Table 8.2: Global performance at low and high bit rates
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8.2.2 Impact of the K factor in visual quality of ROI

In addition to the improvement in RD performance of the encoder, subjective quality

increases. The proposed ROI- and tile-based controller provides an improvement in ROI

quality, both in objective metrics and based on subjective quality evaluation as illustrated

in Fig. 8.6. The example shows less block artifacts in the faces of stream 4 (a) than the

reference stream 2 (b). The facial expression is clearer and we can see better details .

(a) Reference RC (Stream 2)

(b) ROI- and tile-based RC (Stream 4)

Figure 8.6: Comparison of subjective quality of “Kristen&Sara” sequence encoded at 256 kbps
(Frame 593)
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8.2.3 Analysis of tiling effect in visual quality

To evaluate the importance of tiles in reducing error propagation and limiting sequence

quality decrease, we test 100 channel patterns and compare sequence quality for different

loss percentage. Fig. 8.9 shows obtained sequence quality after decoding corrupted stream 1

(encoded with reference) and stream 4 (encoded with proposed). We notice that using the

reference approach error is propagated and we can loose up to 30% of the data at 128 kbps

and 50 % at 1.5 Mbps. However, using proposed approach tiling reduces error propagation.

Thus, loss percentage does not exceed 5% at both low and high bit rates. Consequently,

decoded sequence quality will be much more lower using the reference controller.

(a) 128 kbps

(b) 1.5 Mbps

Figure 8.7: PSNR of decoded corrupted stream for 100 tested loss patterns at low and high bit
rates of “Johnny” sequence



132 8. Tiling for ROI-based Rate control

(a) 128 kbps

(b) 1.5 Mbps

Figure 8.8: PSNR of decoded corrupted stream for 100 tested loss patterns at low and high bit
rates of “Kristen&Sara” sequence

Form these results we can also estimate the cost of tiles. In fact, if no loss is noticed

(loss percentage is equal to 0%), decoded stream 4 may have lower PSNR than decoded

stream 1. Fig. 8.7 ,Fig. 8.8 and Fig. 8.9 show that at low bit rate the impact of tiling

is more important that at high bit rate. For example for “Johnny” we have a decrease in

quality of 0.3 dB at 128 kbps, while no quality decrease at high bit rate. Moreover, the

PSNR of “FourPeople” decreases of 1dB because of the chosen tiling map. A different tile

partitioning could be relevant at low bit rate. In fact, when we have many small tiles,

the partitioning become costly mainly at low bit rate. It affects our bit partitioning over

regions. Consequently, the proposed tiling is interesting mainly at high bit rate. Thus, we

will be presenting results at 1.5 Mbps in next subsections.
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(a) 128 kbps

(b) 1.5 Mbps

Figure 8.9: PSNR of decoded corrupted stream for 100 tested loss patterns at low and high bit
rates of “FourPeople” sequence

8.2.4 ROI quality after decoding corrupted streams

Fig.8.10 shows PSNR ROI of decoded stream 1 and stream 4 for 100 tested channel patterns.

We notice that introducing a bit allocation factor K between regions over independent

tiles helps improve budget partitioning between tiled regions and protect ROIs from error

propagation. Depending on the encoded sequence and the tiling, ROI- and tile-based RC

algorithm (Stream 4) gives equivalent (i.g. “FourPeople”) or improved quality of ROI (i.g.

“Johnny” and “Kristen&Sara”) comparing to the reference scheme (Stream 1).

Moreover, when evaluating ROI quality frame by frame, we notice that for the reference

scheme if a packet is lost from the non-ROI, all ROIs of depending frames are affected.

On the contrary, our proposed scheme protects the ROI from non-ROI packet loss and
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(a) Johnny (b) Kristen&Sara

(c) FourPeople

Figure 8.10: Comparison of ROI quality of decoded Stream 1 and Stream 4 at 1.5 Mbps for 100
tested patterns

corresponding tiles are not corrupted. This is visible in Fig.8.11, in particular we notice

the error propagation affecting ROIs in the reference scheme.

Figure 8.11: PSNR ROI of “Kristen&Sara” coded at 1.5 Mbps

Examples of the decoded class-E sequences available via the following link: http:

http://cagnazzo.wp.mines-telecom.fr/en/?p=1092/
http://cagnazzo.wp.mines-telecom.fr/en/?p=1092/
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//cagnazzo.wp.mines-telecom.fr/en/?p=1092/ show the superiority of the proposed

scheme with respect to the reference.

8.2.5 Impact of pattern loss in quality of decoded sequence

Finally, for different loss patterns the quality of the full sequence and the ROIs is much

better using our method, even if some packets of the ROI are lost. “Kristen&Sara” example

at 1.5 Mbps is given in Table 8.3. It shows that ROI and full frame quality is better using

our algorithm than the reference encoder. Considering, three different patterns, we notice

up to 4 dB in quality increase of the ROI. 100 patterns have been tested and results are

given in Fig.8.10. Furthermore, it is possible to improve our architecture by proposing

an improved tile partitioning, mainly for “FourPeople” sequence and by optimizing tile

encapsulation in packets.

Number of Reference Proposed
lost packets PSNR (dB) PSNR ROI (dB) PSNR (dB) PSNR ROI (dB)
4 37.34 35.75 39.21 39.30
5 36.89 35.44 39.50 39.03
7 35.91 33.81 37.86 37.13

Table 8.3: Comparison of “Kristen&Sara” decoding quality at 1.5 Mbps using different loss patterns

8.3 Conclusion

In this chapter, a new architecture for an ROI- and tile-based rate control scheme has

been proposed to enhance the quality of independently decodable regions lying within an

ROI, under poor channel conditions. The proposed scheme has been described in Section

8.1. The implementation has been done in HM.13 and the controller performance has been

evaluated at video coding layer and network layer (Section 8.2).

The proposed architecture achieves better visual quality in ROIs thanks to independent

rate allocation between regions, encoding and transmission of regions. At VCL layer

the QP of LCUs of the same region are independently computed from the rest of the

frame, the regions are coded in separate tiles and then transmitted in different NAL units.

Consequently, at NAL layer, transmission errors do not affect both regions, they are limited

to the affected tile and depending tiles at the same spatial position. However, it is important

to optimize tile partitioning to reduce their cost. As a conclusion, this scheme allows a

better representation of the ROI while respecting the global rate constraint.

http://cagnazzo.wp.mines-telecom.fr/en/?p=1092/
http://cagnazzo.wp.mines-telecom.fr/en/?p=1092/
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Conclusions & future work

Thesis objectives

The purpose of this thesis was to introduce region-of-interest-based concept in High

Efficiency Video Coding and develop accurate rate control methods aimed to increase the

coding efficiency of regions with different importance levels. Two research phases have

structured this thesis.

In the first phase, content-based rate distortion models have been proposed to perform a

better distribution of quantization parameters over units of different characteristics. Theses

models are thus more aimed to select optimal quantization parameter per CTU to improve

rate distortion performance of the encoder.

The second phase was more dedicated to region-based coding. In fact, ROI-based rate

control schemes have been developed. The implemented and tested methods during this

second phase ensure independent processing of regions. Modifications are introduced in

HEVC systems at two layers: video coding layer and network abstraction layer. On the first

hand, rate control is performed over independently decodable regions. On the second had,

different regions are transmitted in separate streams. The developed methods represent a

complete ROI-based video coding approach for videoconferencing systems.

Summary

Rate Distrotion modeling for HEVC

Our first contributions in this thesis were based on rate distortion modeling. The first

step was to study existing RD models initially used for QP computing at frame level by

adapting them to CTU level. The proposed exponential model takes into account spatial

dependencies inside a CTU. Thus, it give a good representation of the relationship between

the rate and the distortion for independently decodable CTUs.

In a second work on rate distortion modeling, we derived content based RD models

available for both intra- and inter-coded frames and at low and high bit rates. The idea is

to fit the transform coefficient distribution using and uses its parameter to RD modeling.

A study of transform distribution at CTU level helps us choose the probabilistic model to
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use. Coefficients’ distribution of intra-coded units was fitting using a GG while coefficients’

distribution of inter-coded units was fitted using a BGG. Once the fitting is performed

and the PDF parameter are derived, we used them to model the rate and the distortion

and find the optimal QP distribution at CTU level that minimizes the RD cost of the

frame. The obtained map of QPs is then used to encode the sequence. Experiments have

shown a better RD performance comparing to the R-λ model (up to -88% in bit rate gain).

Moreover, the proposed model is able to reach low bit rates that the existing R-λ model is

not able to respect. As a conclusion, the

ROI-based rate control for HEVC

To perform ROI-based rate control, we first the performs of existing controller in HEVC

test model. We find that the R-λ model give better RD performance than the quadratic

one. Thus, the our work focused on adapting the R-λ algorithm to perform ROI-based

bit allocation and QP computing. The proposed method aims at making differentiated

bit allocation over different regions and compute QP parameters at CTU level after a

classification of units in their corresponding region. Our ROI-based rate control for HEVC

is proposed in HM.10 and improved in HM.13. The scheme takes into account Inter and

Intra pictures and has been introduced at frame and CTU levels to ensure independent

budget repartitioning in different regions.

To evaluate this model, we first compared it with the reference control without con-

sidering ROIs. We notice that the budget constraint is respect and an improvement in

ROI quality (up to 2dB in terms of PSNR for hybrid configuration). Second, to evaluate

performance of the proposed algorithm with state-of-the-art methods, we developed the

ROI-based quadratic rate control algorithm. Comparative tests have shown that our

algorithm give smoother bit partitioning and better RD performance.

The proposed algorithm achieves better visual quality in ROIs (Gain up to 2dB), while

respecting the global bit rate constraint. This scheme is useful for videoconferencing

systems to allow a better representation of the face expressions. However, as all the units

(ROI and non-ROI) are in a single Tile (All units are dependent). The intra prediction

may use a spacial components from the non-ROI to code a unit of the ROI. Thus in intra

mode, the new bit repartition affects both non-ROI and ROI.

Consequently, we develop a new approach that introduces tiling in the ROI-based rate

control scheme. This contribution show an important improvement in ROI quality as it

opers in both VCL and NAL layes. Tiles help performing bit allocation over independently

decodable regions so ROI and non-ROI can not affect each other and are transmitted in

separate streams. This proposition help us limit error propagation across regions and have

an improvement in the quality of the ROI.
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Perspectives for future work

At the time of finalizing this manuscript, several interesting perspectives can be proposed

to further continue the work done in this thesis. The primary points concern rate distortion

modeling approaches, but some short-term improvements to the ROI-based rate control

method can be proposed as well.

Rate distortion modeling improvement

• Rate distortion models based on spatial and temporal dependencies: The rate control

problem is to decide how to distribute a bit budget to the units and so the frames of

the GOP. The difficulty lies in the fact that CTUs are jointly coded in an hybrid video

encoder based on motion estimation and compensation. In this context, exhaustive

search of the coding parameters is very inefficient, because the distortion of a coded

unit does not depend only of the affected rate, but also the distortion of all previously

coded units in of the same frame or in previous frames used as reference. The idea is to

model spatial and temporal dependencies between units by a recursive parametric RD

model. This allows us to formulate allocation rate per CTU as a convex optimization

problem that can effectively be solved with very recent algorithms.

• Rate distortion models for transform optimization: Transform is an important feature

in HEVC standard as it reduces signal correlations in the spatial domain. As decried

in the second chapter, only DCT and DST are introduced in HEVC. However, using

rate distortion models it is possible to find the transform that optimized the encoder

RD performance.

ROI-based rate control algorithm improvement

• Appropriate ROI detection methods and tile partitioning: Face detection is not part

of our researches but it is an important step of our work and the first functionality

of our scheme. Viola and Jones approach limits itself to a limited set of features and

classifiers to reduce computation. Consequently, in some frames we may have false

detection. Moreover, when tiling the frames, it is important to choose the appropriate

repartition that does not cost a lot and can properly protect the ROI. To conclude,

improvements to the detection and tiling steps would lead to a better processing of

the ROI.

• ROI-based coding with error protection in tiles: The remainder of the thesis work

will be essentially concentrated on improving the current ROI-based video coding

algorithm by protecting the tiles of the ROI from errors by introducing a priority

index in the ROI stream. Consequently, we reduce ROI packet loss and protect the

transmission of the region-of-interest.
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• ROI-based rate control for HEVC extensions: The scope of the JCT-VC group was

extended to continue working on extensions to the HEVC standard. While the

first version of HEVC is sufficient to cover a wide range of applications, needs for

enhancing the standard in several ways have been identified. With the evolution of 3D

technologies and devices, the standardization of extensions in 3d area is continuing.

Consequently, future work may focus on rate control for multi-view content. Our

algorithm can be adapted to 3D-HEVC, for more attractive applications. Furthermore,

working on range extensions for embedded-bitstream scalability could be interesting.

SHEVC can perfom at that moment ROI-based scalable video coding that takes into

account new features of the extended version of HEVC.
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