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ABSTRACT: The spatio-temporal interpolation of large geophysical datasets has historically been

addressed by Optimal Interpolation (OI) and more sophisticated equation-based or data-driven

Data Assimilation (DA) techniques. Recent advances in the deep learning community enables

to address the interpolation problem through a neural architecture incorporating a variational

data assimilation framework. The reconstruction task is seen as a joint learning problem of

the prior involved in the variational inner cost, seen here as a projection operator of the state,

and the gradient-based minimization of the latter. Both prior models and solvers are stated

as neural networks with automatic differentiation which can be trained by minimizing a loss

function, typically the mean squared error between some ground truth and the reconstruction.

Such a strategy turns out to be very efficient to improve the mean state estimation, but still needs

complementary developments to quantify its related uncertainty. In this work, we use the theory

of Stochastic Partial Differential Equations (SPDE) and Gaussian Processes (GP) to estimate both

space-and time-varying covariance of the state. Our neural variational scheme is modified to

embed an augmented state formulation with both state and SPDE parametrization to estimate. We

demonstrate the potential of the proposed framework on a spatio-temporal GP driven by diffusion-

based anisotropies and on realistic Sea Surface Height (SSH) datasets. We show how our solution

reaches the OI baseline in the Gaussian case. For nonlinear dynamics, as almost always stated

in DA, our solution outperforms OI, while allowing for fast and interpretable online parameter

estimation.
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1. Introduction30

Over the last decade, the emergence of large spatio-temporal datasets both coming from remote31

sensing satellites and equation-based numerical simulations has been noticed in Geosciences. As32

a consequence, the need for statistical methods able to handle both the size and the underlying33

physics of these data is growing. Data assimilation (DA) is the traditional framework used by34

geoscientists to merge these two types of information, data and model, by propagating information35

from observational data to areas with missing data. When no deterministic numerical outputs36

are available, the classic approach stems from the family of the so-called Optimal Interpolation37

(OI) techniques, also being at the core of the statistical DA methods (Asch et al. 2016). For the38

production of gridded geophysical maps, most of operational products either derived from OI39

and DA schemes allow us to estimate the mesoscale components of the targeted variables. In40

the specific case of Sea Surface Height (SSH) for instance, even if satellite altimetry provides41

capabilities to inform the mesoscale ocean geostrophic currents, the gridded product fails in42

merging observations and background model with consistent temporal and spatial resolutions able43

to retrieve fine mesoscale structures lower than 150-200 km at mid-latitudes, while they are key44

for general ocean circulation (Su et al. 2018). Then, recent efforts of the DA community have been45

made to counteract this lack in the gridded SSH products, amongst them the dynamical optimal46

interpolation (DOI) (Ubelmann et al. 2015), Multiscale Interpolation Ocean Science Topography47

(MIOST) (Ubelmann et al. 2021) or BFN-QG (Le Guillou et al. 2023).48

49

From another point of view, deep learning frameworks are currently knowing an intense50

period of scientific contributions to revisit statistical methods with neural network formulation.51

State-of-the-art methods leverage DL to better extract the information from the observations52

compared to the classical DA and OI approaches, in which fine-tuning of the DA scheme53

parametrizations (background and observation error covariances) demands itself some method-54

ological and computational effort, see e.g. Tandeo et al. (2020), all together with the popular55

Gaussian simplifications involved in most of DA operational schemes (Asch et al. 2016), though56

some approaches exist to alleviate the Gaussian assumptions in nonlinear geophysical problems,57

see e.g. Kurosawa and Poterjoy (2023). End-to-end learning architectures are also designed being58

backboned on DA schemes (Boudier et al. 2023; Rozet and Louppe 2023; Fablet et al. 2021), so59
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that they draw from the bayesian formalism to learn all the components of the DA procedure (prior60

model, observation operator, numerical solver, etc.) at once. Last, over the last few years, the61

successfull applications of generative models to geophysical datasets paves the way to combine62

DL together with UQ by efficient sampling strategies of the posterior distribution. Though, to our63

knowledge, no end-to-end-combination of DA, DL and UQ has yet been proposed.64

65

That is why in this work, we draw from preliminary neural schemes inspired by variational data66

assimilation, see e.g. (Fablet et al. 2021), to jointly learn the SPDE parametrization of a surrogate67

stochastic prior model of the evolution equation, together with the solver of the minimization68

problem. Because the parameters of the SPDE remain initially unknown, they are embedded in the69

optimization process using an augmented state formulation, commonly used in data assimilation,70

see e.g. (Ruiz et al. 2013). The solver is still based on an iterative residual scheme (Fablet et al.71

2021) to update the analysis state. Here, the analysis stands for the expectation of the state given the72

observations, together with the SPDE parametrization maximizing their likelihood given the true73

states used during the training. The SPDE equation can then be seen as a tangent linear model of the74

prior along the data assimilation window, from which we provide uncertainty quantification (UQ)75

throughout its precision matrix. Using such a stochastic prior entails the possibility of generating76

huge members in the posterior pdf, after conditioning of the prior samples by our neural variational77

scheme. Also, if the training dataset is large enough, the method provides an efficient way to78

estimate online the SPDE parametrization for any new sequence of input observations, without any79

additional inference to make. In the end, the key contributions of this work are four-fold:80

• We develop the explicit solver of the considered SPDE prior. It relies on the analytical81

expression for the SPDE-based precision matrix of any state trajectory, based on a finite-82

difference discretization of the grid covered by the tensors involved in our neural scheme;83

• We exploit this SPDE parametrization as surrogate prior model in the proposed variational84

formulation and leverage a trainable gradient-based solver to address jointly the interpolation85

of the state trajectory and the estimation of SPDE parameters from irregularly-sampled obser-86

vations. The end-to-end training of the solver targets both the expectation of the state given87

the observations, together with the SPDE parametrization maximizing its likelihood given the88

true states;89
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• The SPDE prior paves the way to uncertainty quantification through the sampling of the prior90

pdf and the conditioning by the neural gradient-based solver;91

• Two applications of this framework are provided: first, a GP driven by a spatio-temporal92

SPDE with spatially varying diffusion parameters is compared to the optimal solution; then93

a Sea Surface Height realistic dataset is used to demonstrate how the proposed framework is94

also relevant for non-gaussian and non-linear dynamics.95

To present these contributions, the paper is structured as follows. In Section 2, we provide96

a preliminary background on SPDE-based Optimal Interpolation, Data assimilation and Deep97

Learning for DA, that we aims to bridge together in this work. We also remind how UQ is usually98

handled in this different fields. In Section 3, we present how we extend neural solvers to embed99

SPDE prior parametrizations for UQ. Finally, Section 4 provides two applications of this framework100

in the Gaussian case and for realistic Sea Surface Height datasets.101

2. Background: Data Assimilation, Uncertainty Quantification and Machine Learning102

In this work, we target the reconstruction of a probabilistic spatio-temporal state sequence103

x = {x𝑘 (D)},x𝑘 ∈ R𝑚 given the partial and potentially noisy observational dataset y(Ω) =104

{y𝑘 (Ω𝑘 )},y𝑘 ∈ R𝑝𝑘 , where Ω = {Ω𝑘 } ⊂ D denotes the subdomain with observations and index105

𝑘 refers to time 𝑡𝑘 . To do so, we aim at bridging Data Assimilation (DA), Uncertainty Quantifi-106

cation (UQ) and deep learning-based (DL) methods, see Fig. 1 for a conceptual illustration of107

these connections, to propose SPDE-based extensions of the so-called 4DvarNet neural variational108

scheme (Fablet et al. 2021), as a generic interpolation and short-term forecasting tools. We provide109

here a brief presentation of these three literatures, focusing only on what is useful in our framework,110

with an additional description of how UQ is usually handled among these communities. For a111

more exhaustive review, Cheng et al. (2023) provides a detailed presentation of machine learning112

techniques with data assimilation and uncertainty quantification for dynamical systems.113

a. Optimal Interpolation (OI) and Data Assimilation (DA)114

(i) Classic formulations. As very basic details to ease the link with the other components of115

this work, we remind that when no dynamical model is available as a prior information, the116

5



covariance-based Optimal Interpolation, see e.g. (Chilès and Delfiner 2012), is given by:117

x★ = PxyP−1
yy y (1)

where Pxy and Pyy are covariance matrices coming from the covariance P̃ of the observation and118

state vector
[
y x

]T

:119

P̃ =


Pxx Pxy

PT
xy Pyy

 (2)

Broadly speaking, when the prior information is available, typically as high dimensional numerical120

models in geosciences, see e.g. Carrassi et al. (2018), two main categories of DA (Evensen 2009;121

Evensen et al. 2022) exists: variational and sequential methods. They both aims at minimizing122

some energy or functional involving an equation-based dynamical prior and an observation term.123

Drawing from the link established with Gaussian Processes, we can also consider the case of124

noisy observations and ease the link with data assimilation formalism, see Särkka and Hartikainen125

(2012); Särkka et al. (2013); Grigorievskiy et al. (2016). The state space model corresponding to126

the GP regression problem writes:127


x𝑡+𝑑𝑡 = M𝑡+𝑑𝑡x𝑡 +η𝑡

y𝑡 = H𝑡x𝑡 +ε𝑡
(3)

where η𝑡 is the m-dimensional noise process and the evolution equation is defined by the feedback128

linear operator matrix M𝑡+𝑑𝑡 . H𝑡 is the observation operator at time 𝑡 mapping the state space129

to the observation space and ε𝑡 the observational error with covariance matrix R𝑡 . Based on130

this time-dependent notations, we also consider global observation operator H with dimensions131

(𝐿× 𝑝𝑘 ) × (𝐿×𝑚) and global observational error covariance matrix R with dimensions (𝐿× 𝑝𝑘 ) ×132

(𝐿 × 𝑝𝑘 ) as block diagonal matrices whose each block respectively contains the time-dependent133

observation operator and observational error covariance matrix H𝑡 and R𝑡 .134

(ii) The Stochastic Partial Differential Equation (SPDE) approach in DA. The Optimal In-135

terpolation implies to factorize dense covariance matrices which is an issue when the size of136
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spatio-temporal datasets is large. Reduced rank approximations, see e.g. (Cressie and Wikle 2015)137

have already been investigated to tackle this specific problem. More recently, the use of sparse138

precision matrices has also been proposed by using tapering strategies (Furrer et al. 2006; Bolin139

and Wallin 2016) or by making use of the link seen by Lindgren et al. (2011) between Stochastic140

Partial Differential Equations (SPDE) and Gaussian Processes. For the latter, if the original link141

was made through the Poisson SPDE equation (Whittle 1953):142

(𝜅2−Δ)𝛼/2𝑋 = 𝜏𝑍 ; (4)

where Δ =
∑𝑑

𝑖=1
𝜕2

𝜕𝑠2
𝑖

denotes the Laplacian operator, 𝑍 is a standard Gaussian white noise, 𝜅 = 1/𝑎,143

𝑎 denotes the range of the GP𝑋 , 𝛼 = 𝜈 + 𝑑/2 and 𝜏 relates to the marginal variance of 𝑋 . It can144

be extended to more complex linear SPDE involving physical processes like advection or diffusion145

(Lindgren et al. 2011; Fuglstad et al. 2015a; Clarotto et al. 2022). The SPDE-based OI formulation146

uses precision matrix formalism, as the inverse of the covariance matrix Q= P̃−1 = (𝑑𝑥𝑑𝑦)/𝜏2 ·BTB,147

see Eq. (2) where B is the discretized version of the fractional differential operator (𝜅2 −Δ)𝛼/2,148

and 𝑑𝑥, 𝑑𝑦 are the spatial grid step sizes:149

x★ = −Q−1
xx Qxyy (5)

By construction, Q is sparse which means that we solve a system with sparse Cholesky of complexity150

O(𝑚3/2), while the general Cholesky algorithm is of complexityO(𝑚3). Thus, it opens new avenue151

to cope with massive observational datasets in geosciences while making use of the underlying152

physics of such processes. Let note that the so-called SPDE-based approach can also be used153

as a general spatio-temporal model, even if it is not physically motivated, since it provides a154

flexible way to handle local anisotropies of a large set of geophysical processes. It has known155

numerous applications in the past few years, see e.g. Sigrist et al. (2015); Fuglstad et al. (2015b).156

Though, when considering a spatio-temporal advection-diffusion SPDE, the parameters generally157

vary continuously across space and/or time making their estimation an additional problem to the158

original interpolation task. This estimation generally relies on off-line strategies (Fuglstad et al.159

2015b) embedded in hierarchical models, which can be another computational issue while the set160

of parameters estimated does not automatically transfer to a new dataset.161
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Regarding the transfer of SPDE formulation in the DA formalism, rewriting the covariance-based162

Eq. (2) in terms of precision matrix leads to:163

P̃ =


Pxx PxxHT

HPxx HPxxHT +R

 , Q̃ =


Qxx +HTR−1H −HTR−1

−R−1H R−1

 (6)

which gives an other version of Eq. (5):164

x★ =

(
Qxx +HTR−1H

)−1
HTR−1y (7)

whose posterior precision matrix of state x★ is Q(x|y) = Qxx +HTR−1H. This type of formulation165

makes the link between DA framework and SPDE-based formalism maing extensive use of precision166

matrix formulations.167

OI

DA

DL
UQdeterministic

stochastic

deterministic

stochastic

Diffusion model

 VAE

Model error

   Ensemble

LSTM

Residual Blocks

Forward model

 Adjoint model

  Optimisation

as ensemble of 
solver-conditioned 

SPDE trainable priors 

prior

solver

SPDE

UNet

Fig. 1: Combination of SPDE-based formalism, Data Assimilation and Deep Learning to address
the challenge of providing UQ in neural variational scheme. We decompose both DA and DL in
deterministic and stochastic components to understand how our approach relates to state-of-the-art
methods in these fields and how we provide UQ as ensemble of solver-conditioned trainable SPDE
priors.
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b. Machine and Deep Learning (ML/DL)168

From another point of view, deep learning frameworks are currently knowing an intense169

period of scientific contribution to revisit statistical methods with neural network formulation.170

The latter enables to use automatic differentiation embedded in the gradient-based optimization171

as a way of solving traditional inverse problems. Several approaches have been investigated,172

among others we can think of using DL as a substitute for one component of the DA procedure:173

surrogate dynamical models making extensive use of state-of-the-art neural networks such as174

LSTM (Nakamura et al. 2021), UNet (Doury et al. 2023) or Transformers (Tong et al. 2022),175

reduced order model to compute DA schemes in latent space or with super-resolution component176

(Brajard et al. 2021), modeling of model/observation error covariance (Cheng and Qiu 2022;177

Sacco et al. 2022, 2024). The other way rely on end-to-end learning of the entire DA system178

instead of using DL techniques to address one aspect of DA algorithm among its three main179

blocks: forward model and its error, observation operator and its error, and DA scheme (EnKF,180

4DVar, etc.). Such approaches may rely on applying state-of-the-art neural architectures to map181

observation data to the hidden state sequence, see e.g. UNet (Li et al. 2022) ,Transformers (Shi182

et al. 2022) or LSTM architectures (Martin et al. 2023). In particular, when the problem relates183

to space-time interpolation of partial and noisy observation of geophysical fields, DA-inspired184

neural schemes have been recently proposed, see e.g. Boudier et al. (2023); Rozet and Louppe185

(2023); Fablet et al. (2021). The latter specifically suggests a joint learning of prior models and186

solvers as an end-to-end data-driven variational data assimilation scheme. The so-called 4DVarNet187

neural scheme is introduced: it involves an implicit iterative gradient-based LSTM solver to188

minimize a variational cost, close to what is encountered in 4DVar data assimilation (Carrassi189

et al. 2018). In this variational cost, the dynamical prior is no longer equation-based but is stated190

as a trainable neural network learnt during the training process. Then, automatic differentiation191

is used to compute the gradient of the variational cost during the gradient-based iterations,192

instead of requiring the computation of complex and costly adjoint models (Asch et al. 2016).193

Drawing from this framework, a neural optimal interpolation scheme has also been proposed194

(Beauchamp et al. 2022) to reach OI performance with a linear scaling of the solution on the195

number of space-time variables, leading to a significant speed up in the computation of the solution.196

197
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c. Uncertainty Quantification198

(i) UQ in DA. Based on its bayesian formalism, Optimal Interpolation provides uncertainty199

through a posterior covariance matrix Px|y. Because the background x𝑏 is generally considered200

as stationary, this covariance matrix is mainly driven by the sampling of the observation, see201

e.g. (Zhen et al. 2020), which may not be realistic for dynamical systems. Relying on a similar202

framework, DA schemes provide the deterministic part of the evolution equation in Eq. 3 as203

numerical model outputs, and another probabilistic model has to be given for the distribution of204

the noise. In addition, under Gaussian assumption of the model likelihood, closed forms exist for205

the mean and standard deviation of the posterior prediction. Ensemble-based sequential schemes206

also provide a simple way to compute flow-dependant empirical posterior covariance (Song et al.207

2013) that counteracts the sampling issue used in OI or in most of variational schemes. Hybrid208

methods in DA (Asch et al. 2016) aims at combining both ensemble-based methods together with209

variational schemes to benefit from the assets of each methods.210

(ii) UQ for ML approaches. As stated above, DL for UQ generally relies on the estimation of the211

stochastic components of the DA scheme, namely the covariance model and/or observation errors.212

More recently, ML schemes aims at substituting the entire DA scheme, either with an explicit213

model of the posterior distribution, or by a sampling strategy of the latter. On the first approach,214

because the true posterior is both computationally and analytically intractable, a popular strategy is215

to estimate an approximate posterior distribution model with trainable parametrization that involves216

the minimization of the Kullback-Leibler Divergence between the two distributions, which is the217

similar that maximizing the Evidence Lower Bound (ELBO) (Huang et al. 2019) referred as218

variational inference (Zhang et al. 2021). More recently, generative models are extensively used219

to draw samples in the prior distribution. Among them, GANs (Goodfellow et al. 2014), VAEs220

(Kingma and Welling 2022), normalizing flows (Dinh et al. 2017) and diffusion models (Ho et al.221

2020) are the most popular. Once a way of sampling the prior is available, the posterior pdf can be222

obtained after conditioning through a classic DA scheme or method-related conditional generative223

models. This is the case in score-based data assimilation (Rozet and Louppe 2023) stated as224

diffusion models where Langevin iterative optimisation scheme can also embed the observation225

likelihood (Ho et al. 2020) to give a direct access to the posterior.226
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3. Neural variational schemes with SPDE priors227

We present here how we draw from the neural variational scheme of Fablet et al. (2021) to embed228

an augmented state with SPDE prior parametrization. We explain how to parametrize the SPDE229

with advection-diffusion schemes compliant with many geophysical processes, and how the latter230

leads to the use of sparse prior precision matrix, which is a key aspect in our use of SPDE priors231

for surrogate models in DA. A full overview of the neural solver is also presented together with232

its learning scheme. Last, a presentation of the UQ scheme to generate huge ensembles of the233

posterior pdf is given.234

a. Neural MAP solver235

Because data assimilation is fundamentally bayesian, most of the methods used to interpolate an236

observational dataset involve the use of a model prior x and the computation of the posterior E[x|y]237

given the observations. For the latter, the computational time might be expensive, even prohibitive,238

because it implies to solve linear systems with matrices in high dimensions. Recently, alternate239

solutions have been proposed to compute the posterior. Rather than using linear algebra, we can240

use a traditional variational data assimilation scheme (Asch et al. 2016) and the state analysis241

x★ = E[x|y] is obtained by solving the minimization problem:242

x★ = argmin
x
J (x)

where the variational cost function J (x) = JΦ(x,y,Ω) is generally the sum of an observation term243

and a regularization term involving an operator Φ which is typically a dynamical prior:244

JΦ(x,y,Ω) = J 𝑜 (x,y,Ω) + J 𝑏
Φ (x)

= | |H (x) −y| |2Ω +𝜆 | |x−Φ(x) | |
2 (8)

withH the observation operator and 𝜆 is a predefined or learnable scalar weight. This formulation245

of functional JΦ(x,y,Ω) directly relates to weakly constraint 4DVar, see e.g. Carrassi et al. (2018).246

When both priorΦ(x) = x𝑏 and observations y are assumed to be Gaussian with covariance matrices247
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B and R, JΦ(x,y,Ω) can be written:248

JΦ(x,y,Ω) = (Hx−y)T R−1 (Hx−y) +𝜆
(
x−x𝑏

)T
B−1

(
x−x𝑏

)
(9)

This is well known that equating to zero the gradient of this cost function at a single time 𝑡𝑘249

produces the exact same analysis formulation that the Kalman Filter analysis step or the BLUE250

(simple kriging) equations. For inverse problems with time-related processes, the minimization251

of functional JΦ usually involves iterative gradient-based algorithms and in particular request to252

consider the adjoint method in classic equation-based variational data assimilation schemes (Asch253

et al. 2016) where operator Φ identifies to a deterministic model x𝑘+1 =M(x𝑘 ):254

x(𝑖+1) = x(𝑖) −𝛼∇xJΦ(x(𝑖) ,y,Ω)

Fablet et al. (2020) shows that the so-called 4DVarNet scheme, an end-to-end deep learning255

framework can be built based on the above variational formulation where both prior operator256

Φ and Maximum a posterior (MAP) solver Γ, i.e. the operator solving for the gradient-based257

minimization of the variational cost, are neural networks. For the latter, following meta-learning258

schemes (Andrychowicz et al. 2016), a residual LSTM-based representation of operator Γ is259

considered where the 𝑖𝑡ℎ iterative update of the solver is given by:260


g(𝑖+1) = 𝐿𝑆𝑇𝑀

[
𝛼 · ∇xJΦ(x(𝑖) ,y,Ω), ℎ(𝑖), 𝑐(𝑖)

]
x(𝑖+1) = x(𝑖) −T

(
g(𝑖+1)

) (10)

with g(𝑖+1) is the LSTM output using as input gradient ∇xJΦ(x(𝑖) ,y,Ω), while ℎ(𝑖) and 𝑐(𝑖)261

denotes the internal states of the LSTM (Arras et al. 2019), 𝛼 is a normalization scalar and T a262

linear or convolutional mapping.263

264

In this formulation, the prior term Φ is jointly estimated so that the reconstruction fulfills at most265

the loss function L used during the training process. Typically, such a loss function may be stated266
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as:267

L(x,x★) = | |x−x★| |2 +Lregul, (11)

the mean squared error between the reconstruction and the ground truth, with additional regular-268

ization terms, depending on both the specific application and the targeted ouputs of the end-to-end269

neural scheme. This implies a bi-level optimization scheme in which we refer to Eqs. (8) and (11)270

resp. as the inner variational cost and the outer training loss function of 4DVarNet schemes. When271

replacing the outer training loss function by the same inner variational cost, such a scheme would272

lead to learn the exact 4DVar scheme, but with additional speeding up the optimization process.273

Instead, using this dual optimization enables to escape from the Gaussian and Linear hypotheses274

used in the 4DVar formalism so that the training of (11) acts as an additional constraint in the275

minimization process of (8).276

b. SPDE parametrization277

Though, the prior Φ is not easily interpretable: it acts as an encoding of the state x that helps in278

the gradient-based minimization process. In this work, we aim at bringing both explainability and279

stochasticity in the neural scheme by considering as a surrogate model for prior Φ an stochastic280

PDE (SPDE) instead of a given neural-based architecture. The continuous process associated with281

our state space describes the dynamical evolution of the spatio-temporal prior process 𝑋θ (s, 𝑡) as282

a spatio-temporal SPDE embedding the estimation of its parametrization θ, the latter controlling283

key physical behaviours such as local anisotropy, correlation range, and marginal variance:284

F𝑡,θ(𝑡){𝑋 (s, 𝑡)} = 𝜏(s, 𝑡)𝑍 (s, 𝑡) (12)

where operator F𝑡,θ(𝑡) is here considered as linear, then the solution of Eq. (12) is a spatio-temporal285

Gaussian Process (Lindgren et al. 2011). Regarding the right-hand side noise of the SPDE, it is286

assumed separable, i.e. 𝑍 (s, 𝑡) = 𝑍𝑡 (𝑡) ⊗ 𝑍𝑠 (s) with 𝑍𝑡 (𝑡) a temporal white noise. 𝑍𝑠 (s) can also287

be a spatial white noise or we may consider a colored noise to ensure more regularity on process288

𝑋 accross time.289

290
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Following a state space formalism, the discretization of the stochastic process 𝑋 (s, 𝑡) is a multi-291

variate gaussian vector x :292

x ∼ N
(
x𝑏,Q𝑏

θ

)
(13)

where x𝑏 is the deterministic mean of the state, typically the background, a coarse approximation293

of the field in stationary formulations, or the forecast in a dynamical data assimilation scheme.294

Q𝑏
θ

is the precision matrix (inverse of the covariance matrix) of the state sequence {x0, · · · ,x𝐿𝑑𝑡}.295

Because of the explicit link between linear stochastic PDEs and Gaussian Processes, we modify296

the variational formulation used in 4DVarNet schemes, see e.g. Beauchamp et al. (2023c), by297

rewriting the matrix formulation of the regularization prior term of Eq. 8 as:298

x★ = argminxJ (x,y, 𝛺) = argminx | |Hx−y| |2𝛺 +𝜆
[
x−x𝑏

]T Q𝑏
θ

[
x−x𝑏

]

When x𝑏 = 0 (for simplification) and when denoting L the square root of the precision matrix Q𝑏
θ
,299

the identification with 4DVarNet schemes is direct for Φ = (1−L). Indeed, | |x| |2Qθ
= xTLTLx =300

| |Lx| |2 = | |x−Φ · x| |2. In this derived formulation, it is clear that if the SPDE is known, it can301

be embedded in the inner variational cost used by the LSTM iterative solver to optimize the outer302

training loss function. Drawing from the usual neural variational framework, the trainable prior is303

now SPDE-based, and the parameters θ are embedded in the following augmented state formalism:304

x̃ =

[
x θ

]T
(14)

The latent parameter θ is potentially non stationary in both space and time and its size is directly305

related to the size of the data assimilation window 𝐿.306

When dealing with geophysical fields, a generic class of non-stationary models generated by307

stochastic PDEs shall introduce some diffusion and/or advection terms. They are respectively308

obtained by introducing a local advection operator m(s, 𝑡) ·∇ where m is a velocity field and a local309
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diffusion operator ∇ ·H(s, 𝑡) · ∇ where H acts as a two-dimensional diffusion tensor:310

𝜕𝑋

𝜕𝑡
+
{
κ2(s, 𝑡) +m(s, 𝑡) · ∇−∇ ·H(s, 𝑡) · ∇

}𝛼/2
𝑋 (s, 𝑡) = τ (s, 𝑡)𝑍 (s, 𝑡) (15)

This way of handling spatio-temporal non-stationarities in SPDE models has been first men-311

tioned in the original paper of Lindgren et al. (2011), but because of the challenge of estimating312

the full set of space-time parameters, no works have been published to our knowledge pushing313

this framework into its completeness. Though, some parametrization of purely spatial diffusion314

process (Fuglstad et al. 2015c) or stationary advection-dominated SPDE (Clarotto et al. 2022) has315

been successfully applied.316

Let stress that the advection-diffusion scheme is a good candidate for many geophysical datasets:317

this is the case in quasi-geostrophic approximation of Sea Surface Temperature (SST), see e.g.318

(Ubelmann et al. 2014), but also in the dispersion of atmospheric pollutants (Menut et al. 2021) for319

instance. Then, this framework provides a generic and convenient way to bring more explainability320

in terms of space-time covariances of dynamical processes.321

322

Such a model implies to estimate new parameters 𝜅(s, 𝑡), H2×2(s, 𝑡) and m2×1(s, 𝑡) =
[
m1 m2

]T

,323

all varying across space and time along the data assimilation window. In addition, 𝜅 needs to324

be continuous while m and H additionnaly requires to be continuously differentiable. Regarding325

the diffusion tensor, we draw from the spatial statistics literature, see e.g. (Fuglstad et al. 2015a),326

to introduce the scalars 𝛾(s, 𝑡), 𝛽(s, 𝑡), v1(s, t) and v2(s, t) as a generic decomposition of H(s, 𝑡)327

through the equation:328

H(s, 𝑡) =

H1,1 H1,2

H1,2 H2,2

 (s, 𝑡) = 𝛾(s, 𝑡)I2 + 𝛽(s, 𝑡)vvT

with vT =

[
v1(s) v2(s)

]
, which models the diffusion tensor as the sum of an isotropic and329

anisotropic effects, the latter being described by its amplitude and magnitude. This is a valid330

decomposition for any symmetric positive-definite 2× 2 matrix. This leads to the SPDE hyper-331

parametrization θ of size 𝑚× 𝐿×8 parameters (H1,2 = H2,1): it grows linearly with the potentially332
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high dimensional state space. In the end, the SPDE hyperparametrization states as:333

θ =

[
κ m H τ

]T

Fig.2 provide some specific examples to show how the modifications in the fractional differential334

operator leads to more complex spatio-temporal anisotropies. In this four SPDE parametrizations,335

𝜅 = 0.33, 𝜏 = 1 and 𝛼 = 4.336

(a) Isotropic model: 𝜕x
𝜕𝑡
+ (𝜅2 (s, 𝑡 ) − Δ)𝛼/2x(s, 𝑡 ) =

𝜏z(s, 𝑡 ) )

(b) Global anisotropy: 𝜕x
𝜕𝑡
+{

𝜅2 (s, 𝑡 ) − ∇ ·H∇
}𝛼/2 x(s, 𝑡 ) = 𝜏z(s, 𝑡 )

(c) Local anisotropy with diffusion:

𝜕x
𝜕𝑡
+
{
𝜅2 (s, 𝑡 ) − ∇ ·H(s)∇

}𝛼/2 x(s, 𝑡 ) = 𝜏z(s, 𝑡 )

(d) Local anisotropy + Global advection: 𝜕x
𝜕𝑡
+{

𝜅2 (s, 𝑡 ) +m · ∇ − ∇ ·H(s)∇
}𝛼/2 x(s, 𝑡 ) = 𝜏z(s, 𝑡 )

Fig. 2: For (a), (b), (c) and (d), one realization of the corresponding SPDE-driven GP at time
𝑡 = 10 (left panel), 𝑡 = 20 (middle panel) and covariance (right panel) with central point of domain
D = [0,1] × [0,1]

The space-time SPDE is discretized based on a numerical implicit Euler scheme:337

x𝑡+𝑑𝑡 −x𝑡
𝑑𝑡

+B𝑡+𝑑𝑡x𝑡+𝑑𝑡 =
𝜏
√
𝑑𝑡

z𝑡+𝑑𝑡

where x𝑡 and B𝑡 respectively denote the state space and the finite difference discretization of the338

fractional differential operator 𝜕
𝜕𝑡
+
{
κ2(s, 𝑡) +m(s, 𝑡) · ∇−∇ ·H(s, 𝑡)∇

}𝛼/2 at time 𝑡 = 0, · · · , 𝐿. The339

noise z𝑡+𝑑𝑡 is white in space and M𝑡+𝑑𝑡 = (I+ 𝑑𝑡B𝑡+𝑑𝑡)−1 denotes the matrix operator that emulates340

the dynamical evolution of state x from time 𝑡 to 𝑡+𝑑𝑡. In this case, T𝑡+𝑑𝑡 = 𝜏
√
𝑑𝑡M𝑡+𝑑𝑡 corresponds341

to the dynamical linear model regularized by the product of the noise variance with the square root342

of the SPDE time step. In case of a more general right-hand term with non-uniform regularization343
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variance {τ𝑡 , 𝑡 > 0}, and {z𝑡 , 𝑡 > 0} are independent realizations of a colored noised driven by a344

spatial isotropic SPDE:345

(𝜅2
𝑠 −Δ)𝛼𝑠/2𝑍𝑠 (s) =𝑊 (s) (16)

with𝑊 (s) a white noise with unit variance, the spatial FDM together with time Euler discretization346

leads to:347

x𝑡+𝑑𝑡 = M𝑡+𝑑𝑡x𝑡 + T̃𝑡+𝑑𝑡z𝑡+𝑑𝑡 (17)

where T̃𝑡+𝑑𝑡 =
√
𝑑𝑡M𝑡+𝑑𝑡τ𝑡L𝑠 and L𝑠 stands for the Cholesky decomposition of the discretized348

spatial precision matrix Q𝑠 introduced of the stochastic process 𝑍𝑠 introduced by Eq. (16). In349

the case of advection-dominated SPDEs, we involve state-of-the-art upwind schemes (UFDM)350

for stabilization of the numerical system, by letting the advective transport term, which is the351

dominating term, collect its information in the flow direction, i.e., upstream or upwind of the point352

in question. All the calculation details are given in Appendix 5.353

354

In a compact formulation, using centered finite differences on the diffusion term, and by denoting355

a1,𝑡,+
𝑖, 𝑗

= max(m1,𝑡
𝑖, 𝑗
,0), a1,𝑡,−

𝑖, 𝑗
= min(m1,𝑡

𝑖, 𝑗
,0), a2,𝑡,+

𝑖, 𝑗
= max(m2,𝑡

𝑖, 𝑗
,0), a2,𝑡,−

𝑖, 𝑗
= min(m2,𝑡

𝑖, 𝑗
,0), the resulting356

UFDM scheme is:357

x𝑡+1𝑖, 𝑗 = x𝑡𝑖, 𝑗 + 𝑑𝑡
[
𝜅𝑡𝑖, 𝑗x

𝑡
𝑖, 𝑗 +

(
a1,𝑡,+
𝑖, 𝑗

m1,𝑡,−
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗
m1,𝑡,+

𝑖, 𝑗

)
+
(
a2,𝑡,+
𝑖, 𝑗

m2,𝑡,−
𝑖, 𝑗
+a2,𝑡,−

𝑖, 𝑗
m2,𝑡,+

𝑖, 𝑗

)
+H1,1,𝑡

𝑖, 𝑗

x𝑡
𝑖+1, 𝑗 −2x𝑡

𝑖, 𝑗
+x𝑡

𝑖−1, 𝑗

𝑑𝑥2 +H2,2,𝑡
𝑖, 𝑗

x𝑡
𝑖, 𝑗+1−2x𝑡

𝑖, 𝑗
+x𝑡

𝑖, 𝑗−1

𝑑𝑦2

+H1,2,𝑡
𝑖, 𝑗

x𝑡
𝑖+1, 𝑗+1−x𝑡

𝑖+1, 𝑗−1−x𝑡
𝑖−1, 𝑗+1 +x𝑡

𝑖−1, 𝑗−1

2𝑑𝑥𝑑𝑦
+ 𝜏𝑡𝑖, 𝑗z𝑡+1𝑖, 𝑗

]
Starting from this numerical scheme, the modified 4DVarNet scheme requires the precision358

matrix Q𝑏
θ

of the state sequence {x0, · · · ,x𝐿𝑑𝑡}. Here, x0 ∼ N(0,P0) denotes the initial state and359

Q0 = P0
−1 is always taken as the precision matrix obtained after a given stabilization run, i.e.360

the evolution of the dynamical system over 𝑁 timesteps using as stationary parameters the initial361
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parametrization θ0 of the SPDE at time 𝑡 = 0, then we can rewrite :362

{x0, · · · ,x𝐿𝑑𝑡} = M𝐺


x0

z


with z = [z1, . . . ,z𝑡]T and363

M𝐺 =



I 0 0 0 0 . . . 0

M1 T1 0 0 0 . . . 0

M2M1 M2T1 T2 0 0 . . . 0

M3M2M1 M3M2T1 M3T2 T3 0 . . . 0
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . T𝐿


With the additional notation S𝑘 =T𝑘TT

𝑘
, see Eq. (17), the precision matrix Q𝑏 writes, see Appendix364

c for all the details:365

Q𝑏
θ =

1
𝑑𝑡



P−1
0 +Q̃𝑠,1 −Q̃𝑠,1M−1

1 0 0 0 ... 0

−(MT
1 )−1Q̃𝑠,1 MT

1 Q̃𝑠,1M1+Q̃𝑠,2 −Q̃𝑠,2M−1
2 0 0 ... 0

0 −(MT
2 )−1Q̃𝑠,2 MT

2 Q̃𝑠,2M2+Q̃𝑠,3 −Q̃𝑠,3M−1
3 0 ... 0

0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −(MT

𝐿−1)−1Q̃𝑠,𝐿−1 MT
𝐿
Q̃𝑠,𝐿−1M𝐿−1+Q̃𝑠,𝐿 −Q̃𝑠,𝐿M−1

𝐿

0
. . .

. . .
. . . 0 −(MT

𝐿)−1Q̃𝑠,𝐿 MT
𝐿
Q̃𝑠,𝐿M𝐿


(18)

where Q̃𝑠,𝑡 is the precision matrix of the colored noise weighted by the non-uniform regularization366

variance τ𝑡 . As clearly visible, the sparsity of Q𝑏
θ

is high, which is key in traditional SPDE-based367

GP inference, but also in our approach, see Section c.368

c. Neural solver with augmented state369

Overall, let denote by Ψθ,Γ (x̃(0) ,y,Ω) the output of the end-to-end learning scheme given the370

SPDE-based dynamical model with parameters θ and the neural residual architecture for the solver371
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Γ, see Fig. 3 and Algorithm 1, the initialization x̃(0) of augmented state x̃ and the observations y372

on domain Ω.373

y(Ω)

[
x(i)

Θ(i)

]

SPDE-based
precision

matrix Q(Θ)

Automatic
differenciation

∇xJΦ

Residual Unit (RU)
LSTM ro RNN cell

−

× IΩ ×IΩ̄+

[
x(i+1)

Θ(i+1)

]

δ(i) δ(i+1)

RURU
initial state[

x(0)

Θ(0)

]
RU+ + +

ResNet architecture
Gradient-based iteration

i = 0, · · · , NIterGrad

ΨΦ,Γ

([
x(0)

Θ(0)

]
,y,Ω

)

[
x(1)

Θ(1)

] [
x(k)

Θ(k)

]

Fig. 3: Sketch of the gradient-based algorithm. IΩ acts as a masking operator for any spatio-
temporal location not in Ω.
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Algorithm 1: Variational scheme with SPDE-based GP prior and implicit neural solver
Data:

x ∈ R𝑇×𝑚 = {x𝑘 }, 𝑘 = 1, · · · ,𝑇
yΩ = {y𝑘,Ω𝑘

}, 𝑘 = 1, · · · ,𝑇 : observations on domains Ω𝑘 ⊂ D
𝑁𝐼 : number of iterations

𝜂: gradient step

Init:

x̃★,(0)

List of procedures:

Train_Ψθ,Γ: end-to-end learning procedure with:

θ: parameter of the SPDE-based prior operator;

𝐺𝑟𝑎𝑑𝐿𝑆𝑇𝑀: residual NN-based representation of ∇xJ (x)
Γ: iterative gradient-based update operator:

𝑖 = 0

while 𝑖 < 𝑁𝐼 do

Q𝑏

θ★,(𝒊) = P−1
𝐺
(θ★,(𝒊)) = M−1

𝐺
(θ★,(𝒊))T



P−1
0 0 . . . 0

0 I . . . 0

...
. . .

. . .
...

0 0 . . . I


M−1

𝐺
(θ★,(𝒊))

x̃(𝑖+1)← x̃(𝑖) −𝜂×𝐺𝑟𝑎𝑑𝐿𝑆𝑇𝑀 (x̃(𝑖))
𝑁𝐼 ↗ ; 𝜂↘ ; 𝑖← 𝑖 +1

end

for 𝑖 ∈ 0, · · · , 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 do
𝜔
(𝑖+1)
Ψθ,Γ
← 𝜔

(𝑖)
Ψθ,Γ
− 𝑙𝑟 ×∇L(x,x★,(𝑖) ,θ(𝒊))

end

Result: x̃★← Ψθ,Γ (x̃(0) ,y,Ω)

374

Then, the joint learning for the weights 𝜔θ,Γ of the neural scheme given the SPDE formulation375

that is chosen (isotropic or not, non-stationary or not, etc.) and the architecture of operator Γ is376
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stated as the minimization of the mixed loss function L(x,x★,θ★), fully explained in Section d:377

𝜔★
Ψθ,Γ

= argmin
θ,Γ

[
L(x,x★,θ★)

]
s.t. x̃★ = Ψθ,Γ (x̃(0) ,y,Ω) (19)

(i) Initialization of the augmented state. The initial state x̃(0) should be filled with 0 in the non-378

observed part of domain D. Because there is obviously no observation of the SPDE parameters,379

we might guide the training process at the first iteration of the solver. This proved to be particularly380

helpful when dealing with realistic geophysical datasets for which the advection diffusion scheme381

is meaningful. In that case, see for instance Application 2 on real SSH datasets in Section 4, we382

used first and second-order derivatives of the initial state x(0) as initial parametrizations for the383

advection and diffusion process:384

m(0) = ©­«
𝜕x(0)
𝜕𝑥

𝜕x(0)
𝜕𝑦

ª®¬ , and v(0) = ©­«
𝜕2x(0)
𝜕𝑥2

𝜕2x(0)
𝜕𝑦2

ª®¬
κ(0) and τ (0) are both using absolute values of the normalized gradient norms, while 𝛽(0) and 𝛾 (0)385

are resp. set to 1 and 0. Because 𝜅, 𝜏 and 𝛾 are both strictly positive, see Section b, we use ReLu386

activation function on these three parameters to ensure their consistency.387

(ii) Computational aspects. The sparse formulation of the precision matrix Q𝑏
θ

is key in the388

memory-saving component of the algorithm because the latter relies on a set of 𝑁𝐼 gradient-based389

iterations, meaning that for a single interpolation task, the precision matrix Q𝑏
θ

is stored 𝑁𝐼 times390

along the computational graph with updated values of the SPDE parameters θ(𝑖) .391

d. Learning scheme392

(i) Training loss. The joint problem of estimating the best reconstruction and infering realistic393

SPDE parametrizations is difficult because according to the size and nature of the dataset, the394

spatio-temporal interpolation may not always benefit from knowing the exact set of true SPDE395

parameters. Indeed, if the degree of sparsity of the observation dataset is low, the reconstruction396

may be good despite a poor estimation of the covariance matrix. In the other way, if the degree397

of sparsity is high, much more difficult will be the estimation of the SPDE underlying parameters.398
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In this section, we benefit from the supervised configuration of neural variational scheme to train399

this joint problem. In this Section, we show how to embed the global precision matrix defined by400

Eq. 18 in our neural scheme and define which training loss is the more appropriate to handle the401

bi-level optimization scheme (of both the inner variational cost and the training loss).402

For the training process, we may consider different loss functions:403

• L1(x,x★) = | |x−x★| |2 is the L2-norm of the difference between state x and reconstruction x★404

• L2(x,θ★) = −|Q𝑏
θ★
| + xTQ𝑏

θ★
x is the negative log-likelihood of the true states given the esti-405

mated precision matrix Q𝑏
θ★

, thus ensuring consistency between the actual ground truth and406

the SPDE parameters.407

Using L1 will lead to satisfactory reconstructions without any constraints on the SPDE param-408

eters. The single use of L2 should lead to satisfactory results if the analytical solver, i.e. the409

inversion of the linear system or the gradient-based minimization of the variational cost, were used.410

But because the solver is trained, it also needs to be constrained by an appropriate loss function411

for the reconstruction, meaning L1. The best solution is then to create a mixed loss function,412

combination of L2 to estimate at best the SPDE parameters and optimize the prior model, and L1413

to satisfy the reconstruction criteria and optimize the solver.414

The log-determinant of the precision matrix log |Q𝑏
θ★
| is usually difficult to handle when comput-415

ing L2. Hopefully, based on the particular structure and the notations already introduced for the416

spatio-temporal precision matrix Q𝑏
θ

in Eq.(B2), it writes, see e.g. Clarotto et al. (2022):417

log |Q𝑏
θ★ | = log |P−1

0 | + log |S−1
1 | + · · · + log |S−1

𝐿 |

= log |P−1
0 | +

𝐿∑︁
𝑖=1

log
(
|L𝑖LT

𝑖 |
)

= log |P−1
0 | +2

𝐿∑︁
𝑖=1

𝑚∑︁
𝑗=1

logL𝑖 ( 𝑗 , 𝑗) (20)

where L𝑖 denotes here the Cholesky decomposition of S−1
𝑘

. In case of unsupervised learning, the418

same strategy may apply butL2 will be the likelihood of the observations given the estimated SPDE419

parameters since in this case, the true states would not be available during the training process.420
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(ii) Two-step learning schemes. In the initial version of 4DVarNet schemes, the output x★ provided421

by the neural formulation is deterministic and can be seen as the posterior mean of the state given422

the observations. Within this SPDE-based parametrization of the prior x𝑏, we also aim at providing423

the distribution of the prior as a GP process. Though, for realistic geophysical fields, even the prior424

cannot be considered as a zero-mean Gaussian field and some non-linearities have to be accounted425

for in its deterministic mean x𝑏. To solve for this specific case, we involve a 2-step learning process426

in which the deterministic mean x𝑏 is first estimated by a 4DVarNet scheme applied on coarser427

resolution than the actual observations. Second, the modified 4DVarNet scheme is involved to428

estimate jointly the posterior mean x★ together with the SPDE parametrization θ★ of the prior429

x ∼N
(
x𝑏,Q𝑏

θ★

)
. This two-steps procedure also enables to simplify the SPDE training scheme: the430

first guess is estimated based on the entire set of observations along the state sequence, while the431

SPDE parametrization is estimated only on a reduced window of length 5, centered on the targeted432

time of interest. This considerably reduces the size of precision matrix Q𝑏
θ
, making the algorithm433

scalable for any application. Fig. 4 shows a schematic overview of this two-steps learning scheme434

with illustrations coming from realistic Sea Surface Heigh datasets provided in Application 2,435

Section 4. In the end, this will lead to a stochastic version of the neural variational scheme based436

on the prior GP distribution in which we can sample ensemble members.437
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mapping

target

Step 1

15 iterations solver

to identify x𝑏

Step 2

5 iterations solver

to identify {x★,θ★}

Fig. 4: Two-step adaptation of the 4DVarNet scheme: on the top panel, an example of 4
nadirs+SWOT observations along the 9-day data assimilation window, see Application 2 in Section
4. The target reconstruction day is at the center of the DAW. On the bottom-left panel is displayed
the 15 iterations of the first 4DVarNet solver to retrieve the prior mean x𝑏: at the beginning, the
non-observed parts of the domain are filled with the global mean of the training dataset (0 when
normalized). On the bottom-right panel is displayed the 5 iterations of the modified 4DVarNet
solver with augmented state formalism to retrieve both x★ and θ★: at the beginning, the parameters
in θ are initialized with partial derivatives of x𝑏, see Section 3.c

(iii) Complementary PyTorch developments. Regarding the implementation of our model, we438

use Pytorch (Paszke et al. 2017) whose sparse linear algebra is not providing yet a sparse Cholesky439

algorithm and a sparse solver of linear systems, which is critical, especially when computing the440

likelihood L2 in the training loss function. As a consequence, despite the theoretical tools have441

been fully detailed in the previous sections, we had to implement new functionalities based on442

scipy sparse linear algebra (Virtanen et al. 2020) to store the precision matrices in an efficient443

way and compute the inner variational cost, see again Eq.8. In particular, we provide a PyTorch444

extension of sparse cholesky matrices, see Appendix c, based on the CHOLMOD supernodal445

Cholesky factorization (Chen et al. 2008) and draw from Seeger et al. (2019) to provide the446
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backward pass of the sparse Cholesky decomposition.447

448

e. UQ scheme449

Because the PDE is stochastic, it provides an easy way to generate a set of 𝑁 gaussian prior450

simulations x𝑖, 𝑖 = 1, · · · , 𝑁:451

x𝑖 = x𝑏 +L𝑏
θz𝑖

where L𝑏
θ

stands for the Cholesky decomposition of Q𝑏
θ

and z𝑖 is a white noise. From a geostatistical452

point of view, this can be seen as SPDE-based spatio-temporal non conditional simulations of state453

x, meaning that we produce surrogate simulations sharing the same physical properties than the true454

states. These simulations are then conditioned by the neural solver given the observations available455

y, see Fig. 5. To do so, we draw from traditional geostatistics to realize SPDE-based spatio-456

temporal non conditional simulations with a kriging-based conditioning (Wackernagel 2003).457

Except that we replace the kriging algorithm by our neural approach, which has to be seen as a458

generic interpolation tool here:459

x★𝑖 (s, 𝑡) = x★(s, 𝑡) + (x𝑖 (s, 𝑡) − x̂𝑖 (s, 𝑡)) (21)

where x★ denotes the neural-based interpolation, x𝑖 is one SPDE non-conditional simulation of the460

process x based on the parameters θ★ and x̂𝑖 is the neural reconstruction of this non-conditional461

simulation, using as pseudo-observations a subsampling of x𝑖 based on the actual data locations.462

Because E[x𝑖 − x̂𝑖] = 0, the resulting simulation is well conditioned by the observations at data463

locations.464

465

Running an ensemble of 𝑁 conditional simulations gives an approximation of the probability466

distribution function 𝑝x|y of state x★ = x|y = {x0 |y, · · · ,x𝐿 |y}. The ensemble mean x★
𝑖

will be x★ in467
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the limits of 𝑁→+∞:468

1
𝑁

∑︁
𝑖

x★𝑖 (s, 𝑡) −−−−−→
𝑁→+∞

x★(s, 𝑡)

Such an approach has already been successfully tested in Beauchamp et al. (2023a) when using469

analog operator strategy (Tandeo et al. 2015) to draw non-conditional simulation in the prior470

distribution.471

tk tk+1 tk+2 tk+3

yk

yk+1

yk+2

yk+3

xi
c,k

xi
c,k+1

xi
c,k+2

xi
c,k+3

Ex|y = x⋆, Px|y = XXT

tk−1

Fig. 5: Ensemble-based neural variational scheme with SPDE-based GP prior: the assimilation
is not sequential. The inversion scheme embeds the global precision matrix of the state sequence
{x0, · · · ,x𝐿𝑑𝑡} in the inner variational cost to minimize. Ensemble members are generated from the
Gaussian prior surrogate SPDE model, then conditioned by the neural solver so that the posterior
pdf is no longer Gaussian. The posterior pdf is empirically ensemble-based computed: Px|y = XXT

with X = (1/
√
𝑁 −1)

[
x★
𝑖
−x★

]

Let note that in this formulation, the idea is to run SPDE-based conditional simulation of the prior472

Matérn field 𝑋 (s, 𝑡). One ensemble member is obtained by running one space-time simulation,473

and two space-time neural reconstructions along the data assimilation window, then combined474

through Eq. (21). As a consequence, there is no sequential assimilation. Though, in the idea,475

such a conditioning is exactly similar to the one produced by EnKF simulations: in geostatistical476

terms we can interpret the forecast step of the EnKF as being unconditional simulations at477

time 𝑡 − 1 generating 𝑁 realizations of a non-stationary random function (SPDE-based here)478

for time 𝑡. Both prior mean and covariance matrix are then computed directly on this set of479

unconditional realizations, before the analysis step, i.e. their conditiong with the observations.480

The key advantage of the EnKF is its flow-dependency that propagates the uncertainties at each481
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time step with the evolution model, while the classic EnOI method generally used by geoscientists,482

see e.g. Asch et al. (2016); Counillon and Bertino (2009) replaces the flow-dependent EnKF483

error covariance matrix by a stationary matrix calculated from an historical ensemble. This is an484

important difference with our approach: while the neural architecture can be seen as a way to learn485

neural ensemble-based optimal interpolation models and solvers, our GP prior encoded by its486

SPDE precision matrix, built according to the FDM scheme with varying parameters over space487

and time, still allows for flow dependency, based on the learning of the SPDE parametrization488

given the input observations.489

490

Such a strategy also shares many similarities with the so-called conditional generative models491

in deep learning, see (Goodfellow et al. 2014; Kingma and Welling 2022; Dinh et al. 2017; Ho492

et al. 2020). Instead of using neural networks to learn how to simulate in the prior distribution,493

we use here a generic class of advection-diffusion SPDE which we see as a first step towards494

physically-sounded generatives models in learning-based methods. Fig. 6 displays an example495

of such non-conditional simulations for the term x− x𝑏, again for Application 2 on realistic SSH496

datasets over some energetic area along the Gulf Stream, see Section 4, i.e. the anomaly between497

the true state sequence and the deterministic mean x𝑏, retrieved from a preliminary 4DVarNet498

coarse resolution scheme. We can appreciate how both the generic class of SPDE selected here,499

together with the training of its parameter, leads to realistic anomalies with a clear increase of500

the variance along the main meander of the Gulf Stream, due to a correct distribution of SPDE501

parameter 𝜏★(s, 𝑡). For a detailed analysis of the parameter estimation, please report to Section 4.502
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Fig. 6: Top panel: an example of the Ground Truth anomaly between x−x𝑏; Bottom panel: five
simulations of the same anomaly based on the SPDE parametrization θ learned after training

4. Results503

In this Section, we provide two applications of this work:504

• The first example relies on a spatio-temporal GP simulation driven by a non-stationary spatial505

diffusion tensor. Because the dynamical process is linear, the best reconstruction is provided506
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by the optimal interpolation using the SPDE parameters used in the simulation to fill in the507

precision matrix.508

• The second example uses an Observation System Simulation Experiment (OSSE) of the509

Sea Surface Height (SSH) along the Gulf Stream. We will use the SPDE-based prior as a510

surrogate model along the data assimilation window to provide ensemble members of the511

posterior distribution.512

a. Diffusion-based non stationary GP513

Dataset. In this first application, we simulate 500 states of a GP driven by the following diffusion514

SPDE:515

{
𝜅2−∇ ·H(s)∇

}𝛼/2 x(s, 𝑡) = 𝜏z(s, 𝑡) (22)

The regularity parameter 𝜅 = 0.33 is fixed over space and time. To ensure the GP to be smooth516

enough, we use a value of 𝛼 = 4. Such a formulation enables to generate GPs driven by local517

anisotropies in space leading to non stationary spatio-temporal fields with eddy patterns. The518

diffusion tensor H is a 2-dimensional diffusion tensor generated by drawing from the spatial519

statistics literature, see e.g. (Fuglstad et al. 2015a). We introduce a generic decomposition of520

H(s, 𝑡) through the equation:521

H = 𝛾I2 + 𝛽v(s)Tv(s)

with 𝛾 = 1, 𝛽 = 25 and v(s) = (𝑣1(s), 𝑣2(s))T using a periodic formulation of its two vector fields522

components, see Section b. We use the Finite Difference Method in space coupled with an implicit523

Euler scheme in time to solve the equation. Let D = [0,100] × [0,100] be the square spatial524

domain of simulation and T = [0,500] the temporal domain. Both spatial and temporal domains525

are discretized so that the simulation is made on a uniform Cartesian grid consisting of points (𝑥𝑖,526

𝑦 𝑗 , 𝑡𝑘 ) where 𝑥𝑖=𝑖Δ𝑥, 𝑦 𝑗= 𝑗Δ 𝑗 , 𝑡𝑘=𝑘Δ𝑡 with Δ𝑥, Δ𝑦 and Δ𝑡 all set to 1.527
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Fig. 7: From left to right: Ground Truth, Pseudo-observations, Optimal Interpolation, neural
variational scheme with UNet-based and SPDE-based prior operator Φ. A data assimilation
window of length 5 is used

Training setting. We train the neural architectures for both UNet-based and SPDE-based priors528

with Adam optimizer on 50 epochs. The training period goes from timestep 100 to 400. During529

the training procedure, we select the best model according to metrics computed over the validation530

period from timestep 30 to 80. Overall, the set of metrics is computed on a test period going from531

timestep 400 to 500. No further improvements in the training losses are seen when training the532
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model longer. We use a data assimilation window of length 5 and generate pseudo-observations533

from the ground truth, inspired by orbiting satellites tracks around the earth, see Application 2 in534

Section b.535

536

Results. Fig. 7 displays the results obtained by Optimal Interpolation and the neural implicit537

solver with both UNet and SPDE-based parametrization of the prior. Neural-based reconstructions538

are optimized at the center of the assimilation window (𝑇 = 2), which is why the performance539

may be affected for other leadtimes. There is no significant differences between the two prior540

formulations used in the neural scheme, which overall retrieve the main patterns of the OI. Some541

artefacts may appear due to the observation term in the inner variational cost that tends to lead the542

solution towards the observation in its close neighbourhood. Improvements may be expected when543

adding regularization terms in the training loss to counteract such effects, see e.g. Beauchamp544

et al. (2023b). Regarding the derived framework proposed in this work, one of the question was:545

is it possible to retrieve interpretable SPDE parametrizations from the joint learning setting? Two546

configurations were considered: when using as initial condition for the parametrization a gradient-547

based information of the accumulated alongtrack observations, i.e. H11 = ∇−→𝑥 y and H22 = ∇−→𝑦 y; or548

an isotropic initialization, i.e. H = I. The first configuration enables to identify patterns in zonal549

and meridional components of the true diffusion tensor and leads to an optimal parametrization550

θ★ very close to the true diffusion tensor. While leading to different SPDE parametrizations θ★,551

the interpolation metrics are similar in the end for the two initializations. In addition, using an552

isotropic initial condition is more general (see the next realistic SSH application) and also retrieves553

in the end the main zonal flow directions encoded by H22, while the meriodional and periodic554

structures of H11 and H12 are partly seen as well.555
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Fig. 8: True (left) and estimated (right) posterior standard deviations at the beginning, center
and end of the assimilation window 𝑡𝑖𝑚𝑒 = 0,2,4

556

Fig. 9: Ground truth, OI and its posterior variance (blue), neural scheme with SPDE
parametrization θ known (orange) and with inference of θ (red) for the same three points
identified in Fig. 8 along the 100 time step test period

557
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Because we know the process is Gaussian, we know that Q(x|y) = Q𝑏 +HTR−1H, see Section558

2, to compute the closed form of the posterior pdf. Looking at the estimated posterior variance559

obtained starting from isotropic initial condition of the parameters, see Fig. 8, we understand that560

even if the initial set of parameters is not retrieved, they still remain interpretable. Visually, a sim-561

ulation produced by this set of SPDE parameters is also consistent and propose a spatio-temporal562

diffusion process close to the original one. It also highlights the dependency of the OI uncertainty563

quantification to the sampling scheme, especially here where no noise is added to the partial set564

of observations. On Fig. 9 is also shown the time series on three different locations (red stars)565

∈ D, see again Fig. 8, of the GT (blue line) along the test period (100 time steps), the OI and566

corresponding standard deviation (green line), and the neural scheme estimations when the SPDE567

parametrization is known (orange line) or estimated (red line with associated uncertainty). Both568

neural scheme configurations are generally close which validates the capability of this framework569

to estimate jointly both state and prior parametrization. Because the neural scheme is optimized570

on the global MSE, its solution may deviate more or less significantly from the OI depending of571

the position we are looking at in domain D.572

573

Last, Fig. 10 provides the scatterplot of the global MSE w.r.t the OI variational cost:574

J𝑂𝐼 (y,x,θ★) = | |y−Hx| |2 +xTQ𝑏
θ★x

throughout the iteration process after training of the neural schemes. For SPDE-based prior, the575

initial parametrization θ(0) relates to an isotropic GP process. LSTM-based iterative solvers are all576

consistent with the optimal solution in terms of MSE. When the latter is used as training loss, 20577

iterations is enough to reach satisfactory performance. Using the same loss for inner variational578

cost and outer training loss (not shown here), see Beauchamp et al. (2022), would require more579

iterations to converge. Also, constraining the prior to follow the same SPDE simulation ensures580

to also jointly minimize the OI variational cost (asymptotic convergence of the red line to the581

yellow star on Fig. 10) which is not the case when looking for an optimal solution within the bi-582

level neural optimization of prior and solver (blue line) that may lead to deviate from the original583

variational cost to minimize. Let note that by construction, the analytical OI solution is optimal584

regarding the OI variational cost: it is unbiased with minimal variance. In other words, at a given585
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spatio-temporal location (s, 𝑡), its variance (which is the local MSE) is minimal. In our case, we586

compute the global MSE over the entire domain D× [𝑡𝑘 −2, 𝑡𝑘 +2] w.r.t the true state because we587

have only one single realization to compute this metrics. This is why the global MSE (see L1) of588

the OI may be outperformed by learning-based methods.589

Fig. 10: Optimal Interpolation derived variational cost vs Mean Squared Error (MSE) loss (a)
for the gradient-based descent of the variational cost, the classical implementation of the neural
scheme and its SPDE-based prior formulation. For the analytical Optimal Interpolation solution
(the yellow star), there is no iterations, then a single point is displayed.

b. Realistic SSH datasets590

Dataset. In this application on Sea Surface Height (SSH) spatio-temporal fields, we focus on a591

small part of the GULFSTREAM, see Fig. 11, mainly driven by energetic mesoscale dynamics,592

to illustrate how our framework may help to solve for the oversmoothing of the state-of-the-art593

Optimal interpolation (OI) and how the SPDE formulation of the prior is a consistent linearization594

of the dynamics in the data assimilation window that helps to generate ensemble members in the595

posterior distribution. We use an Observation System Simulation Experiment (OSSE) with the596

NEMO (Nucleus for European Modeling of the Ocean) model NATL60 high resolution basin-597

scale configuration Molines (2018). Based on this one-year long simulation, we generate pseudo598

along-track nadir data for the current capabilities of the observation system (Ballarotta et al. 2019)599

and pseudo wide-swath SWOT data in the context of the upcoming SWOT mission (Metref et al.600

2020), with additional observation errors (Dufau et al. 2016; Esteban-Fernandez 2014; Gaultier601

and Ubelmann 2010). The two types of observations may be merged, see Fig. 11, to produce a602
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one-year long daily datasets of partial and noisy observations of the idealized Ground Truth (GT).603

Last the DUACS operational system (CMEMS/C3S Copernicus program) provides the Optimal604

Interpolation baseline (Taburet et al. 2019) as daily gridded (0.25◦x0.25◦) products605

Fig. 11: NATL60 and GULFSTREAM domain and zoom-in picture for one day Ground Truth and
accumulated along-track nadir + wide-swath SWOT SSH pseudo-observations
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Fig. 12: From left to right: SSH Gradient Ground Truth, Pseudo-observations (nadir mask
and SWOT Gradient field), DUACS Optimal Interpolation, and neural variational scheme results
obtained with UNet-based and SPDE-based prior operator Φ. A data assimilation window of
length 5 is used

Training setting. All the datasets are downscaled from the original resolution of 1/60◦ to 1/10◦.606

For the training, the dataset spans from mid-February 2013 to October 2013, while the validation607

period refers to January 2013. All methods are tested on the test period from October 22, 2012608

to December 2, 2012. We still use Adam optimizer with 1100 epochs. Regarding the metrics, we609

use the ocean data challenge 1 strategy looking at RMSE-score, and both spatial and temporel610

1https://github.com/ocean-data-challenges/2020a_SSH_mapping_NATL60
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minimal scales resolved. The reader may refer to (Beauchamp et al. 2023b) for more details.611

612

Results. Because we aim at assessing how the use of SPDE priors in the neural architecture is613

relevant, we used a Gaussian prior formulation x ∼N
(
x𝑏,Q𝑏

θ

)
where the mean x𝑏 is provided as a614

first guess by a preliminary 4DVarNet run. Doing so, the SPDE parametrization θ is focused on the615

reconstruction and surrogate parametrization of the small scales not catched by this deterministic616

mean. Then, we can reduce the data assimilation window used to estimate the prior mean x𝑏, to a617

reasonable length 𝐿 = 5 here, so that the storage of multiple (sparse) precision matrices throughout618

the computational graph remains possible, see Section 3.d. Moving to longer time windows619

including mesoscale-related autocorrelations (more than 10 days) in this SPDE framework would620

lead to similar results, see e.g. Febvre et al. (2022) but would require moving to matrix-free621

formulations, with potential existing solutions, see e.g. Pereira et al. (2022).622

Last point on this experimental configuration: because the pseudo-observations are subsampled623

from hourly simulations but we target daily reconstructions, they are noisy due to representativity624

errors between the two temporal resolutions. This is not currently adressed by our framework where625

the observation term in the minimization cost, see Eq. 8, is only the L2-norm of the innovations.626

But it might be easily considered, either by using a known observation error covariance matrix R627

or by learning one of its possible parametrization as an additional feature of the neural scheme.628

(a) nRMSE (b) Spectrum

Fig. 13: For DUACS Optimal Interpolation, neural solvers with UNet-based and SPDE-based
prior, (a) provides their temporal performance, i.e. nRMSE time series along the BOOST-SWOT
DC evaluation period ; and (b) displays their spectral performance, i.e. the PSD-based score is
used to evaluate the spatio-temporal scales resolved in the GULFSTREAM domain (yellow area)
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As in Example 7.1, we provide in Fig. 12 the reconstructions, as the SSH gradients, obtained629

from DUACS OI baseline, and both neural solver formulations, the one using as prior a UNet-based630

parametrization, see e.g. (Beauchamp et al. 2023c) and our SPDE-based formulation. As expected631

and already seen in previous related studies (Beauchamp et al. 2023b,a; Fablet et al. 2021), the632

neural schemes improve the baseline by retrieving the dynamics along the main meander of the Gulf633

Stream and additional small energetic eddies. Again, there is no significant differences between634

the two neural formulations, which was again expected because the aim of the SPDE formulation635

is not to improve the mean state estimation obtained when using a neural prior operator, which636

is even more general, but to provide a a stochastic framework for interpretability and uncertainty637

quantification. This is supported by Figs. 13a and 13b respectively showing the normalized RMSE638

and the space-time spectrum along the test period. The periodic improvements of the score are639

due to the SWOT sampling that does not provide informations every day on this Gulf Stream640

domain. Overall, the nRMSE is in average improved by 60% when using the neural architecture.641

For the spectrum, minimal spatio-temporal scales 𝜆𝑥 and 𝜆𝑡 also improve resp. by 30% and 60%.642

From both figures and scores provided in Table 1, we can see that the UNet formulation of prior643

Φ leads to a small improvement in the reconstruction, which was expected because this is the644

only task optimized by the pure neural formulation. Introducing the SPDE formulation leads to645

optimize both reconstruction and likelihood of the parameters, which is more difficult. Though, the646

reconstruction performed by the latter is satisfactory enough and very close to the original solution647

proposed in Fablet et al. (2021). It also competes with other state-of-the-art method available in the648

ocean data challenges 2020a, among which DUACS OI (Taburet et al. 2019), MIOST (Multi-scale649

OI) Ardhuin et al. (2020) or a 4DVar scheme based on a QG dynamical model Le Guillou (2022).650

While DUACS OI has minimal spatial and temporal resolution of 1.22° and 11.15 days, 4DVarNet651

reaches 0.62° and 4.35 days, which reaches similar order of performance that combining a 4DVar652

with a QG model.653
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Fig. 14: Parameter estimation of the SPDE prior: in the neural scheme along the 42 days test
period and every 6 days. Top, from left to right: τ , m1, m2 (advection fields), H1,1, H1,2 and
H2,2 (diffusion tensor) estimated on the first day of the test period. Bottom: time series of these
parameters along the test period on the two locations identified by the red stars. The first one
(left) is located along the Gulf Stream meander and the second one (right) is in the less energetic
left-lower part of the domain.

In this very general setup, where the equation-based dataset provide a supervised learning setting654

on state x, but not on the SPDE parameters θ, two main questions are raised. On the first one:655

does the parameters retrieved by the iterative solver are interpretable? If considering Fig. 14 that656

shows parameters τ , m1, m2 (advection fields), H11, H12 and H22 (diffusion tensor) on the first657

day of the test period, they seem consistent with the SSH field x that partially encodes the SPDE658

parametrization, which also opens avenue for state-dependent parameters. We also show the time659

series along the 42 days of the test period for these parameters on two locations of the Gulf Stream660

domain (red stars): a first one right in the Gulf Stream meander (left time series) and a second661

one in the left-lower part of the domain, with less variability (right time series). Interestingly,662

in less energetic areas the parameters are almost perfectly correlated while in the Gulf Stream,663

they might behave differently. Playing with both damping and variance regularization parameters664

provide a flexible way to handle complex GP priors with both low and high marginal variances665

for a given time. This is a key aspect here because the range of possible values attributed to the666

anomaly generally differs according to the spatio-temporal dynamics of the SSH: it is high along667
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the main meander of the Gulf Stream and eddies not catched up by the OI, and lower elsewhere.668

This is also supported by generating non-conditional simulations based on these parameters and669

comparing it to the ground truth anomaly field, see again Fig. 6. The spatio-temporal fields are670

clearly consistent with the original simulation which also makes the link between our approach and671

generative modeling. The average of a large number of simulations would be a zero state, while its672

covariance relates to the model error matrix used in equation-based DA to perturb the members in673

ensemble methods.674

𝜇(RMSE) 𝜎(RMSE) 𝜆𝑥 (degree) 𝜆𝑡 (days)

OI 0.92 0.02 1.22 11.06

MIOST 0.94 0.01 1.18 10.33

4DVar-QG 0.96 0.01 0.66 4.65

4DVarNet (NN prior) 0.96 0.01 0.62 4.35

4DVarNet (SPDE prior) 0.96 0.01 0.64 5.03

Table 1: Evaluation of the performance between OI, MIOST, 4DVar-QG, 4DVarNet schemes
with UNet and SPDE-based prior parametrization. The OSSE involves 1 SWOT + 4 nadirs as
pseudo-observations.

The second question is: does this approach, SPDE-based generation of members, followed by675

their conditioning with observations, is efficient to estimate the posterior pdf 𝑝x|y? Fig. 15 shows in676

a) the reconstruction error x−x★ for six days along the test period and in b) the empirical posterior677

standard deviations computed from 200 members. In c), we also provide pointwise Continuous678

Ranked Probability Score (CRPS) maps to assess the accurary of the ensemble-based predictions.679

Given the observations y𝑖 𝑗 𝑘 , we compute the empirical CDF of the stochastic process 𝑋 at a given680

spatio-temporal location {𝑖, 𝑗 , 𝑘} as 𝐹𝑖 𝑗 𝑘 (𝑧) = P
[
𝑋𝑖 𝑗 𝑘 ≤ 𝑧

]
:681

𝐶𝑅𝑃𝑆(𝐹𝑖 𝑗 𝑘 ,y𝑖 𝑗 𝑘 ) =
∫ +∞

−∞

(
𝐹 (𝑧) −1𝑧−y𝑖 𝑗𝑘

)2
𝑑𝑧

Looking at the estimated standard deviation produced by the ensemble of neural variational recon-682

structions, they are not as dependent of the observations as an OI scheme would be, which validates683

the flow-dependency discussed in Section e. We can still see the observation mask as blurry areas684

40



but the standard deviations are rather increasing and continuous along the main meander of the685

Gulf Stream. The CRPS is often close to zero, which indicates the ensemble of recontruction is686

wholly accurate with a realistic posterior standard deviation. The highest CRPS values observed687

are about 0.4 which remains reasonable, and can be explained by high reconstruction errors outside688

the main Gulf Stream meander that are not correctly handled by the ensemble.689

(a) x− x★

(b) posterior standard deviation

(c) continuous ranked probability score (CRPS) maps

Fig. 15: For six days along the OSSE test period: a) corresponding reconstruction error at the center
of the assimilation window, b) ensemble-based posterior standard deviations and c) Continuous
Ranked Probability Score
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5. Conclusion690

We explore a new neural architecture to tackle the reconstruction inverse problem of a dynamical691

process from partial and potentially noisy observations. We provide a joint end-to-end learning692

scheme of both stochastic prior models and solvers. The idea is to optimize in the same time693

the state and the stochastic parametrization of the prior so that we minimize the mean squared694

error between the reconstruction and the true states, while we are also able to provide uncertainty695

quantification of the mean state reconstruction, either analytically in the gaussian case, or696

ensemble-derived in the more general configuration.697

698

In our work, we draw from recent advances in geostatistical simulations of SPDE-based Gaussian699

Processes to provide a flexible trainable prior embedded in a neural architecture backboned on700

variational data assimilation. The SPDE parameters are added as latent variables in an augmented701

state the trainable solver has to reconstruct. A bi-level optimization scheme is used to optimize in702

the same time:703

• the inner variational cost derived from OI-based formulations, which depends on state x,704

observations y and SPDE parameters θ and,705

• the outer training loss function of the neural architecture, which drives the optimization of706

the LSTM-based residual solver parameters ω leading to the reconstruction of the augmented707

state.708

The first application of the framework on a diffusion-based GP showed that it reaches the same709

performance, in terms of MSE w.r.t the ground truth, observed when using a neural-based prior710

in the classic implementation fo the neural scheme (Fablet et al. 2020), which asymptotically711

converges towards the optimal solution. In addition, the posterior variance ot the mean state712

derived from the SPDE parameters is close to the true variance of the Optimal Interpolation,713

which demonstrates the potentiality of the proposed scheme to handle uncertainty quantifications.714

Indeed, if we showed that retrieving the original set of SPDE parameters might be difficult, the715

local minimum found after the training process leads to a parametrization with high likelihood,716

similar diffusion-based spatial patterns and spatio-temporal covariances structures. Though not717

always physically explainable, the SPDE prior formulation still helps to interprete the dynamical718
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process in terms of statistical properties.719

In a more general setup, we also present an application on Sea Surface Height dynamics based720

on Observation System Simulation Experiment (OSSE), for which the ground truth is given721

by a state-of-the-art ocean model and pseudo-observations are generated by a realistic satellite722

subsampling of the ground truth. In this case, the process is not linear and the gaussian framework723

does not apply. Then, the idea is to use the GP linear SPDE formulation as a surrogate model to724

linearize the prior dynamics along the data assimilation window. It provides an efficient way for725

fast sampling of a huge set of members in the prior distribution within a few minutes. Based on726

the neural solver, able to handle non-linear and non-gaussian dynamics based on its supervised727

training, the conditioning of these simulations leads to the estimation of the posterior distribution.728

The preliminary conclusions made on the GP experiment holds for the reconstruction of the mean729

state, i.e. no significant differences observed when using a trainable neural prior. The key aspect730

of the framework is here revealed by the SPDE parametrization, which is fully non-stationary in731

space and time, and allows for online estimation after training for any new set of input observations,732

in contrast with other approaches in most of the spatial statistics literature which requires offline733

new parameter inference. We showed that the prior parametrization is both statistically consistent734

with the original ground truth used in the training and physically sounded with similar patterns735

observed in the simulations. Comparing the posterior pdf retrieved from the ensemble members,736

higher variances are observed in areas of high reconstruction errors which is a good indicator737

of the framework capability to quantify realistic uncertainties. Additional applications would be738

necessary on real datasets to complement these preliminary conclusions.739

740

Regarding the potential extensions of this methodology, it is important to understand that such741

an SPDE parametrization of the prior term is a way of going to generative modelling, as it is742

called in the machine learning community. In our case, the SPDE is linear and already provide743

an efficient way to produce fast, large and realistic ensembles. Promising avenues would be to744

draw from the existing link between diffusion models and SDE to enrich our framework, provide745

stochastic non-linear priors and see if and how it helps to improve the results obtained in this work.746

Also, we made the choice to model the prior with a linear SPDE before conditioning it with our747

neural solver. A direct use of the SPDE formulation for the posterior would have been possible,748
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but restrictive to GP reconstructions which is in most cases rather limited. Back to the non-linear749

neural diffusion operators, an other way of addressing the problem would be to directly optimize750

the sampling in the posterior pdf.751

Acknowledgments. This work has been supported by the LEFE program (LEFE MANU project752

IA-OAC), CNES (grant OSTST DUACS-HR), and ANR Projects Melody and OceaniX. This753

research has been supported by GENCI- IDRIS (grant no. 2020-101030).754

Data availability statement. The open-source 4DVarNet with SPDE priors version of the755

code is available at https://github.com/CIA-Oceanix/4dvarnet-starter/tree/maximebeauchamp.756

The datasets are shared through the ocean data challenge 2020a also avail-757

able on GitHub https://github.com/ocean-data-challenges/2020a\_SSH\_mapping\758

_NATL60,lastaccess:2022759

44



APPENDIX A760

Finite difference schemes for SPDE761

In this work, we propose to use the Euler implicit scheme as a discretization method for the762

stochastic PDEs. We need to define the discretized version of several differential operators on the763

2D regular grid, namely:764

a. Discretization of the spatial differential operators765

Δx𝑖, 𝑗 =
𝜕2x
𝜕𝑥2

𝑖, 𝑗
+ 𝜕

2x
𝜕𝑦2

𝑖, 𝑗

=
𝜕

𝜕𝑥

(
𝜕x
𝜕𝑥

)
𝑖, 𝑗

+ 𝜕

𝜕𝑦

(
𝜕x
𝜕𝑦

)
𝑖, 𝑗

=
𝜕

𝜕𝑥

(x𝑖+1, 𝑗 −x𝑖−1, 𝑗

2𝑑𝑥

)
+ 𝜕

𝜕𝑦

(x𝑖, 𝑗+1−x𝑖, 𝑗−1

2𝑑𝑦

)
=

(x𝑖+1, 𝑗
𝑑𝑥2 −

x𝑖, 𝑗
𝑑𝑥2

)
−
( x𝑖, 𝑗
𝑑𝑥2 −

x𝑖−1, 𝑗

𝑑𝑥2

)
+
(x𝑖, 𝑗+1
𝑑𝑦2 −

x𝑖, 𝑗
𝑑𝑦2

)
−
( x𝑖, 𝑗
𝑑𝑦2 −

x𝑖, 𝑗−1

𝑑𝑦2

)
=

x𝑖+1, 𝑗 −2x𝑖, 𝑗 +x𝑖−1, 𝑗

𝑑𝑥2 +
x𝑖, 𝑗+1−2x𝑖, 𝑗 +x𝑖, 𝑗−1

𝑑𝑦2 (A1a)
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766

∇H · ∇x𝑖, 𝑗 =
(
H1,1 𝜕

𝜕𝑥2 +H1,2 𝜕

𝜕𝑥𝜕𝑦
+H2,1 𝜕

𝜕𝑥𝜕𝑦
+H2,2 𝜕

𝜕𝑦2

)
x𝑖, 𝑗

= H1,1 x𝑖+1, 𝑗 −2x𝑖, 𝑗 +x𝑖−1, 𝑗

𝑑𝑥2

+H2,2 x𝑖, 𝑗+1−2x𝑖, 𝑗 +x𝑖, 𝑗−1

𝑑𝑦2

+H1,2 x𝑖+1, 𝑗+1−x𝑖+1, 𝑗−1−x𝑖−1, 𝑗+1 +x𝑖−1, 𝑗−1

4𝑑𝑥𝑑𝑦

+H2,1 x𝑖+1, 𝑗+1−x𝑖−1, 𝑗+1−x𝑖+1, 𝑗−1 +x𝑖−1, 𝑗−1

4𝑑𝑥𝑑𝑦

= H1,1 x𝑖+1, 𝑗 −2x𝑖, 𝑗 +x𝑖−1, 𝑗

𝑑𝑥2

+H2,2 x𝑖, 𝑗+1−2x𝑖, 𝑗 +x𝑖, 𝑗−1

𝑑𝑦2

+H1,2 x𝑖+1, 𝑗+1−x𝑖+1, 𝑗−1−x𝑖−1, 𝑗+1 +x𝑖−1, 𝑗−1

2𝑑𝑥𝑑𝑦

(A1b)

767

m · ∇x𝑖, 𝑗 = m1 𝜕

𝜕𝑥
x𝑖, 𝑗 +m2 𝜕

𝜕𝑦
x𝑖, 𝑗

= m1 x𝑖+1, 𝑗 −x𝑖−1, 𝑗

2𝑑𝑥
+m2 x𝑖, 𝑗+1−x𝑖, 𝑗−1

2𝑑𝑦
(A1c)

b. Upwind schemes for advection-dominated SPDE768

With such an advection-diffusion framework detailed in Section b, it is known that the solution to769

the space-centered scheme does not oscillate only when the Peclet number is lower than 2 and the770

Courant–Friedrichs–Lewy condition (CFL) condition 𝐶𝑟 = 𝑑𝑡
(
m1/𝑑𝑥 +m2/𝑑𝑦

)
≤ 1 is satisfied771

(Lewy et al. 1928; Price et al. 1966). For unsatisfied Peclet conditions, damped oscillations occur772

with nonreal eigenvalues (Finlayson 1992; Price et al. 1966), while in the limiting case of pure773

advection H→ 0, such a scheme would be unconditionally unstable (Finlayson 1992; Strikwerda774

1989). Because the velocity fiels is allowed to vary in space and time, the CFL number is different775

at each discrete space-time location (𝑖, 𝑗 , 𝑡). A necessary condition for convergence is that the CFL776

condition be satisfied at each point location, the velocity and diffusion parameters being unknown,777
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we have to choose the timestep 𝑑𝑡 small enough so that the maximum CFL number (observed in778

space at each time step) satisfies the CFL condition. Again, because the velocity field is trained, it779

may happen that the CFL condition is not satisfied if the latter is more and more dominant during780

the training. A simple way of counteracting this problem is to use an activation function on the781

two velocity components by clipping their maximum value.782

783

One way of addressing this problem of stabilities in FDM when the advection term is predominant784

over the diffusion relates to the class of upwind schemes (UFDM). It is used to numerically simulate785

more properly the direction of propagation of the state in a flow field. The first order upwind FDM786

uses a one-sided finite difference in the upstream direction to approximate the advection term in787

the transport SPDE. The spatial accuracy of the first-order upwind scheme can be improved by788

choosing a more accurate finite difference stencil for the approximation of spatial derivative. Let789

note that UFDM scheme for SPDE eliminates the nonphysical oscillations in the space-centered790

scheme and generate stable solutions even for very complicated flows.791

1) First-order upwind scheme (UFDM1)792

Instead of using centered differences:793 (
𝜕x
𝜕𝑥

)
𝑖, 𝑗

=
x𝑖+1, 𝑗 −x𝑖−1, 𝑗

2𝑑𝑥
(A2a)

794 (
𝜕x
𝜕𝑦

)
𝑖, 𝑗

=
x𝑖, 𝑗+1−x𝑖, 𝑗−1

2𝑑𝑦
(A2b)

We use the one-sided upwind differences :795


(
𝜕x
𝜕𝑥

)
𝑖, 𝑗

=
x𝑖, 𝑗 −x𝑖−1, 𝑗

𝑑𝑥
if m1

𝑖, 𝑗 > 0(
𝜕x
𝜕𝑥

)
𝑖, 𝑗

=
x𝑖+1, 𝑗 −x𝑖, 𝑗

𝑑𝑥
if m1

𝑖, 𝑗 < 0
(A3a)
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and796


(
𝜕x
𝜕𝑦

)
𝑖, 𝑗

=
x𝑖, 𝑗 −x𝑖, 𝑗−1

𝑑𝑦
if m2

𝑖, 𝑗 < 0(
𝜕x
𝜕𝑦

)
𝑖, 𝑗

=
x𝑖, 𝑗+1−x𝑖, 𝑗

𝑑𝑦
if m2

𝑖, 𝑗 < 0
(A3b)

2) Third-order upwind scheme (UFDM3)797

It can be shown, see e.g. (E. Ewing and Wang 2001) that the UFDM scheme is actually a second-798

order approximation of the SPDE with a modified diffusion term. Along this line, it comes with799

the family of methods that may introduce excessive numerical diffusion in the solution with large800

gradients. Thus, we use a third order upwind scheme for the approximation of spatial derivatives801

with four points instead of two, with only a reduced increase in the degree of sparsity of the802

precision matrix. This scheme is less diffusive compared to the second-order accurate scheme. It803

comes with four points instead of two for the approximation, with only a reduced increase in the804

degree of sparsity of the discretized differential operator.805

It can be expressed as follows:806


(
𝜕x
𝜕𝑥

)
𝑖, 𝑗

=
2x𝑖+1, 𝑗 +3x𝑖, 𝑗 −6x𝑖−1, 𝑗 +x𝑖−2, 𝑗

6𝑑𝑥
if m1

𝑖, 𝑗 > 0(
𝜕x
𝜕𝑥

)
𝑖, 𝑗

=
−x𝑖+2, 𝑗 +6x𝑖+1, 𝑗 −3x𝑖, 𝑗 −2x𝑖−1, 𝑗

6𝑑𝑥
if m1

𝑖, 𝑗 < 0
(A4a)

and807


(
𝜕x
𝜕𝑦

)
𝑖, 𝑗

=
2x𝑖, 𝑗+1 +3x𝑖, 𝑗 −6x𝑖, 𝑗−1 +x𝑖, 𝑗−2

6𝑑𝑦
if m2

𝑖, 𝑗 > 0(
𝜕x
𝜕𝑦

)
𝑖, 𝑗

=
−x𝑖, 𝑗+2 +6x𝑖, 𝑗+1−3x𝑖, 𝑗 −2x𝑖, 𝑗−1

6𝑑𝑦
if m2

𝑖, 𝑗 < 0
(A4b)

c. Discretization of the spatio-temporal SPDE808

Based on the discretization of the spatial operators using upwind finite difference schemes for809

the advection term and centered difference schemes for the diffusion term, we involve an implicit810
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Euler scheme to solve the advection-diffusion SPDE:811

𝜕x
𝜕𝑡
+
{
κ2(s, 𝑡) +m(s, 𝑡) · ∇−∇ ·H(s, 𝑡)∇

}𝛼/2 x(s, 𝑡) = τ (s, 𝑡)z(s, 𝑡)

Because the upwind advection schemes is not symmetric and does not involve the same neigh-812

bours in the difference scheme approximation according to the predominant flow direction, we813

introduce the following generic notations.814


m1,𝑡,−

𝑖, 𝑗
=

(
𝜕x
𝜕𝑥

) 𝑡
𝑖, 𝑗

if m1,𝑡
𝑖, 𝑗

> 0

m1,𝑡,+
𝑖, 𝑗

=

(
𝜕x
𝜕𝑥

) 𝑡
𝑖, 𝑗

if m1,𝑡
𝑖, 𝑗

< 0
and


m2,𝑡,−

𝑖, 𝑗
=

(
𝜕x
𝜕𝑦

) 𝑡
𝑖, 𝑗

if m2,𝑡
𝑖, 𝑗

> 0

m2,𝑡,+
𝑖, 𝑗

=

(
𝜕x
𝜕𝑦

) 𝑡
𝑖, 𝑗

if m2,𝑡
𝑖, 𝑗

< 0

and by denoting a1,𝑡,+
𝑖, 𝑗

= max(m1,𝑡
𝑖, 𝑗
,0), a1,𝑡,−

𝑖, 𝑗
= min(m1,𝑡

𝑖, 𝑗
,0), a2,𝑡,+

𝑖, 𝑗
= max(m2,𝑡

𝑖, 𝑗
,0), a2,𝑡,−

𝑖, 𝑗
=815

min(m2,𝑡
𝑖, 𝑗
,0), the resulting UFDM, whatever the order of the scheme, can be written in its compact816

form as:817

x𝑡+1𝑖, 𝑗 = x𝑡𝑖, 𝑗 + 𝑑𝑡
[
𝜅𝑡𝑖, 𝑗x

𝑡
𝑖, 𝑗 +

(
a1,𝑡,+
𝑖, 𝑗

m1,𝑡,−
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗
m1,𝑡,+

𝑖, 𝑗

)
+
(
a2,𝑡,+
𝑖, 𝑗

m2,𝑡,−
𝑖, 𝑗
+a2,𝑡,−

𝑖, 𝑗
m2,𝑡,+

𝑖, 𝑗

)
+H1,1,𝑡

𝑖, 𝑗

x𝑡
𝑖+1, 𝑗 −2x𝑡

𝑖, 𝑗
+x𝑡

𝑖−1, 𝑗

𝑑𝑥2 +H2,2,𝑡
𝑖, 𝑗

x𝑡
𝑖, 𝑗+1−2x𝑡

𝑖, 𝑗
+x𝑡

𝑖, 𝑗−1

𝑑𝑦2

+H1,2,𝑡
𝑖, 𝑗

x𝑡
𝑖+1, 𝑗+1−x𝑡

𝑖+1, 𝑗−1−x𝑡
𝑖−1, 𝑗+1 +x𝑡

𝑖−1, 𝑗−1

2𝑑𝑥𝑑𝑦
+ 𝜏𝑡𝑖, 𝑗z𝑖, 𝑗

]

49



Using again notation 𝑖 = ⌊𝑘/𝑁𝑥⌋ and 𝑗 = 𝑘 mod 𝑁𝑥 , operator A𝑡 associated to UFDM1 finally818

writes:819

A𝑘,𝑙 (𝑡) =



H1,2,𝑡
𝑖, 𝑗
/2𝑑𝑥𝑑𝑦 if 𝑙 = 𝑘 ± (𝑁𝑥 +1)

H1,2,𝑡
𝑖, 𝑗
/2𝑑𝑥𝑑𝑦 if 𝑙 = 𝑘 ± (𝑁𝑥 −1)

−H1,1,𝑡
𝑖, 𝑗
/𝑑𝑥2 +

(
a1,𝑡,+
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗

)
/𝑑𝑥 if 𝑙 = 𝑘 −1

−H1,1,𝑡
𝑖, 𝑗
/𝑑𝑥2 +

(
a1,𝑡,+
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗

)
/𝑑𝑥 if 𝑙 = 𝑘 +1

−H2,2,𝑡
𝑖, 𝑗
/𝑑𝑦2 +

(
a2,𝑡,+
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗

)
/𝑑𝑦 if 𝑙 = 𝑘 −𝑁𝑥

−H2,2,𝑡
𝑖, 𝑗
/𝑑𝑦2 +

(
a2,𝑡,+
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗

)
/𝑑𝑦 if 𝑙 = 𝑘 +𝑁𝑥(

𝜅𝑡
𝑖, 𝑗

)2
+2(H1,1,𝑡

𝑖, 𝑗
/𝑑𝑥2 +H2,2,𝑡

𝑖, 𝑗
/𝑑𝑦2)

+
(
a1,𝑡,+
𝑖, 𝑗
+a1,𝑡,−

𝑖, 𝑗

)
/𝑑𝑥 +

(
a2,𝑡,+
𝑖, 𝑗
+a2,𝑡,−

𝑖, 𝑗

)
/𝑑𝑦 if 𝑘 = 𝑙

0 otherwise

(A5)

The same operator associated to UFDM3 writes:820

A𝑘,𝑙 (𝑡 ) =

H1,2,𝑡
𝑖, 𝑗
/2𝑑𝑥𝑑𝑦 if 𝑙 = 𝑘 ± (𝑁𝑥 +1)

H1,2,𝑡
𝑖, 𝑗
/2𝑑𝑥𝑑𝑦 if 𝑙 = 𝑘 ± (𝑁𝑥 − 1)

a1,𝑡 ,+
𝑖, 𝑗
/6𝑑𝑥 if 𝑙 = 𝑘 − 2

−H1,1,𝑡
𝑖, 𝑗
/𝑑𝑥2 −

(
6a1,𝑡 ,+

𝑖, 𝑗
+2a1,𝑡 ,−

𝑖, 𝑗

)
/6𝑑𝑥 if 𝑙 = 𝑘 − 1

−H1,1,𝑡
𝑖, 𝑗
/𝑑𝑥2 +

(
2a1,𝑡 ,+

𝑖, 𝑗
+6a1,𝑡 ,−

𝑖, 𝑗

)
/6𝑑𝑥 if 𝑙 = 𝑘 +1

−a1,𝑡 ,−
𝑖, 𝑗
/6𝑑𝑥 if 𝑙 = 𝑘 +2

a2,𝑡 ,+
𝑖, 𝑗
/6𝑑𝑦 if 𝑙 = 𝑘 − 2𝑁𝑥

−H2,2,𝑡
𝑖, 𝑗
/𝑑𝑦2 −

(
6a2,𝑡 ,+

𝑖, 𝑗
+2a2,𝑡 ,−

𝑖, 𝑗

)
/6𝑑𝑦 if 𝑙 = 𝑘 − 𝑁𝑥

−H2,2,𝑡
𝑖, 𝑗
/𝑑𝑦2 +

(
2a2,𝑡 ,+

𝑖, 𝑗
+6a2,𝑡 ,−

𝑖, 𝑗

)
/6𝑑𝑦 if 𝑙 = 𝑘 +𝑁𝑥

−a2,𝑡 ,−
𝑖, 𝑗
/6𝑑𝑦 if 𝑙 = 𝑘 +2𝑁𝑥(

𝜅𝑡
𝑖, 𝑗

)2
+2(H1,1,𝑡

𝑖, 𝑗
/𝑑𝑥2 +H2,2,𝑡

𝑖, 𝑗
/𝑑𝑦2 )

+3
(
a1,𝑡 ,+
𝑖, 𝑗
− a1,𝑡 ,−

𝑖, 𝑗

)
/6𝑑𝑥

+3
(
a2,𝑡 ,+
𝑖, 𝑗
− a2,𝑡 ,−

𝑖, 𝑗

)
/6𝑑𝑦 if 𝑘 = 𝑙

(A6)

and 0 otherwise.821
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APPENDIX B822

SPDE-based precision matrix823

Let define the spatio-temporal SPDE prior x = {x0, · · · ,x𝐿𝑑𝑡}. From now on, x0 ∼ N(0,P0)824

denotes the initial state and Q0 = P0
−1 is always taken as the precision matrix obtained after a given825

stabilization run, i.e. the evolution of the dynamical system over 𝑁 timesteps using as stationary826

parameters the initial parametrization θ0 of the SPDE at time 𝑡 = 0. We can rewrite :827

{x0, · · · ,x𝐿𝑑𝑡} = M𝐺


x0

z


with z = [z1, . . . ,z𝑡]T and828

M𝐺 =



I 0 0 0 0 . . . 0

M1 T1 0 0 0 . . . 0

M2M1 M2T1 T2 0 0 . . . 0

M3M2M1 M3M2T1 M3T2 T3 0 . . . 0
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . T𝐿


Despite its apparent complexity, M𝐺 has a particular structure which allows to easily compute829

its inverse:830

M−1
𝐺 =



I 0 0 0 0 . . . 0

−T−1
1 M1 T−1

1 0 0 0 . . . 0

0 −T−1
2 M2 T−1

2 0 0 . . . 0

0 0 −T−1
3 M3 T−1

3 0 . . . 0

0 . . .
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . . 0

0 . . .
. . .

. . .
. . . −T−1

𝐿
M𝐿 T−1

𝐿


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All this information is embedded in Q𝑏 (Eq. B2), which is the inverse of the prior covariance831

matrix B:832

Q𝑏 = B−1 =



P0 P0,1 ... ... P0,𝐿
P1,0 P1 ... ... P1,𝐿
... P2,1 P2 ... P2,𝐿
...

. . .
. . .

. . .
...

P𝐿−1,0 ... ... P𝐿−1 P𝐿−1,𝐿
P𝐿,0 P𝐿,1 ... P𝐿,𝐿−1 P𝐿



−1

= M−1
𝐺

T



P−1
0 0 . . . 0

0 I . . . 0
...

. . .
. . .

...

0 0 . . . I


M−1

𝐺 (B1)

By denoting S𝑘 = T𝑘TT
𝑘
, we have833

Q𝑏 =



P−1
0 +M

T
1 S−1

1 M1 −MT
1 S−1

1 0 0 0 ... 0
−S−1

1 M1 S−1
1 +M

T
2 S−1

2 M2 −MT
2 S−1

2 0 0 ... 0
0 −S−1

2 M2 S−1
2 +M

T
3 S−1

3 M3 −MT
3 S−1

3 0 ... 0

0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −S−1

𝐿−1M𝐿−1 S−1
𝐿−1+M

T
𝐿
S−1
𝐿

M𝐿 −MT
𝐿
S−1
𝐿

0
. . .

. . .
. . . 0 −S−1

𝐿
M𝐿 S−1

𝐿


(B2)

Because of the formulation of M𝑡 and T𝑡 , the precision matrix Q𝑏 with the FDM scheme also834

writes:835

Q𝑏 =
1
𝑑𝑡



P−1
0 +Q̃𝑠,1 −Q̃𝑠,1M−1

1 0 0 0 ... 0

−(MT
1 )−1Q̃𝑠,1 MT

1 Q̃𝑠,1M1+Q̃𝑠,2 −Q̃𝑠,2M−1
2 0 0 ... 0

0 −(MT
2 )−1Q̃𝑠,2 MT

2 Q̃𝑠,2M2+Q̃𝑠,3 −Q̃𝑠,3M−1
3 0 ... 0

0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . −(MT

𝐿−1)−1Q̃𝑠,𝐿−1 MT
𝐿
Q̃𝑠,𝐿−1M𝐿−1+Q̃𝑠,𝐿 −Q̃𝑠,𝐿M−1

𝐿

0
. . .

. . .
. . . 0 −(MT

𝐿)−1Q̃𝑠,𝐿 MT
𝐿
Q̃𝑠,𝐿M𝐿


(B3)

where Q̃𝑠,𝑡 is the precision matrix of the colored noise weighted by the non-uniform regularization836

variance τ𝑡 .837

838
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APPENDIX C839

PyTorch implementation of sparse linear algebra840

Currently, two pieces of codes are missing in the PyTorch sparse linear algebra to achieve a fully841

sparse implementation of our algorithm: the automatic differentiation tools for842

• solving sparse linear systems843

• running sparse Cholesky decomposition844

First, regarding the implementation of the backward pass for solving linear systems, we start by845

writing the forward pass of this system of equation:846

𝑥 = A−1b

where A denotes a 2𝐷 square matrix and b a one-dimensional vector.847

We need to provide the gradients wrt both A and b:848

𝜕𝐿

𝜕b
=
𝜕𝐿

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕b 𝑗

=
𝜕𝐿

𝜕𝑥𝑖

𝜕

𝜕b𝑘

(A−1
𝑖 𝑗 b 𝑗 ) =

𝜕𝐿

𝜕𝑥𝑖
A−1
𝑖 𝑗

𝜕b 𝑗

𝜕b𝑘

=
𝜕𝐿

𝜕𝑥𝑖
A−1
𝑖 𝑗 𝛿 𝑗 𝑘 =

𝜕𝐿

𝜕𝑥𝑖
A−1
𝑖𝑘 =

(
A−1)𝑇 𝜕𝐿

𝜕𝑥

= solve
(
AT ,

𝜕𝐿

𝜕𝑥

)
and849
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𝜕𝐿

𝜕A
=
𝜕𝐿

𝜕𝑥𝑖

𝜕𝑥𝑖

𝜕A𝑚𝑛

=
𝜕𝐿

𝜕𝑥𝑖

𝜕

𝜕A𝑚𝑛

(A−1
𝑖 𝑗 b 𝑗 )

= − 𝜕𝐿
𝜕𝑥𝑖

A−1
𝑖 𝑗

𝜕A 𝑗 𝑘

𝜕A𝑚𝑛

A−1
𝑘𝑙 b𝑙

= − 𝜕𝐿
𝜕𝑥𝑖

A−1
𝑖 𝑗 𝛿 𝑗𝑚𝛿𝑘𝑛A

−1
𝑘𝑙 b𝑙

= − 𝜕𝐿
𝜕𝑥𝑖

A−1
𝑖𝑚A−1

𝑛𝑙 b𝑙

= −
( (

A−1)𝑇 𝜕𝐿
𝜕𝑥

)
⊗
(
A−1b

)
= −𝜕𝐿

𝜕b
⊗ 𝑥

where we used the einstein summation convention during the derivations, as well as the following850

identity:851

𝜕 (A−1)
𝜕𝑝

= −A−1 𝜕A
𝜕𝑝

A−1.

These two expressions 𝜕𝐿
𝜕b and 𝜕𝐿

𝜕A are easily implemented in PyTorch based on sparse representa-852

tions.853

854

Second, the backward pass for a sparse Cholesky decomposition may be found for instance in855

Seeger et al. (2019): given a symmetric, positive definite matrix A, its Cholesky factor L is lower856

triangular with positive diagonal, such that the forward pass of the Cholesky decomposition is857

defined as A = LLT. Given the output gradient L and the Cholesky factor L, the backward pass858

compute the input gradient A defined as :859

A =
1
2

L−T𝑙𝑡𝑢(LTL)L−1 (C1)

where 𝑙𝑡𝑢(X) generates a symmetric matrix by copying the lower triangle to the upper triangle.860

In our work, such an operation is useful when optimizing the likelihood in the outer training cost861

function of the neural scheme, see Eq. 20, which involves the determinant of sparse matrices862

Cholesky decomposition.863
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