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I. Context

Over the last years, a very active field of research aims at exploring new data-driven and learning-based methodologies to propose computationally efficient
strategies able to benefit from the large amount of observational remote sensing and numerical simulations for the reconstruction, interpolation and prediction of
high-resolution derived products of geophysical fields.
We use the BOOST-SWOT ocean data challenges (ODC) as playground
datasets.
The 2020 ODC provides the dataset to train our models: the Ground Truth (GT)
x is the high-resolution 1/60◦ NATL60 configuration of the NEMO (Nucleus for
European Modeling of the Ocean) model. A 10◦ × 10◦ GULFSTREAM region
is used with downgraded resolution to 1/20◦. Along-track nadir + wide-swath
SWOT pseudo-observations y are sampled from GT based on real along-track
satellites paths. Last, a baseline is provided by the operational DUACS
Optimal Interpolation (OI) product.

We investigate how the ensemble-based extension of 4DVarNet, denoted
here as 4DVarNet-Gen helps to quantify the uncertainty of Sea Level spatio-
temporal fields x = {xt−L, · · · ,xt+L}.

Figure 1: Ground Truth (SSH) and pseudo-observations

II. Neural variational scheme with SPDE priors

Basic concepts
From a methodological point of view, 4DVarNet [Fablet et al., 2021] derives an
end-to-end neural architecture from an underlying variational data assimilation
formulation:

JΦ(x,y,Ω) = λ1||y −H(x)||2Ω + λ2||x− Φ(x)||2, (1)

where λ1,2 are predefined or tunable scalar weights. In the regularization term,
we substitute to the traditional dynamical prior M a neural operator Φ which
convolutional architecture. Then, we can exploit the automatic differentiation
tools embedded in deep learning framework to consider the following iterative
gradient-based solver Γ for the minimization of variational cost JΦ w.r.t. state
x:

x(i+1) = x(i) −K
[
α ·∇xJΦ(x

(i),y,Ω), h(i), c(i)
]

(2)

where K is a convolutional LSTM model and α a normalization scalar. This
iterative rule based on a trainable LSTM operator is similar to that classically
used in meta-learning schemes [Andrychowicz et al., 2016]. Overall, a 4DVar-
Net scheme defines a neural architecture with a joint learning of operators
{Φ,Γ}, stated as the minimization of a reconstruction cost L, which typically
stands for the MSE (mean squared error) w.r.t. the Ground Truth.

Stochastic extension
Prior operator Φ is not easily interpretable, simply acting as a projection of

state x to help in the gradient-based minimization process. Here, we bring
both interpretability and stochasticity in the neural scheme by considering as
prior surrogate model a linear SPDE:

xt+1 = Mt+1xt + zt+1, Mt+1 = [I + Lt(Θt)]
−1 , zt+1 ∼ N (0, τ2t+1I) (3)

Operator L(Θ) states as the finite difference discretization scheme of a
fractional advection-diffusion operator

{
κ2(s, t)−∇ ·m(s, t)−∇ ·H(s, t)∇

}α/2
with m and H resp. the advection vector and diffusion tensor. τt acts as
variance regularization over space and time and Θ encompasses the SPDE
parameters. Back to the OI variational problem, the prior regularization cost
simply becomes xTQΘx, where QΘ denotes the precision matrix of the prior
state trajectory, and the joint learning of SPDE parametrization Θ with solver
Γ for the reconstruction x⋆ states as the minimization of:

argmin
Θ,Γ

L(x,Θ⋆,x⋆) s.t. x⋆ = ΨΘ,Γ(x
(0),y,Ω) (4)

with L(x,Θ⋆,x⋆) = λ1L1(x,x
⋆) + λ2L2(x,Θ

⋆). L1(x,x
⋆) = ||x − x⋆||2 is the re-

construction cost, i.e. the MSE w.r.t Ground Truth and L2(Θ
⋆|x) is the negative

log-likelihood −L(Θ⋆|x) with:

L(Θ⋆|x) = −|Q(Θ⋆)| + xTQ(Θ⋆)x (5)

used as the prior regularization cost.

IV.Results

Table 1: Performance metrics (RMSE scores mean and standard deviations, minimal spatial and temporal scales resolved) of
DUACS OI and 4DVarNet-Gen for mapping, NRT, and forecast (lead times 2 and 4) configurations.

name mean(RMSE) std(RMSE) spatial scale (°) temporal scale (days)
OI (1 swot + 4 nadirs) 0.92 0.02 1.37 11.36

4DVarNet-Gen (mapping) 0.94 0.01 1.15 6.98
4DVarNet-Gen (NRT) 0.91 0.02 1.18 9.87

4DVarNet-Gen (Forecast, leadtime=2) 0.87 0.03 1.6 12.63
4DVarNet-Gen (Forecast, leadtime=4) 0.78 0.04 2.32 28.84

Conditional simulations

Such SPDE formulation enables to draw samples xs,i in the prior distribution p(x). To make these simulations compliant with the
observations, we draw from traditional geostatistics and kriging-based conditioning [Wackernagel, 2003] and replace the prior model
and kriging solver, also known as Optimal Interpolation (OI) or BLUE (Best Linear Unbiased Estimator) in the DA community, see
e.g. [Asch et al., 2016], by our neural scheme. A conditional simulation x⋆,i writes:

x⋆,i = x⋆ + {xs,i − x⋆,s,i} (6)

It was shown that 4DVarNet estimation [Beauchamp et al., 2022; Fablet et al., 2021] enables to improve the OI, see also Table 1,
i.e. it is still unbiased but with lower MSE w.r.t the ground truth, i.e. lower error variance. Running an ensemble of N simulations
conditioned by 4DVarNet will provide an approximation of the probability distribution function px|y with both improvements on the
two first moments x⋆ and P⋆ compared to simulations conditioned by traditional Gaussian solvers.

Figure 2: Standard deviations of 200 4DVarNet-Gen conditional
simulations for mapping, NRT, and forecast (lead times 2 and 4)

configurations along the test period.
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III. SPDE estimation and Generative modeling

Figure 3: SPDE parameter estimations: [top] first day of the test period; [bottom] time series
along the GF meandrum (left) and in the less energetic left-lower part of the domain (right).

On the top panel of Figure 3, the maps of all the parameters are shown on the first day of
the test period, while on the bottom panel, the time series of these parameters along the test
period on the two locations identified by the red stars are displayed. The first one (left) is
located along the Gulf Stream meander and the second one (right) is in the less energetic
left-lower part of the domain. It clearly indicates how the parameters are distributed according
to the main meandrum and smaller eddies. Interestingly, we can see from the time series how
the 7 parameters are not perfectly correlated along the test period, which indicates capabilities
of the model to adapt each parameter independently given the observations available. Such
a methodological development can be used not only for the initial mapping problem targeted,
but also for near-real-time (NRT) and short-term forecast problems (see Figure 4), where we
can see how the surrogate SPDE model can be used as a generative model for prior sampling
in the DA scheme. Figure 4: An example of the GT anomaly (GT-4DVarNet) for near-real-time (NRT) application

along the data assimilation window and one simulation after training of the SPDE parameters
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