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Challenges in spatial oceanography
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DA or?, and? ML
Data assimilation

Each component designed using model-driven principles and mostly inde-
pendently. . . . But somewhat difficult to fully exploit observational datasets.

Machine learning

How to exploit prior knowledge for DA ? Can we calibrate all the components
of a DA scheme at once?
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Problem statement
Problem

Using a data assimilation (DA) state space formulation, we aim at estimating
the hidden space

x = {xk (D)}

y(Ω) = {yk (Ωk )}: the partial and potentially noisy observational
dataset
Ω = {Ωk} ⊂ D, the subdomain with observations and index k refers
to time tk .
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Optimal Interpolation
Current solutions

1 Covariance-based Kriging [Chilès and Delfiner, 2012], BLUE, OI [Traon
et al., 1998]
and SPDE-based version [Lindgren et al., 2011]

x⋆ = ΣxyΣ
−1
yy y = −Q−1

xx Qxyy

where:
Σxy = Cov{xk ,y} ∈ Rm×p denotes the (cross-)covariance between xk and y
Σyy = Cov{y,y} ∈ Rp×p denotes the covariance between the observations
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State space data assimilation
Current solutions

2 Model-based data assimilation (DA) with a state-space formulation:{
xk+1 = Mk+1(xk ) + ηk

yk = Hk (xk ) + εk

sequential DA: (En)KF [Evensen, 2009]
variational assimilation, (3DVar, 4DVar) [Asch et al., 2016]
Hybrid methods to combine flow-dependent covariance matrix from
EnKF into variational schemes
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Machine learning and data assimilation
ML frameworks and data assimilation (DA) schemes: growing interest to
address challenges in Earth system modeling.
This includes both:

the integration of learning-based components in DA schemes
the design of DA-inspired learning-based schemes to address inverse
problems and uncertainty quantification (UQ) for dynamical processes

Current solutions

3 Data-driven DA based on analog forecasting operator embedded in
EnKF [Tandeo et al., 2015]

4 Hybrid ML/DA synergy for the inference of unresolved scale
parametrizations [Brajard et al., 2021, Bocquet et al., 2019, O’Gorman and
Dwyer, 2018, Rasp et al., 2018]
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4DVarNet: a Neural scheme backboned on
variational DA
Neural variational scheme

Joint learning of both prior Φ and solver Γ backboned on variational data assimila-
tion scheme:

x⋆ = argminxJ (x,y, Ω) = argminx||Hx − y||2Ω + λ||x − Φ (x)||2

For inverse problems with time-related processes, the minimization of functional JΦ

usually involves an iterative gradient-based approach, denoted here as the solver
ΓS , with a neural operator S that learns how to speed up the gradient descent:

x(i+1) = x(i) − S
[
α∇xJΦ(x(i),y,Ω)

]
x spatio-temporal state: x0, · · · ,xT, y the observations on Ω ⊂ D,
Φ a trainable prior, Γ a trainable solver to speed up the gradient descent.

Both Φ and S are neural operators: we benefit from deep learning automatic
differentiation tools to run the gradient descent of the variational scheme
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Neural variational scheme
Interpretation

Fully data-driven generic interpolation/forecasting tool

Φ must be seen as a projection operator of state x. It is not here the emulator of any
deterministic prior model...

But it can be (future works) or something else (Gaussian Process for instance, see
e.g. Beauchamp et al. [2023])

In the current version:

Φ involves a UNet architecture

S has a 2D convolutional LSTM architecture

Bi-level optimization for end-to-end learning
Let denote by ΨΦ,Γ(x(0), y,Ω) the output of the neural learning scheme, then the joint learning
of operators {Φ, Γ} to optimize the gradient-based descent on the inner variational cost:

J (x, y, Ω) = ||Hx − y||2Ω + λ||x − Φ(x)||2

is stated as the minimization of the outer reconstruction loss:

arg min
Φ,Γ

L(x, x⋆) s.t. x⋆ = ΨΦ,Γ(x(0), y,Ω)

with L the MSE w.r.t Ground Truth.
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Figure 1: Generic scheme of the DL approach: the so-called neural network
4DVarNet is fed with a sequence of gappy observations as inputs, and aims at
providing a reconstruction of the entire state sequence

Which training loss

Supervised loss: The GT is known everywhere (OSSE setup with
model-based or reanalysis GT).

L(x,x⋆) = ||x − x⋆||2

Semi-supervised loss: Only the observations are available on
subdomain Ω of D. Then we remove some additional observations
on subdomain Ω̃ ⊂ Ω and the loss becomes:

L(y,x⋆) = ||y − x⋆||2
Ω̃
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Observation System Simulation Experiment

Ground truth dataset x: high-resolution
1/60◦ NATL60 configuration of the NEMO
(Nucleus for European Modeling of the
Ocean) model

A 10◦ × 10◦ GULFSTREAM region is
used with downgraded resolution to
1/20◦, principally led by mesoscale
processes

NATL

GF

Figure 2: GULFSTREAM
domain

OSSE : pseudo-altimetric nadir and SWOT observational datasets y = {yk}
at time tk are generated by a realistic sub-sampling satellite constellations on
subdomain Ω = {Ωk} of the grid.

Figure 3: From left to right: Ground Truth (SSH & ∇SSH) and pseudo-observations
(nadir & nadir+swot) on August 4, 2013
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Figure 4: GT, Obs, OI and the neural variational scheme
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4DVarNet: Transfer learning
5 Transfer learning to real data at regional/global scale: Learn on

simulations and inference on real altimetric data

Figure 5: Transfer learning to real nadir data on the whole North Atlantic basin scale
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4DVarNet: a link to GP
Link with Gaussian Processes: let consider a Gaussian prior
xb ∼ N (μb,Q−1

Θ ) instead of the UNet prior formulation
The inner variational cost in the 4DVarNet scheme becomes:

x⋆ = argminxJ (x,y, Ω)

= argminx||Hx − y||2Ω +
[
x − μb

]T
QΘ

[
x − μb

]

If the true state x is also Gaussian,
then OI/kriging/Blue estimator is
optimal.
4DVarNet should asymptotically reach
the OI

Figure 6: Asymptotic
convergence of 4DVarNet to
OI (Gaussian case)
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Towards a stochastic neural variational
scheme: playing with the prior distribution
Stochastic neural variational scheme

1 Key idea: sample members xs,i in the prior distribution

2 Posterior pdf: use the neural solver for conditioning the prior:

x⋆,i = x⋆ + {xs,i − x⋆,s,i}

How to generate ensemble members from "a" prior distribution?

How to sample in the prior
based on partial observations
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Towards a stochastic 4DVarNet: SPDE-based
generative modelling (I)
Could we try to generate ensemble members from a prior distribution?

1 Geostatistical-based idea, use a GP approximation of prior operator Φ
in 4DVarNet, driven by stochastic PDEs (SPDE):

FΘxb = z

2 FΘ a fractional differential operator (embedding advection, diffusion,
etc. - all SPDE parameters being grouped in Θ) and z a white/colored
noise

3 Why doing that: get back to interpretable DA scheme using SPDE as
a surrogate prior model along the DAW:

∂xb

∂t
+
{
κ2(s, t) + m(s, t) · ∇ −∇ · H(s, t)∇

}α/2
xb(s, t) = τz(s, t)

Using the FDM:

xt+dt = Mt+dtxt + Tt+dtzt

Mt+dt = (I + dtBt+dt)
−1 denotes the matrix operator that emulates the

SPDE dynamical evolution of prior state xb from time t to t + dt .
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Towards a stochastic 4DVarNet: SPDE-based
generative modelling (II)
We know how to compute the precision matrix Q of prior state sequences
{xb

0, · · · ,x
b
Ldt}, where xb

0 ∼ N (μ0,P0) denotes the initial state. By denoting
Sk = TkTT

k , we have

Q =



P−1
0 +MT

1S−1
1 M1 −MT

1S−1
1 0 0 0 ... 0

−S−1
1 M1 S−1

1 +MT
2S−1

2 M2 −MT
2S−1

2 0 0 ... 0
0 −S−1

2 M2 S−1
2 +MT

3S−1
3 M3 −MT

3S−1
3 0 ... 0

0
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . . . . . . . 0

...
. . . . . . . . . −S−1

L−1ML−1 S−1
L−1+MT

LS−1
L ML −MT

LS−1
L

0
. . . . . . . . . 0 −S−1

L ML S−1
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Towards a stochastic 4DVarNet: SPDE-based
generative modelling (III)

4DVarNet is trained with an augmented state formulation {x,Θ} with
Θ the (non-stationary) SPDE parameters of prior xb

Joint learning of SPDE parametrization Θ and solver Γ:

arg min
Θ,Γ

L(x,x⋆,Θ⋆) s.t. x⋆ = ΨQΘ,Γ(x
(0),Θ(0),y,Ω)

The (supervised) training loss function is:

L(x,Θ⋆,x⋆) = λ1L1(x,x⋆)︸ ︷︷ ︸
reconstruction cost

+ λ2L2(x,Θ⋆)︸ ︷︷ ︸
prior regularization cost

where:
1 L1(x,x⋆) = ||x − x⋆||2 the MSE w.r.t Ground Truth (reconstruction

cost)
2 L2(Θ

⋆|x) the negative log-likelihood −L(Θ⋆|x) (prior regularization
cost):

L(Θ⋆|x) = −|Q(Θ⋆)|+
[
x − μb

]T
QΘ⋆

[
x − μb

]
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4DVarNet-SSH: the data assimilation window
The application used to focus on interpolation/reconstruction: we
agreggate data assimilation windows of 9 days (a sample) to
reconstruct the day at the center of the window
Let precise that the exact same scheme can be trained also for
near-real-time (NRT) or short-term forecasting tasks

Figure 7: An example of the 9-day data assimilation window (DAW) used in the
current setup. The target reconstruction relies to interpolation product, then the day
at the center of the window.
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4DVarNet-SSH: illustrating the iterative solver
The LSTM solver: how does it work?

Figure 8: An example of the 10-step LSTM-based iterative solver: at step 0, the
state x is only filled with observations (when available) and 0 elsewhere. From step
1 to 9, the solver has learnt how to fill in the original gaps based on the previous
observations to comply with training loss L
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4DVarNet-SSH: Prior estimation and
simulation (I)

Figure 9: SPDE parameter estimations: [top] first day of the test period; [bottom] time
series along the GF meandrum (left) and in the less energetic left-lower part of the
domain (right).
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4DVarNet-SSH: Prior estimation and
simulation (II)

Figure 10: An example of the anomaly x − xb for near-real-time (NRT) application
along the data assimilation window and three simulations after training of the SPDE
parameters
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4DVarNet-SSH: Posterior estimation and
uncertainty quantification

Figure 11: SSH gradient of the
4DVarNet daily reconstruction on the
GF domain and the related focus on the
bottom-left 50×50 pixels subdomain
(red box) where the difference amongst
4 members are shown

Figure 12: Standard deviations of 200
4DVarNet-Gen conditional simulations
for mapping, NRT, and forecast (lead
times 2 and 4) configurations along the
test period.
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Take-home messages
Neural variational scheme: current state
We can bridge DNN and variational models to solve inverse problems.

Key tools: unrolling of the gradient-step descent with a recurrent neural
network, typically a ConvLSTM.

Learning jointly neural (but also physical prior), observation models and
solvers

Considerably ease the use of multimodal observations (computational
cost and trainable feature extraction operator)

Stochastic implementation (I): UQ of 4DVarNet schemes based on the
conditioning of large SPDE-based prior ensemble

Stochastic implementation (II): Link to diffusion models for more general
SDEs:

dx = f(x, t)dt + G(x, t)dw

with f(·, t) : Rm → Rm, g(·, t) :
Rm → Rm×m and w(s, t) is a
Wiener process.

xN x0

Forward process (backward in time)
dx = f(x, t)dt+G(x, t)dw

xN x0Reverse process (forward in time)
dx = f̃(x, t)dt+G(x, t)dw
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