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Abstract

Cyclostationary features of communication signals are known to compromise the security of trans-

missions against eavesdropping attacks. They can be used for signal detection, modulation recognition or

for blind estimation of PHY layer parameters. This work presents a method that voluntarily distorts the

transmitted signal to hide the cyclostationary patterns. This distortion is obtained with a pseudo-random

time-varying filter that combines time warping and dispersive filtering. The proposed method acts as a

plugin that is applicable to most existing transmission scheme. It is shown that this distortion can be

easily reversed by the cooperative receiver using a simple matched filter combined with resampling.

In the context of underwater acoustic communications, numerical results with replay simulations of

channels measured at sea illustrate the benefits of the proposed method. For both a coherent and a

noncoherent modem, the induced distortion is shown to be robust to existing cyclostationary attacks, at

the cost of a slight reduction in data rate. Furthermore, no performance degradation in terms of packet

error ratio is observed for cooperative transmissions.
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I. INTRODUCTION

In its broadest sense, communications security refers to measures taken to ensure the

confidentiality, integrity, and availability of communication channels and the information they

carry. It involves measures like encryption to ensure that unauthorized individuals cannot access

the information but also transmission security (TRANSEC) measures to prevent malicious

jamming attacks or to prevent eavesdroppers from collecting intelligence without necessarily

having defeated encryption [2].

Until recently, security aspects of underwater acoustic communications (UAC) were mostly

limited to the implementation of low-probability of detection and/or low-probability of in-

terception (LPD/LPI) techniques, including spread-spectrum, frequency-hopping or directional

transmissions [3]. These TRANSEC protections are used for covert communications but also

as a way to mitigate the effects of the challenging propagation conditions experienced at sea

(multipath, Doppler effect, noise, interference, etc.) [4]–[6]. With the development of underwater

acoustic systems for critical defense and industrial applications, it is now becoming essential to

further improve the security of communications. With this in mind, recent works have proposed

cryptosecurity solutions and/or countermeasures resistant to specific network attacks [7]–[9].

Despite this progress, most UAC security solutions still allow intelligence to be collected

by reverse-engineering the physical layer of the intercepted signal. This includes identifying the

modulation format, the framing or the error-correcting code [10]–[14]. Identifying the modulation

parameters is critical from an eavesdropper’s perspective. It can provide significant intelligence

information and is a prerequisite for performing bit-level analysis. With standard modulation

format, such an identification can be achieved efficiently by exploiting the cyclostationary (CS)

features of communication signals [11], [12], [15]–[19]. Cyclostationarity refers to the periodic

behavior of the statistical properties of a signal. For communication signals, such a periodicity can

be induced by various design choices such as repetitive pulse shaping or specific framing/coding

[12], [20]. From a security perspective, CS features are then considered as weaknesses since

they ease the work of eavesdroppers.

A common approach to remove CS features from communication signals is to randomize

the symbol period over time, with periods belonging to a predetermined discrete set [21], [22].

Specific features can also be attenuated by introducing a pseudo-random frequency jitter at
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the signal generation [23]. An alternative method is also to build signals belonging to the set

of nonrelatively measurable functions such that their time-average-based statistical functions

are nonconvergent [24]. Although efficient, these techniques are usually applicable to specific

modulation formats and require to fully redesign the corresponding receiver. This can affect the

complexity and performance of communication systems, and can also be costly, in terms of

engineering time, to design, implement, and test these specific waveforms.

In this article, an alternative point of view is introduced. Our idea is to design a low-complexity

TRANSEC plugin that can be added to any existing physical layer. More specifically, we propose

to add a specific time-varying linear filter just before transmission to strongly distort the CS

pattern perceived by an eavesdropper. This filter can be described as the aggregation of two

transforms. The first one consists in time-warping the signal to be transmitted with a pseudo-

random continuous function. Its effect is to spread the energy in the cyclic domain, the CS

signal becoming a time-warped CS process [25]. The second transform is a dispersive filter

that changes the original CS signature to prevent a well-informed eavesdropper from finding the

inverse warping function that restores the regular cyclicity of the observed signal. In addition

to its efficiency in hiding the CS features, it is shown that the effects of these transforms can

be easily reversed by the cooperative receiver using a simple matched filter combined with a

resampler. The main advantage of this approach is that it can be applied to any modulation format

and does not require a complete redesign of existing transmitters and receivers. The downside is

a slight reduction in data rate. The method is discussed in the context of UAC and restricted to

second-order CS features. Its performance is tested in realistic scenarios with replay simulations

of UAC channels measured at sea [26]. To demonstrate the general applicability of the proposed

method, it is applied to both a noncoherent and a coherent modem.

The rest of this article is organized as follows. Concepts and definitions related to the second-

order cyclostationarity of communications signals in UAC channels are reviewed in Section

II. The implementation of intentional warping is presented and illustrated in Section III. It is

followed in Section IV by the description of the additional TRANSEC component based on

dispersive filtering. Section V briefly presents how the combination of the two transforms can

be expressed as a time-varying filter. Performance is illustrated with both a noncoherent and

coherent modem in Section VI. Finally, concluding remarks are given in Section VII. In all

sections, Alice and Bob denote the cooperative transmitter and receiver, respectively, and Eve
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denotes the eavesdropper.

II. PRELIMINARY MATERIAL

A. Cyclostationarity of UA Communication Signals

A random signal x(t) is said to be almost second-order cyclostationary (ACS) in the wide

sense if its mean and autocorrelation are almost-periodic functions of time [10], [27]. More

specifically, let Rx(t, u) be the autocorrelation function defined as

Rx(t, u)
∆
= E {x∗(t)x(t+ u)} . (1)

If x(t) is ACS, Rx(t, u) admits the following generalized Fourier series expansion

Rx(t, u) =
∑
α∈A

Rα
x(u)ei2παt (2)

where A denotes the countable set of possibly incommensurate cycle frequencies α and Rα
x(u)

is the cyclic autocorrelation function defined as

Rα
x(u)

∆
= lim

T→∞

1

T

∫ T
2

−T
2

Rx(t, u)e−i2παtdt. (3)

If A = {k/Ts}k∈Z, for some Ts > 0, then x(t) is said to be cyclostationary.

The ACS features can also be revealed by the cyclic spectrum and the spectral coherence

density, respectively defined as

Sαx (ν)
∆
=

∫
R
Rα
x(u)e−i2πuνdu (4)

Cα
x (ν)

∆
=

Sαx (ν)√
S0
x(ν)S0

x(ν − α)
. (5)

As discussed in [12], most UAC signals exhibit cyclostationary features due to the repetitive

use of the same pulse-shaping filter, same spreading sequence, to the redundancy induced by a

cyclic prefix or to signaling patterns such as preambles, postambles and time-frequency pilots.

However, depending on the characteristics of the propagation channel, theses features can be

distorted. For instance, the channel over which mobile and wideband acoustic systems usually

communicate can transform cyclostationary signals into a sum of motion-dependent time-warped
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cyclostationary processes [25], [28]. More specifically, given an ACS input communication signal

x(t) and a time-varying channel impulse response hc(τ, t), the received signal r(t) satisfies

r(t) =

∫
R
hc(τ, t)x(t− τ)dτ + η(t)

=
L∑
`=1

λ`(t)s`(t) + η(t) (6)

where λ`(t) is the random complex attenuation of the `-th channel tap and η(t) is the wide-

sense stationary additive noise. The time-varying impulse response is assumed to be wide-sense

stationary [29] so that E {λ∗`(t)λm(t+ u)} = Rλ`,λm(u) does not depend on t. s`(t) denotes a

delayed, phase and frequency shifted as well as possibly time-warped version of x(t), that is,

s`(t)
∆
= x(ψ`(t)− τ`)ei2πfc(ψ`(t)−τ`−t) (7)

where τ` is the initial time-of-arrival of the `-th tap, fc is the carrier frequency and ψ`(t) is the

time-varying delay of the `-th tap due to motion. Over the duration of a communication packet,

ψ`(t) is commonly modeled as a deterministic second-order polynomial function [12], [30]

ψ`(t)
∆
= γ1,`t+ γ2,`t

2 (8)

where the pair (γ1,`, γ2,`) models the motion-induced Doppler scaling1, with γ1,` depending on

the relative velocity between the transmitter and the receiver, and γ2,` on the relative acceleration.

If (γ1,`, γ2,`) = (γ1, γ2),∀ `, the channel is said to be single scale-multilag, otherwise it is said

to be multiscale-multilag. The value of (γ1, γ2) can have a strong impact on the ACS features

at reception. More specifically, as shown in [12], the autocorrelation function Rr(t, u) satisfies

Rr(t, u) =
L∑
`=1

L∑
m=1

Rλ`,λm(u)Rs`,sm(t, u) +Rη(u) (9)

where

Rs`,sm(t, u) ≈ ei2πfc(ψm(t+u)−ψ`(t)+τ`−τm−u)

×
∑
α∈A

Rα
x(ψm(u) + τ` − τm)ei2πα(ψ`(t)−τ`).

(10)

As discussed in [12, Sec. III-B], this approximation is valid provided that the observation interval

is not too large (typically on the order of a few seconds for most mobile and wideband acoustic

1Note that these parameters also include virtual Doppler scaling due to clock-frequency mismatch between the transmitter

and the receiver.
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channels, and, possibly, much longer for static low-frequency channels). if γ2,` 6= 0 in (8), then

we observe in (10) that Rr(t, u) is not a periodic function of time t but a linear combination of

several linear chirp signals whose time-varying phases depend on t2. The received signal is not

ACS in this scenario. It is said to be time-warped cyclostationary. Also, if γ2,` = 0 but γ1,` 6= 1,

r(t) is ACS but its cycle frequencies are shifted compared to those of x(t). Although distorted by

the channel, the range of values taken by (γ1,`, γ2,`) can be bounded by physical considerations so

that the CS features of x(t) can still be exploited by an eavesdropper using advanced processing

of r(t) [12]. For instance, in typical underwater scenarios, the relative velocity is on the order of

a few meters per second, the acceleration is bounded by a couple a meters per second squared

and the sound speed is around 1500 m.s−1 so that |γ1,` − 1| . 1/150 and |γ2,`| . 1/1500 s−1

(see [12, Sec. III-A] for more details).

B. Cyclic statistic estimators

Cyclostationarity-based signal interception relies on estimators that are briefly reviewed here.

As mentioned in the introduction, a vast body of literature is related to cycle frequency estimation

and detection. We here only focus on estimators that will be used for illustration purposes

and performance measurement in this work. For non UAC-specific estimators, a more detailed

analysis, including implementation aspects, can be found in [27, Ch. 5 & 8].

1) Cyclic correlogram: The cyclic correlogram is an estimator of (3) and, over a time interval

Tobs, is defined as [27, Sec. 5.4.1]

R̂α
x(u)

∆
=

1

Tobs

∫ Tobs

0

x∗(t)x(t+ u)e−i2παtdt. (11)

It is commonly used to estimate the cycle frequencies by locating the peaks in α of the functions

maxu

∣∣∣R̂α
x(u)

∣∣∣ or
∫ um
−um

∣∣∣R̂α
x(u)

∣∣∣2 du, where um bounds an interval in which Rα
x(u) is expected

to be significantly nonzero [31]. It is also used as a basis for the design of cyclic detectors such

as [32], [33].

2) Approximated dewarped cyclic correlogram: This correlogram is a generalization of (11)

to situations where γ2,` 6= 0 in (8). It has been specifically designed for UAC signals and it is

defined as [12, Sec. III-D]

Ĵαx (u;µ1, µ2) =
1

Tobs

∫ Tobs

0

x∗(t)x
(
t+ ψ−1µ1,µ2(u)

)
× e−i2π(αψµ1,µ2 (t)+2µ2ufct)dt (12)
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where

ψµ1,µ2(t) = µ1t+ µ2t
2 (13)

and

ψ−1µ1,µ2(t) =


1

2µ2

(√
µ2
1 + 4µ2t− µ1

)
, µ2 6= 0,

t
µ1
, µ2 = 0, µ1 6= 0.

(14)

Ĵαx (u;µ1, µ2) can be used in the same way as (11) to estimate or detect cycle frequencies but

requires an additional maximization over (µ1, µ2) to compensate for the Doppler effect.

3) Cyclic periodogram: The cyclic periodogram is an estimator of (4) and can be expressed

as [27, Sec. 5.4.2]

Ŝαx (ν)
∆
=

∫
R
R̂α
x(u)q (u∆ν) e−i2πνudu (15)

where ∆ν denotes the spectral frequency resolution and q (·) is a tapering window. Based on

(15), it is possible to estimate the spectral coherence density as

Ĉα
x (ν)

∆
=

Ŝαx (ν)√
Ŝ0
x(ν)Ŝ0

x(ν − α)
. (16)

Similarly to the correlogram, cycle frequencies can be estimated or detected by maximizing or

integrating over ν the magnitude of either (15) or (16) [34].

III. INTENTIONAL WARPING

A. Warping operator

As discussed in the introduction, we suggest to voluntarily distort the time scale of the signal

to be transmitted in order to make the ACS features negligible. This distortion can be modeled

as a linear time-varying filter of impulse response hw(τ, t)
∆
= δ (τ − t+ w(t)) such that the new

transmitted signal can be expressed as

y(t) =

∫
R
hw(τ, t)x(t− τ)dτ = x(w(t)) (17)

where δ (·) denotes the Dirac delta distribution and w(t) is a strictly increasing continuous time-

warping function. If Tmax denotes the duration of the signal x(t) than w−1(Tmax) is the duration

of the signal y(t).

As opposed to the Doppler-induced time warping, we expect this intentional warping function

to be difficult to reverse-engineer by an eavesdropper. Its effect on the ACS features can be
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highlighted by looking at the cyclic autocorrelation function or the cyclic spectrum. More

precisely, it can be shown that [25, Sec. II-C]

Ry(t, u) =
∑
β∈A

aβ(t, u)eiφβ(t) (18)

where aβ(t, u)
∆
= Rβ

x(w(t+u)−w(t)) and φβ(t)
∆
= 2πβw(t). Therefore, over a finite observation

interval Tobs, the cyclic autocorrelation function and the cyclic spectrum satisfy, respectively

Rα
y (u;Tobs)

∆
=

1

Tobs

∫ Tobs

0

Ry(t, u)e−i2παtdt =
1

Tobs

∑
β∈A

∫ Tobs

0

aβ(t, u)eiφβ(t)e−i2παtdt (19)

and

Sαy (ν;Tobs)
∆
=

∫
R
Rα
y (u;Tobs) e

−i2πuνdu =
1

Tobs

∑
β∈A

∫ Tobs

0

Aβ(t, ν)eiφβ(t)e−i2παtdt (20)

where Aβ(t, ν) is the Fourier transform with respect to u of aβ(t, u). Both (19) and (20) are

expressed as the sum of the Fourier transform of amplitude and frequency modulated (AM-

FM) signals. This implies that the energy of y(t) will be spread in the cyclic-domain. Also, it

can be noticed that the instantaneous frequency of each AM-FM signal is proportional to the

derivative of φβ(t) and therefore to the derivative of the warping function w(t). Consequently,

cyclic features become more diffuse as the range of this derivative increases. In other words,

the more nonlinear w(t) is, the better the ACS features are hidden.

To quantify the impact of the nonlinear part of w(t), we define the relative cyclostationary

index (RCI) as follows

RCI ∆
=

max
|µ|<1

∑
α∈A

∫
R

∣∣R(1+µ)α
y (u;Tobs)

∣∣2 du∑
α∈A

∫
R |Rα

x (u;Tobs)|2 du

=

max
|µ|<1

∑
α∈A

∫
R

∣∣S(1+µ)α
y (ν;Tobs)

∣∣2 dν∑
α∈A

∫
R |Sαx (ν;Tobs)|2 dν

. (21)

This positive index compares the energy of the signal in the cyclic domain before and after

warping. The maximization over µ is meant to make the index scale invariant, so that a linear

warping function will give an RCI of one, which is the value also obtained without warping.

Another way to analyze the impact of w(t) in the context of communication signals is to derive

the expression of the transmission channel as perceived by Eve. Since both the warping function
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and the propagation channel are linear operators, the combined effect of the two operators can

be modeled with a time-varying impulse response hw)c such that

r(t) =

∫
R
hw)c(τ, t)x(t− τ)dτ + η(t) (22)

with

hw)c(τ, t)
∆
=

L∑
`=1

λ`(t)δ (τ − (t− w (ψ`(t)− τ`)))× ei2πfc(ψ`(t)−τ`−t). (23)

Eq. (23) results from the merger of (6) and (17). Combined with the real propagation channel,

(23) shows that intentional warping is equivalent to creating an artificial channel with multipath

arrivals that drift in time as a function of w(t). This is further discussed and illustrated in Sec.

III-C.

B. Choice of the warping function and cooperative recovery

The analysis of Sec. III-A shows that w(t) should fluctuate quickly to maximize the security

of the transmission. However, the use of warping is not free for the cooperative communication

between Alice and Bob. It affects the signal bandwidth and therefore the spectral efficiency. We

also have to make sure that it can be reversed at reception.

More specifically, let IBx(t) be the instantaneous bandwidth of a signal x(t). It is defined as

[35]

IBx(t)
∆
= K

√∫
R (ν − ν̄x(t))2 Px(t, ν)dν∫

R Px(t, ν)dν
(24)

where Px(t, ν) denotes the spectrogram of x(t), K is some constant and

ν̄x(t)
∆
=

∫
R νPx(t, ν)dν∫
R Px(t, ν)dν

(25)

is the instantaneous central frequency. As shown in App. A, after warping, the instantaneous

bandwidth of x(t) is modified such that

IBy(t) ≈ w′(t)× IBx(w(t)) (26)

where w′(t) > 0 is the derivative of w(t). IBy(t) cannot be greater than the available bilateral

bandwidth Bmax of the transducer for any time t, otherwise part of the signal will not be
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transmitted. Therefore, assuming that x(t) is a full-band signal, w(t) must be designed such

that, for any t,

−Bmax

2
≤ IBy(t)

2
+ ν̄y(t) ≤

Bmax

2
. (27)

For centered signals with a constant instantaneous bandwidth such as PSK, QAM, DSSS or

OFDM signals, we have ν̄x(t) = 0 and IBx(t) = Bmax for all t. In that case, IBy(t) ≈ w′(t)Bmax

so that the previous constraint simplifies to

0 < sup
t
w′(t) ≤ 1. (28)

In other scenarios where maxt IBx(t) < Bmax or for specific signals like those used in chirp-

based transmissions [36], w′(t) can occasionaly be greater than one without violating condition

(27). The ratio of spectral efficiency between y(t) and x(t) can be quantified by the following

factor

ξw
∆
=

Tmax

w−1(Tmax)
. (29)

If inequality (28) is satisfied then y(t) is expanded compared to x(t) so that ξw ≤ 1.

By dewarping the received signal using the inverse of w(t), the cooperative receiver can expect

to remove the effect of intentional warping. In practice, the warping-dewarping operation is not

transparent because of the propagation channel that sits in the middle and that is unknown to

Alice and Bob. Therefore, care must be taken in the recovery process as well as in the design

of w(t).

First of all, as a consequence of the solution to Cauchy’s functional equation [37], if w(t) is not

a linear function then it is not possible to inverse the effect of warping without synchronization. In

other words, it does not exist a nonlinear and increasing warping function such that w(w−1(t)−

τ0) = t − w(τ0), ∀ τ0 ∈ R. In practice, this means that dewarping must be applied after the

receiver is time-synchronized. This is not a problem since most UAC systems use preambles

for detection and synchronization. Even if the preamble is warped, since w(t) is known to

the cooperative receiver, this new warped preamble is also known so that it does not impact the

detection and synchronization process. The same comment applies for the Doppler scale. It must

be compensated at reception before applying the inverse of the warping function w(t). Again,

the Doppler scale is usually estimated using the preamble. Its compression/dilation effect is then

compensated by performing a sampling rate conversion using an interpolator [38]. For the sake
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of simplicity, we illustrate this procedure with a single scale-multilag channel, i.e., ψ`(t) = ψ(t)

for all `, and with η(t) = 0. Based on (23), the received signal is first expressed as

r(t) =
L∑
`=1

λ`(t)x (w (ψ(t)− τ`)) ei2πfc(ψ(t)−τ`−t). (30)

After time synchronization and carrier frequency offset compensation it becomes

r1(t) =
L∑
`=1

λ`(t)x (w (ψ(t)− τ̃`)) e−i2πfcτ̃` (31)

where the τ̃` denote the initial time of arrival after synchronization such that there is a tap `0

satisfying τ̃`0 = 0. After compensating for the Doppler scale by resampling, we then have

r2(t) = r1(ψ
−1(t)) (32)

=
L∑
`=1

λ`(ψ
−1(t))x (w (t− τ̃`)) e−i2πfcτ̃` .

Finally, the inverse function of w(t) is applied to get

r3(t) = r2(w
−1(t))

=
L∑
`=1

λ̃`(t)x
(
w
(
w−1(t)− τ̃`

))
e−i2πfcτ̃`

= λ̃`0(t)x (t) +
L∑
`=1
`6=`0

λ̃`(t)x
(
w
(
w−1(t)− τ̃`

))
e−i2πfcτ̃`

(33)

where λ̃`(t) = λ`(ψ
−1(w−1(t))). Note that since there is no analytical expression for the warping

function, w−1(t) is obtained numerically. Another way of writing (33) is to consider that x(t)

is transmitted over a channel hw)c)w-1(τ, t) defined as

hw)c)w-1(τ, t)
∆
=

L∑
`=1

λ̃`(t)δ
(
τ −

(
t− w

(
w−1(t)− τ̃`

)))
× e−i2πfcτ̃` (34)

such that r3(t) =
∫
R hw)c)w-1(τ, t)x(t − τ)dτ . Eq. (33) shows that the intentional warping-

dewarping operation is not transparent to taps other than the one to which the receiver is

synchronized. In fact, if no warping were used, i.e, if w(t) = t, we would get

r3(t) = λ̃`0(t)x (t) +
L∑
`=1
` 6=`0

λ̃`(t)x (t− τ̃`) e−i2πfcτ̃` . (35)
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Since we do not want to sacrifice performance for security, and since our approach must have a

minimal impact on the design of existing receivers, we need to make sure that w (w−1(t)− τ̃`)

is not so different from t− τ̃`, at least for the most energetic taps. Therefore, although w(t) must

be nonlinear to hide the ACS features according to Sec. III-A, a compromise must be found to

avoid performance degradation.

Without loss of generality, a simple and easily customizable way to generate w(t) is considered

next. Let the warping function be expressed as

w(t) = (1− ρ)t+ ε(t) (36)

where ε(t) is a slowly varying function such that ρ−1 < ε′(t) ≤ ρ with ρ = supt ε
′(t). The level

of nonlinearity of w(t) is then controlled by ρ > 0 and by the speed of fluctuation of ε(t). To

control this speed and making sure that w(t) is random from Eve’s perspective, we suggest to

generate ε(t) by filtering a white Gaussian noise with a low-pass filter of cut-off frequency νε.

The fluctuation rate of ε(t) is then characterized by the power spectral density of its derivative

which satisfies

PSD (ε′(t)) (ν) ∝ ν2Π2νε(ν) (37)

where ΠA(·) denotes a gate function of width A. Note that the linear part of w(t) does not

contribute to the obfuscation of the CS signature, it is only useful to ensure that the instantaneous

bandwidth of the warped signal is not greater than the maximum available bandwidth. Moreover,

with this design, (28) is always satisfied so that it can be applied to any type of waveforms.

Finally, although the formalism of linear time-varying systems is relevant to perform a

theoretical analysis of the effect of warping, in practice, it will be easier to implement warping

by resampling the signal to be transmitted prior to digital-to-analog conversion.

C. Illustrations

The effect of intentional warping is illustrated with a noncoherent spread-spectrum modulation

scheme. More precisely, the signal x(t) is a communication packet that starts with a preamble

made of a 255-chip long M-sequence followed by a quaternary (pseudo) orthogonal signaling.

Each data symbol is coded with a 63-chip Gold sequence chosen among a set of 4 possible

sequences. This scheme also employs a rate-1/2 convolutional code. A root raised-cosine pulse

is used with a roll-off factor of 1/10 at a chip rate of 3636 chip/s so that the symbol period

March 13, 2024 DRAFT



13

Fig. 1: Sample-path example of the nonlinear part of the warping function, ρ = 0.05 and νε = 0.5

Hz.

satisfies Ts ≈ 17.3 ms. Each packet contains 200 bits with an effective bitrate Reff = 52.5 bit/s

so that Tmax = 3.8 s.

This noncoherent modulation scheme was specifically chosen for illustration because it has

a very pronounced pattern in the cyclic domain, making it possible to observe the effect of

warping over a wide range of cycle frequencies. In fact, as can be deduced from [12, Eq. (80)],{
− 63
Ts
, · · · , 0, · · · , 63

Ts

}
⊆ A, so that there is a large number of significant cycle frequencies. The

warping function w(t) is generated as described in (36) and illustrated in Fig. 1. The effect of

w(t) on the theoretical RCI is shown in Fig. 2 as a function of the parameter ρ, defined in (36).

The larger ρ, the more the cyclostationary signature is distorted. Since, on average, the data rate

loss caused by w is equal to ρ, Fig. 2 shows that we can achieve efficient CS distortions with

only a few percent rate loss. For this specific modulation format, note that warping could also be

combined with the use of an outer spreading code to generate long-code sequences and further

reduce the CS signature [39].

A realistic scenario with replay simulations using a real shallow-water channel is now

considered. By convolving input signals with at-sea measurements of impulse responses, channel

replay has become a standard procedure to test underwater communication systems [26], [40]–

[43]. The channel used for the illustration is the KAU1 channel provided with Watermark [26].

For this channel, Bmax = 4 kHz and fc = 6 kHz. Fig. 3-(a) shows the time-varying impulse
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Fig. 2: Relative cyclostationary index as a function of ρ.

(a) (b) (c)

Fig. 3: KAU1 channel impulse response. (a) original measurement, (b) channel as perceived by

Bob after dewarping, (c) channel as perceived by Eve.

response of this channel as measured at sea over the duration of a data packet.2 It is very close

to a single-scale channel. As expressed in (34), even though Bob knows the warping function,

the equivalent channel hw)c)w-1 after dewarping may exhibit some artificial Doppler effect for

later arrivals. This is illustrated in Fig. 3-(b), where slight fluctuations of late arrivals are visible,

as highlighted in the white box. Moreover, in practice, the unintentional warping ψ(t) due to

the Doppler effect may not be perfectly corrected by the receiver. As discussed in App. B, this

2Note that the mean Doppler scale has been compensated first to better visualize the impulse response, i.e. hc (τ + (1− γ1)t, t)

is shown. For more details see [29].
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(a)

(b)

Fig. 4: Effect of warping on the spectral coherence density (no noise). (a) no warping, w(t) = t,

(b) with warping w(t) = (1− ρ)t+ ε(t), ρ = 0.05 and ε(t) as shown in Fig. 1.

can also have a small effect on the inversion of w(t). However, as illustrated in Sec. VI, these

artifacts have little impact on the performance of the cooperative modem. To complement the

analysis, Fig. 3-(c) shows the equivalent channel as perceived by Eve. For better visualization,

the linear part ρt of w(t) was compensated first, i.e. hw)c(τ + ρt, t) is shown. As expected,

warping creates an artificial channel with w-dependent time-varying drifts of the arrivals.

Finally, Fig. 4 confirms the theoretical result of Fig. 2 by showing the estimated ACS features

without and with warping at the channel output. Estimates of the spectral coherence densities are
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obtained with the strip spectral correlation analyzer (SSCA) [44], followed by a maximization

over frequency ν. The power of the noise η(t) was set to zero to focus on the effect of w(t). The

cyclic pattern of the original modulation scheme is clearly visible in Fig. 4-(a), where peaks at

multiples of the symbol rate Ds = 1/Ts ≈ 57.7 Bd are manifest. After warping with ρ = 0.05,

Fig. 4-(b) shows that this pattern disappears, making blind signal identification or parameter

estimation using standard cyclic estimators ineffective.

D. Advanced attacks

Although not specifically designed in the context of signal interception, two recent methods

could be employed by Eve to mitigate the effect of intentional warping in the blind signal

analysis process.

The first candidate approach described in [25, Sec. V] consists in estimating the warping

function by angle demodulation. Based on the knowledge of a pair (u0, α0) where Rα0
x (u0) 6= 0,

the idea is to estimate the unwrapped phase of the signal r∗(t)r(t + u0)e
−i2πα0t after low-pass

filtering. The main advantage of this method is that it is very simple to implement. However, it

is sensitive to noise and multipath. Therefore, it may not perform well in the context of covert

communications.

An alternative approach, proposed in [45], is to find the inverse warping function that restores

the regular cyclicity of the observed signal. Assume that the inverse warping function can be

approximated as

w−1(t) ≈ ϕ(t)
∆
=

K∑
k=1

θkdk(t) = θTd(t) (38)

where {dk(t)}k=1,··· ,K is a linearly independent set of functions chosen according to prior

information on w−1. Based on the knowledge of a pair (u0, α0) where Rα0
x (u0) 6= 0, the idea is

then to find the vector θ that maximizes the dewarped cyclic correlogram3∣∣∣∣ 1

Tobs

∫ Tobs

0

r∗(ϕ(t))r(ϕ(t+ u0))e
−i2πα0tdt

∣∣∣∣2 . (39)

In the context of underwater acoustics, this function must be modified to take into account the

Doppler effect. By combining (12) and (39), the inverse warping function can be estimated by

3Note that a variation of this approach is also proposed in [45].
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solving the following optimization problem

max
µ1,µ2,θ

∣∣∣Jα0
rϕ (u0)

∣∣∣2 (40)

where

Jαrϕ(u)
∆
=

1

Tobs

∫ Tobs

0

r∗(ζ(t))r(ζ(t+ u))e−i2πα0t × e−i2πfc(ϕ(t)−ϕ(t+u)+ζ(t+u)−ζ(t))dt (41)

and

ζ(t)
∆
= ψ−1µ1,µ2(ϕ(t)). (42)

As opposed to the first approach, this attack can be robust to the channel effects and to the noise.

However, its applicability depends on the computational complexity of solving the optimization

problem (40). The objective function is not convex in θ and K may be large. As discussed

in [45, Sec. 7], the minimum dimension K is obtained with prolate spheroidal wave functions

and satisfies K ≥ 4Bw−1Tobs, where Bw−1 denotes the monolateral bandwidth of w−1(t). If

the structure of the generator (36) is known (but not the key) to the eavesdropper, then (38)

can be replaced with w−1(t) ≈ t/(1 − ρ) +
∑K

k=1 θkdk(t), where K ≥ 4νεTobs. This inequality

shows that the larger the fluctuation rate of ε(t), the larger the number K of basis functions

required to dewarp the data. In other words, the complexity of estimating the warping function

by Eve increases with νε. It may then be tempting for Alice to choose a high value for νε, but a

compromise must be found as it may also increase the sensitivity of Bob’s cooperative dewarping

to possible time synchronization errors. The complexity of this attack is further discussed in Sec.

VI-B where the method is evaluated in a realistic context.

Although these advanced attacks cannot be applied without prior knowledge of the original

cyclostationary signature, we want the transmission to be as secure as possible. Therefore, an

additional protection is proposed in the next section.

IV. DISPERSIVE FILTERING

A. Design

An efficient way to prevent advanced attacks, such as those described in Sec. III-D, is to apply

a transformation D such that the cyclic autocorrelation function of the transmitted signal does
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not have energy where it is expected. Let us assume for the moment that no intentional warping

is applied and let the set of lags Ux be defined as

Uαx = {u : Rα
x(u) 6= 0} . (43)

Ideally, we would like to build a new signal z(t) = (Dx) (t) such that

Rα
z (u) ≈ 0, ∀u ∈ Uαx . (44)

In addition, to maximize resistance to attack, it is desirable that the peak amplitude of the cyclic

autocorrelation function be attenuated such that

max
u
|Rα

z (u)| < max
u
|Rα

x(u)| (45)

for any cycle frequency of interest.

An easy way to do so is to apply, before transmission, a linear filter of impulse response

hd(t) that takes advantage of the following result. Let ~t denote convolution with respect to t,

if z(t) = x(t) ~t hd(t) then [10, Eq. (3.83) ]

Rα
z (u) = Rα

x(u) ~u A
α
d (u), (46)

where Aαd (u) is the narrowband ambiguity function of hd, defined as

Aαd (u)
∆
=

∫
h∗d(t)hd(t+ u)e−i2παtdt. (47)

Based on the convolution expressed in (46), our idea is then to find a function Aαd (u) that shifts

and spreads the cyclic energy along the lag axis u so that (44) and (45) are satisfied. It is also

important that the cooperative receiver is able to reverse the filtering process to recover the

transmitted signal. This last constraint can be translated into the following requirement. Let B

denote the (bilateral) bandwidth of x(t), hd(t) must be designed such that there exists u1 ∈ R

for which

χ`d(u) ≈ K`sinc (πB(u− u1)) , ∀ 1 ≤ ` ≤ L (48)

where K` is a random variable satisfying

E {|K`|} = E {|λ`|} , ∀ 1 ≤ ` ≤ L (49)
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and where χ`d(u) denotes the wideband ambiguity function defined as

χ`d(u)
∆
=∫

R
h∗d(t)λ`(t+ u)hd(ψ`(t+ u))ei2πfc(ψ`(t+u)−(t+u))dt.

(50)

χ`d(u) represents the response of a filter matched to hd(t) when it is received with a delay u,

compressed or dilated with a Doppler scale ψ`(t) and modulated with a random time-varying

amplitude λ`(t). Therefore, if (48) and (49) are satisfied, it means that Bob can reverse the effect

of the linear filter hd(t), to within a delay u1, by simply applying a matched-filter at reception,

while being robust to Doppler scale and Doppler spread. Another way to interpret (48) is that

the output of the matched filter must be approximately flat over the bandwidth of interest, even

in presence of Doppler. It is also important to note that if (48) is satisfied, the cooperative

inversion of the filter hd(t) can be performed without any form of synchronization, making it

easy to implement in practical systems.

Similarly to intentional warping, using a linear filter slightly affects the data rate. The ratio

of spectral efficiency between z(t) and x(t) can be quantified by the following factor

ξg
∆
=

Tmax

Tmax + Td
(51)

where Tmax is the duration of x(t) and Td denotes the duration of the filter’s impulse response.

Without loss of generality, a simple and easily customizable way to satisfy (44), (45), (48)

and (49) is to consider the family of dispersive filters that we define, in our context, as filters

whose impulse responses satisfy

hd(t) = a(t)eiφ(t)1[−Td/2,Td/2](t), (52)

with a(t) ≥ 0. 1(·) denotes the indicator function and Td is chosen to be greater than the inverse

of the smallest cycle frequency of interest. For standard, UAC systems, this means that Td must

be greater than the symbol period Ts. This definition is very general and includes any kind

of parametric AM-FM signals. Potential candidates can be found in Radar/Sonar references on

ambiguity functions [46] or can even be bio-inspired [47], [48]. A specific example is studied

in the next section.
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B. Illustrations

For illustration purposes, we consider the family of chirp-filters as a running example. In this

case, a(t) is a low-pass and smooth amplitude function and φ(t) is an oscillating phase. The

main advantage of these filters is that the trade-off between all the constraints listed previously

can be easily tuned by changing the value of a few parameters. It is illustrated next with, what

we call, a Gompertz chirp, whose phase and amplitude satisfy

φ(t) =
πB

U − L
(
2Ei
(
bec(t+Td/2)

)
− (U + L)(t+ Td/2)

)
a(t) =

√
e(be

c(t+Td/2)+c(t+Td/2)), (53)

where Ei(x) = −
∫∞
−x e

−t/t dt, U = Bebe
cTd and L = Beb. The amplitude a(t) is chosen to be

proportional to the square-root of the second-order derivative of the phase to make the power

spectral density function of hd(t) approximately flat in the bandwidth B [49]. We call this filter

a Gompertz chirp because its instantaneous frequency is a truncated Gompertz function. It is

parameterized by the pair (b, c) which makes it easy to generate a wide range of chirps, from

(almost) linear or hyperbolic to sigmoid.

Fig. 5-(a) shows an example of the narrowband ambiguity function corresponding to the

Gompertz filter. Td is set to 100 ms, B = 4 kHz and (b, c) = (−5,−5). It is clearly visible

that the support of this ambiguity is not centered around u = 0 and that its amplitude decreases

rapidly with α. Although linear filters do not eliminate cyclostationary features, this means that

hd(t) attenuates, shifts, and spreads the cyclic autocorrelation function of x(t) along the lag axis

u so that (44) and (46) are satisfied. This is illustrated in Fig. 5-(b) where the cyclic correlogram

(11) is shown for the waveform described in Sec. III-C and for the cycle frequency set to the

chip rate. This figure was obtained at transmission, i.e. without a channel and without noise.

As expected for such a waveform, if no transformation is applied, the cyclic correlogram has

a strong peak around u = 0 that can be easily detected to blindly estimate the chip rate [12].

After filtering, this peak is less visible and is not where it is expected to be. Without knowledge

of the filter parameters, it then becomes difficult for an eavesdropper to detect, interpret, and

exploit this unusual CS signature, especially when combined with intentional warping.

Fig. 6 shows the wideband ambiguity function of the Gompertz chirp. The relative velocity

ranges from ±10 m/s and the relative acceleration was set to 0.1 m/s2 so that γ1,` = 1±2/3·10−3
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(a)

(b)

Fig. 5: (a) Narrowband ambiguity function of the Gompertz filter and (b) its effect on the cyclic

correlogram of the spread-spectrum signal described in Sec. III-C, α = 3636 Hz.

and γ2,` = 1/3 · 10−5 s−1. The channel attenuation λ`(t) was modeled as a zero-mean complex

Gaussian process with a variance set to 4/π such that E {|λ`|} | = 1. The Doppler spectrum

was obtained with a maximum entropy model [50]. The RMS Doppler spread was set to 1 Hz.

This figure shows that the Gompertz chirp is very robust to Doppler scale since the amplitude

and the shape of χ`d(u) is almost invariant to velocity. A higher velocity only induces a greater

static delay u1, which is not problematic for most applications. For Td = 100 ms, Doppler

spread also has a limited effect and causes almost no loss compared to a time-invariant channel
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Fig. 6: Wideband ambiguity function of the Gompertz filter.

(maxE
{
|χ`d(u)|

}
≈ 1). As a conclusion, (48) can be satisfied in operational scenarios so that

the filtering plus matched filtering process will not affect the performance of the cooperative

receiver.

Dispersive filtering also drastically affects the parameters of the transmission channel as

perceived by Eve. Conversely, as the process can be reversed by Bob, the channel perceived after

matched filtering remains very close to the real one. More precisely, with dispersive filtering but

no warping, Bob perceives the following channel:

hd)c)d∗(t)
∆
=

∫
R

∫
R
hc(τ, u)hd(u− τ)h∗d(u− t)dτdu, (54)

whereas, without the knowledge of hd, Eve perceives

hd)c(t)
∆
=

∫
R
hc(τ, t)hd(t− τ)dτ. (55)

As illustrated in Fig. 7 with the KAU1 channel impulse response measured at sea, the power-

delay profile of hd)c)d∗(t) is similar to the one of hc(τ, t), while it is harsher for hd)c(t). There

are no identifiable individual taps and the time-delay spread is larger. Blind synchronization or

equalization will then become more difficult for Eve. Finally, as shown in Fig. 8, applying a

dispersive filter will also tend to “Gaussianize” the signal and make it look more like noise. This

is very likely to cause modulation classification techniques that are based on statistical moments

and cumulants to fail [51].
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Fig. 7: Power delay profiles of the KAU1 channel as perceived by Bob and Eve after dispersive

filtering.

Fig. 8: Effect of the dispersive filter on the histogram of the real part of the noncoherent signal

described in Sec. III-C.

C. Implementation aspects

When implementing dispersive filtering, care must be taken to ensure that the filter signature

is not visible on time-frequency representations. As illustrated in Fig. 9-(a), during the transient

and decay time of the convolution z(t) = x(t)~thd(t), an explicit pattern revealing the presence

of a dispersive filter may be visible on the spectrogram if the SNR is good. As shown in Fig.

9-(b), this signature can be easily hidden by adding a signal whose time-frequency signature fills
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(a)

(b)

Fig. 9: Spectrogram of the transmitted signal after dispersive filtering. (a) without time-frequency

filling, (b) with time-frequency filling.

the blanks of the spectrogram. In practice, such a signal can be obtained by filtering a random

signal with the dispersive filter hd(t) and then adding the last samples at the beginning of z(t)

and the first samples at the end of z(t). As shown in Sec. VI, the procedure does not impact

the performance of preamble-based communication systems.

V. UNIFIED FRAMEWORK

Since both warping and dispersive filtering can be represented as linear operators, the

combination of the two transformations can be modeled as a linear time-varying filter. More

specifically, let y(t) = x(w(t)) and z(t) = y(t)~thd(t). As shown in Appendix C, the transmitted
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signal z(t) can be expressed as

z(t) =

∫
hw)d(τ, t)x(t− τ)dτ (56)

where

hw)d(τ, t) =
∣∣∣(w−1)′ (t− τ)

∣∣∣hd (t− w−1(t− τ)
)
. (57)

Given the complexity of hw)d(τ, t), the main assumption of this paper is that its effects cannot

be inverted by an eavesdropper without prior information on its parameters. An example of

this time-varying impulse response is shown in Fig. 10. Again, to make this figure easier to

interpret, the linear part ρt of w(t) has been removed, i.e. hw)d(τ + ρt, t) is shown. Once the

two transformations are applied, the ratio of spectral efficiency between z(t) and x(t) is

ξw)g
∆
=

Tmax

w−1 (Tmax) + Td
. (58)

The overall cooperative procedure for transmission and reception is summarized in Fig. 11. The

TRANSEC extensions are identified in dotted lines. First, the key generator provides the warping

function w(t) and the impulse response hd(t) of the dispersive filter to both the transmitter and

the receiver. Once the data packet is ready to be transmitted by Alice, the signal is warped

with the function w(t) and then filtered with hd(t), or, equivalently, filtered with hw)d(τ, t).

If necessary, the time-frequency filling procedure discussed in Sec. IV-C is also applied. At

reception, the matched filter h∗d(−t) is first applied by Bob and then the existing algorithms for

detection, synchronization and Doppler compensation are run. The output signal is dewarped

using resampling and then demodulated as well as decoded with the existing signal processing

chain. Again, the main advantage of this approach is that it can be applied to any existing

packet-based modems with little modifications. If a full black-box approach is desired at the

receiver front-end, this can be achieved by encapsulating the existing packet into a super frame

with an additional preamble. The cost is a slight reduction in data rate.

VI. PERFORMANCE

The aim of this section is twofold. Firstly, to verify that the proposed transformations have

little impact on the performance of the cooperative receivers and, secondly, that they are robust

to possible eavesdropper attacks. Both noncoherent and coherent communication systems are

considered and several attack scenarios are tested. The performance is evaluated under realistic
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(a)

(b)

Fig. 10: Example of a time-varying impulse response corresponding to the application of both

warping and dispersive filtering. (a) Real part (b) Imaginary part.

conditions using replay simulations with the Watermark dataset [26]. This dataset is made of

more than 150 channel impulse responses measured at 5 different locations and frequencies.

Watermark is run in SISO (single-input single-output) mode and all simulations are performed

with an additive white Gaussian noise. To mimic at-sea conditions, the receiver has no prior

knowledge about signal start, Doppler scale or channel impulse response. The warping function

w(t) is drawn at random for each Monte Carlo run, with ρ = 0.05 and νε = 0.5 Hz. The duration

of the impulse response of the dispersive filter is set to Td = 100 ms.
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Fig. 11: Baseband representation of the full processing chain between Alice and Bob.

A. Noncoherent communication

The noncoherent scheme is the one described in Sec. III-C. The cooperative receiver uses a

filter matched to a bank of Doppler-scaled preamble replicas for detection, synchronization and

Doppler estimation. A bank of matched-filters combined with a noncoherent rake receiver is also

used for symbol detection. The warping function w(t) is inverted using resampling with a cubic

spline interpolator. Results are examined versus the in-band SNR defined as

SNR =
Reff

B
× Eb
N0

(59)

where Eb is the signal energy per information bit, N0 is the power spectral density of the additive

noise and the bandwidth is set to B = 4 kHz.

Fig. 12 shows the packet error ratio (PER) of the cooperative receiver as a function SNR for

the five types of Watermark channels. A packet error occurs when one or more bits are in error

at the decoder output, or when the packet is not detected. Plain lines represent the output of the

replay simulation without transformation and dash lines with the application of hw)d(τ, t) and its

inverse as described in Fig. 11. As expected, because of the differences in time and frequency

selectivity, performance changes from one channel to another but the main observation is that,

whatever the channel, the performance of the cooperative receiver is not affected by hw)d(τ, t).

Therefore, although the equivalent channel after dewarping may exhibit some artificial Doppler

for later arrivals (see Sec. III-C), this phenomenon is too small to impact the performance. The

only cost is a slight loss in spectral efficiency with ξw)g ≈ 0.93 in this scenario.
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Fig. 12: Packet error ratio of the noncoherent modem.

The robustness to a cyclostationary analysis is illustrated in Fig. 13. We consider the scenario

where Eve wants to estimate the symbol duration Ts of the transmitted signal. Since Watermark

channels are almost single scales, this estimation is performed using the approach described

in [12, Sec. IV-C], which is based on peak detection on the spectral coherence density. The

performance is evaluated in terms of probability of correct estimation (PCE), which is defined

as the probability that the relative estimation error is less than 1%, that is

PCE = P

(∣∣∣∣∣ T̂s − TsTs

∣∣∣∣∣ ≤ 10−2

)
. (60)

For each SNR, this probability is estimated with 100 Monte-Carlo trials. If the cyclostationary

features are not hidden with hw)d, the symbol duration can be estimated easily in all channels.

Excellent performance is achieved even for negative SNRs in the less challenging NOF1 and

BCH1 channels. However, as soon as hw)d is applied, P̂CE becomes less than 1% for all SNRs

making the cyclostationary analysis ineffective.

B. Coherent communication

Since the transformation is linear time-varying, it is legitimate to wonder whether an

eavesdropper would be able to “equalize” this transformation using an advanced receiver. This

question is eluded by considering a QPSK modem and a very pessimistic scenario where the

eavesdropper knows everything about the transmitted signal (preamble, framing, modulation,
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Fig. 13: Correct estimation rate of the symbol duration as a function of SNR.

symbol rate, coding, etc.) except the information bits and hw)d. To try compensate for the effect

of hw)d, an adaptive turbo equalizer is used at reception with a PLL and a Doppler tracking

loop [52]. The equalizer is trained over 1500 symbols and 1496 information bits per packet are

transmitted. The total packet duration is approximately 1.03 s. The symbol rate is set to 3200

Bd and a rate-1/2 convolutional code is also used. At reception, synchronization is performed

with a bank of matched filters, similar to the one used by the noncoherent receiver. To focus on

the effect of hw)d, simulations are run with the BCH1-Hydrophone #1 channel, which is one of

the most stable channel of the Watermark dataset. The PER is considered as the performance

metric for this investigation. The outcome of the simulations is shown in Fig. 14, leading to

the following observations. Similarly to the noncoherent modem, the use of hw)d does not affect

the performance of the coherent cooperative receiver. Although an advanced receiver is used to

compensate for hw)d, the equivalent channel perceived by Eve is way too challenging to make

it possible to achieve reasonable performance. 100% of the packets are erroneous.

To further test the robustness of our approach, the advanced attack described in (40) is evalu-

ated. Again, a very advantageous scenario for the eavesdropper is considered. It is assumed that

Eve knows the symbol rate and has access to the generator of w(t), as described in (36), without

knowing the pseudo-random key of that generator. To help solving (40), it can be shown that the

inverse warping function can be well approximated as w−1(t) ≈ ϕ(t) = t/(1−ρ)+
∑K

k=1 θkdk(t),

with K = 10 and where dk(t) are prolate spheroidal functions [45]. The cost function (41) is
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Fig. 14: Packet error ratio of the coherent modem.

evaluated for the warped QPSK signal, without dispersive filtering, at the output of the BCH1

channel for u = 0 and a SNR set to 15 dB. Fig. 15 shows an example of this cost as a function

of θ1 and θ2 when θ3 to θ10 as well as ρ, µ1 and µ2 are set to their optimal values. The peak

indicates that the inverse warping function could be theoretically estimated using (41) when no

dispersive filtering is applied. However, even in this ideal scenario, it also shows that the peak is

very sharp and that the optimization problem if highly nonconvex. For a grid search optimization

of the full set {θk}k=1,··· ,10, we have estimated that the grid size should be greater than 1015 to

capture the maximum of (41) in the the current scenario. This makes the attack described in

Sec. III-D infeasible in practice. Moreover, even if computational complexity was not a problem,

the use of a dispersive filter after warping makes the attack inefficient. In this case, Jαrϕ(u) has

no peak for any u because if z(t) = x (w(t)) ~t hd(t) then z (w−1(t)) 6= x(t) ~t hd(t). In

other words, for the eavesdropper to have any chance of success, the effect of the dispersive

filter must first be compensated for before attempting to estimate the warping function. The two

transformations are not interchangeable.
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Fig. 15: Example of the cost function (41) when no dispersive filtering is applied.

VII. CONCLUSIONS

It is shown in this work that cyclostationary features, as perceived by an eavesdropper, can

be easily distorted by applying a well-chosen time-varying filter before transmission. When this

filter results from the application of a pseudo-random time warping function combined with

a dispersive filter whose impulse response duration is greater than the symbol period, existing

cyclostationary attacks are very likely to fail. This can be explained by the fact that the equivalent

transmission channel, as perceived by the eavesdropper, becomes much more difficult than the

actual propagation channel. There are no identifiable individual taps, the time delay spread is

increased, and the arrivals drift very rapidly over time. The time-varying filter also tends to

“Gaussianize” the signal and make it look more like noise, which is likely to cause moment and

cumulant based modulation recognition techniques to fail. The price to pay for such a protection

against attacks is a slight reduction in data rate.

Metrics that characterize the trade-off between the level of intentional distortion and the ability

for a cooperative receiver to reverse its effect have been formulated. These metrics have also

been illustrated with replay simulation using the Watermark dataset and a noncoherent spread-

spectrum modem as well as a QPSK modem. In all scenarios, with a data rate reduction of

7%, the proposed method has been robust to cyclostationary attacks without affecting the packet

error ratio of the cooperative transmission.

Moreover, it is important to emphasize that the proposed approach is of reasonable complexity
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and can be applied to any existing transmission scheme. It acts as a plugin that does not require

the complete design of a specific waveform and/or the implementation of a specific receiver.

Therefore, it can be dynamically activated or not depending on the operational context. Finally,

while the method is discussed in the context of underwater acoustic communications, we believe

that it could easily be transposed to other communication scenarios.

APPENDIX A

EFFECT OF WARPING ON THE INSTANTANEOUS BANDWIDTH

Let y(t) = x(w(t)), with w(t) a differentiable and strictly increasing function. Let q(·) denote

an analysis function with a support of length T . The short-time Fourier transform of y(t) can

be expressed as

Y (t, ν)
∆
=

∫
R
y(u)q(u− t)e−i2πνudu (61)

= e−i2πνt
∫ T

0

q(u)y(u+ t)e−i2πνudu (62)

= e−i2πνt
∫ T

0

q(u)x(w(u+ t))e−i2πνudu. (63)

If w(·) is slowly varying over the interval [t, t + T ], using a first-order Taylor expansion, we

then have the following approximation

w(u+ t) ≈ w(t) + uw′(t) (64)

where w′(t) > 0 denotes the derivative of w(t). Consequently

Y (t, ν) ≈ e−i2πνt
∫ T

0

q(u)x(w(t) + uw′(t))e−i2πνudu (65)

=
e−i2πνt

w′(t)

∫ Tw′(t)

0

q

(
u

w′(t)

)
x(w(t) + u)e

−i2π ν
w′(t)udu. (66)

As discussed in Sec. III-B, the warping must be moderate so as not to reduce the data rate too

much. More specifically, if we consider that supt |w′(t)− 1| � 1 and that the analysis window

is slowly varying over the interval [0, T ], it is reasonable to assume that∫ Tw′(t)

0

q

(
u

w′(t)

)
x(w(t) + u)e

−i2π ν
w′(t)udu ≈

∫ T

0

q (u)x(w(t) + u)e
−i2π ν

w′(t)udu (67)

so that

|Y (t, ν)|2 ≈
∣∣∣∣ 1

w′(t)
X

(
w(t),

ν

w′(t)

)∣∣∣∣2 . (68)
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It then follows that∫
R
Py(t, ν)dν =

∫
R
|Y (t, ν)|2 dν ≈ 1

w′(t)

∫
R
Px(w(t), ν)dν. (69)

Based on definition (25), we have

ν̄y(t) ≈ ν̄x(w(t))w′(t) (70)

so that ∫
R

(ν − ν̄y(t))2 Py(t, ν)dν ≈ w′(t)

∫
R

(ν − ν̄x(w(t)))2 Px(w(t), ν)dν. (71)

Therefore, by injecting (69) and (71) in (24), we can conclude that

IBy(t) ≈ w′(t)× IBx(w(t)). (72)

APPENDIX B

EFFECT OF IMPERFECT DOPPLER SCALE COMPENSATION

As discussed in Sec. III-B, the cooperative receiver can only remove the effect of the intentional

warping w(t) if the effect of the Doppler scale has been removed first. However, in practice, the

unintentional warping due to motion-induced Doppler scaling may not be perfectly estimated by

the receiver. A common example is the case where the receiver assume a constant Doppler scale,

i.e., ψ(t) = γ1t, whereas the actual Doppler effect is better modeled with ψ(t) = γ1t + γ2t
2

or even with a higher-order polynomial. This way of operating is generally justified by the fact

that once the constant Doppler scale γ1 is compensated for by resampling, the effect of the

remaining terms is considered as an additional Doppler shift that can be tracked using closed-

loop narrowband processing.

Let ψ̂(t) be the Doppler-induced warping function estimated by the receiver. If the standard

receiver, i.e., without the TRANSEC plugin, has been correctly designed, it means that it is

able to compensate the perturbations induced by the imperfect Doppler scale estimation, that is,

the perturbations resulting from the effect of ∆ψ(t)
∆
= ψ

(
ψ̂−1(t)

)
6= t. A way to measure the

effect of this imperfect estimation once the TRANSEC plugin has been activated it to compare

the function w (∆ψ (w−1(t))) with ∆ψ(t). If there is no significant difference, it means that the

performance of the receiver is not affected more by this imperfection than it already is when
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Fig. 16: Histogram of the average relative error due to imperfect Doppler scale compensation.

operating without the TRANSEC plugin. To quantify this difference, we define the average

relative error due to imperfect Doppler scale compensation (AREIDC) as follows

AREIDC(w,∆ψ) =
1

Tmax

∫ Tmax

0

∣∣∣∣w (∆ψ (w−1(t)))−∆ψ(t)

∆ψ(t)− t

∣∣∣∣ dt. (73)

Note that the normalization is done with ∆ψ(t) − t and not ∆ψ(t) because the closed-loop

processing is usually designed to track the deviation from the nominal time scale t.

Fig. 16 shows the distribution of the AREIDC for a function ∆ψ(t) expressed as ∆ψ(t) =

t + γ2
γ1
t2. This corresponds to the typical scenario where Doppler resampling is applied only to

compensate the constant scale γ1. The result has been obtained with 5000 Monte-Carlo trials and

for Tmax = 3.8 s. At each trial, w(t) is randomly chosen according to (36), with ρ = 0.05, and
γ2
γ1

is chosen uniformly between values corresponding to minimum and maximum accelerations

of 0.1 and 0.5 m.s−2, respectively. The main observation is that the AREIDC is on the order

of a few percents in this realistic scenario. This is quite small and means that if the receiver is

designed to handle ∆ψ(t) 6= t with closed-loop processing, it should also handle the effect of

w (∆ψ (w−1(t))) without any modification.

March 13, 2024 DRAFT



35

APPENDIX C

COMBINATION OF WARPING AND DISPERSIVE FILTERING

Let y(t) = x(w(t)) and z(t) = y(t) ~t hd(t). The transmitted signal then satisfies

z(t) =

∫
hd(u)y(t− u)du =∫∫

hd(u)δ (v − t+ u+ w(t− u))x(t− u− v)dvdu =∫ (∫
hd(τ − v)δ (τ − t+ w(t− τ + v)) dv

)
︸ ︷︷ ︸

∆
=hw)d(τ,t)

x(t− τ)dτ.

(74)

hw)d(τ, t) can then be written as

hw)d(τ, t) =

∫
hd(τ − v)δ (f(v)) dv (75)

where f(v) has a root at v0(τ, t) = τ − t + w−1(t− τ). From the properties of the Dirac delta

function, it follows that

hw)d(τ, t) =
hd(τ − v0(τ, t))
|f ′(v0(τ, t))|

. (76)

Therefore,

hw)d(τ, t) =
hd(t− w−1(t− τ))

|w′ (w−1(t− τ))|
(77)

=
∣∣∣(w−1)′ (t− τ)

∣∣∣hd (t− w−1(t− τ)
)
.

The last step follows from the inverse function rule [53, Ch. 5.3].
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