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ABSTRACT

Deep learning has been widely used recently for sound event de-
tection and classification. Its success is linked to the availability of
sufficiently large datasets, possibly with corresponding annotations
when supervised learning is considered. In bioacoustic applications,
most tasks come with few labelled training data, because annotating
long recordings is time consuming and costly. Therefore supervised
learning is not the best suited approach to solve bioacoustic tasks.
The bioacoustic community recasted the problem of sound event
detection within the framework of few-shot learning, i.e. training
a system with only few labeled examples. The few-shot bioacous-
tic sound event detection task in the DCASE challenge focuses on
detecting events in long audio recordings given only five annotated
examples for each class of interest. In this paper, we show that
learning a rich feature extractor from scratch can be achieved by
leveraging data augmentation using a supervised contrastive learn-
ing framework. We highlight the ability of this framework to trans-
fer well for five-shot event detection on previously unseen classes in
the training data. We obtain an F-score of 63.46% on the validation
set and 42.7% on the test set, ranking second in the DCASE chal-
lenge. We provide an ablation study for the critical choices of data
augmentation techniques as well as for the learning strategy applied
on the training set. Our code is available on Github.1

Index Terms— Contrastive learning, representation learning,
transfer learning, few-shot learning, bioacoustic sound event detec-
tion.

1. INTRODUCTION

Sound Event Detection (SED) is the task of recognizing sound
events, including determining their onsets and offsets, as well as
recognizing them. SED has many applications in bioacoustics such
as monitoring of biodiversity, studying animal behavior and iden-
tifying species. Automatic bioacoustic SED provides significant
value in our understanding of animal populations and their interac-
tions, as well as individuals and their behaviors. Standard SED sys-
tems leverage supervised learning as well as semi-supervised learn-
ing (DCASE Challenge Task 4) and have shown strong results in the
recent years [1, 2, 3]. Numerous works focused on bird vocalization
due to availability of large bird sound datasets [4, 5]. BirdNet [6]
is a notable work for bird monitoring, able to identify nearly one
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1: https://github.com/ilyassmoummad/dcase23_
task5_scl

thousand bird species. The approach involves training a model in
a supervised fashion using a vast dataset comprising over one mil-
lion labeled bird recordings, using extensive data-preprocessing and
data augmentation techniques.

However, such a large scale data collection for training systems
is not always feasible in bioacoustics. The challenge lies not only in
obtaining annotations but also in acquiring the audio samples them-
selves (e.g. for rare species or fields that are difficult to reach). As a
consequence, bioacoustics SED is considered as a collection of nu-
merous small-data problems, each requiring specialized systems for
their individual solutions. Thus, the community of bioacoustics re-
casted bioacoustic SED as a few-shot learning (FSL) problem [7, 8].

FSL is a machine learning problem where a model has to learn
to adapt to new classes of data unseen during training with only
few labeled samples. FSL is adapted for many applications where
acquisition or annotation is expensive or time consuming. The an-
nual challenge on detection and classification of acoustic scenes and
events (DCASE) organized a third edition for the task of few-shot
bioacoustic sound event detection. This task focuses on SED in a
FSL setting for mammal and bird vocalizations. The goal is to cre-
ate a system that learns from five exemplar vocalizations (shots) to
detect instances of these vocalizations in test audio recording.

Prototypical networks (ProtoNets) [9] were proposed as a base-
line to solve the FSL problem of detecting animal sound events
in the DCASE challenge [8]. ProtoNets, a meta-learning frame-
work, have been state-of-the-art FSL audio systems in the recent
years [10, 11]. The goal of meta-learning training is to develop
models that can quickly adapt to new tasks with minimal data by
simulating the test scenario within the training process. In Com-
puter Vision, simple transfer learning methods have been shown
to outperform meta-learning methods in FSL [12, 13] in several
datasets such as MiniImageNet and TieredImagenet, in which case
the domain shift between the training data and the few shot gener-
alization is small enough. Here, we propose to test transfer learning
to solve FSL problems for the bioacoustic SED [8].

As the generalization capability of the feature extractor is cru-
cial for efficient transfer learning, we propose to train a model using
the supervised contrastive learning framework (SCL) [14]. Numer-
ous contrastive learning methods have been proposed in the self-
supervised learning (SSL) literature [15, 16, 17], but the fundamen-
tal concept of pulling together positive pairs and pushing apart neg-
ative pairs remains the same across these approaches. The posi-
tive pairs consist of similar samples, while negative pairs consist
of dissimilar samples. The selection of these pairs can be achieved
through various means, such as data augmentation techniques [15]
and/or utilizing class labels as in done in SCL [14]. The representa-
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Figure 1: Overview of the proposed framework

tions learned using this framework have shown competitive transfer
learning performance with SSL and cross-entropy (CE) learning on
a variety of downstream tasks in vision [14]. In audio, the works
of Moummad et al. [18] and Nasiri et al. [19] have demonstrated
strong generalization capabilities of SCL.

Following the training of the feature extractor using SCL on
the training set, the learned model is transferred to the validation
set to conduct hyperparameter search. The optimal hyperparameter
setting determined from this process is then employed on the test
set for evaluation. In summary, our contribution revolves around the
proposition of employing supervised contrastive learning to train a
feature extractor that can be transferred to new few-shot bioacoustic
sound event detection tasks.

2. METHOD

This section provides a comprehensive overview of the methodol-
ogy employed in this study (Figure 1). Firstly, we present the SCL
framework utilized for pre-training a good feature extractor model.
Secondly, we describe the data augmentation techniques employed
to enhance the diversity and robustness of the learned features. Fi-
nally, we detail our transfer learning strategy for adapting the pre-
trained model to effectively tackle novel tasks.

2.1. Supervised Contrastive Learning

SCL consists in learning an embedding space in which the samples
with the same class labels are close to each other, and the sam-
ples with different class labels are far from each other. Formally, a
composition of an encoder f and a shallow neural network h called
a projector (usually a MLP with one hidden layer) are trained to
minimize the distances between representations of samples of the
same class while maximizing the distances between representations
of samples belonging to different class. After convergence, h is
discarded, and the encoder f is used for transfer learning on down-
stream tasks. The supervised contrastive loss (SCL) is calculated as
follows:

LSCL =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

s∈S(i)

exp (zi · zs/τ)
(1)

where i ∈ I = {1...2N} is the index of an augmented sam-
ple within a training batch, containing two views of each orig-

inal sample. These views are constructed by applying a data
augmentation function A twice to the original samples. zi =
h(f(A(xi))) ∈ RDP where DP is the projector’s dimension.
P (i) = {p ∈ I : yp = yi} is the set of indices of all positives in the
two-views batch distinct from i sharing similar label with i. |P (i)|
is its cardinality, S(i) = {s ∈ I : s ̸= i}, the · symbol denotes the
dot product, and τ ∈ R+∗ is a scalar temperature parameter that
controls the penalty strength on hard negative samples.

2.2. Data Augmentation

Data augmentation is crucial for learning a good feature extractor
as advocated by the SSL literature [15, 14, 16, ?]. To this end, we
adopt several augmentation modules derived from the audio repre-
sentation learning domain [17, 20, 21]. The following augmenta-
tions are sequentially applied in the prescribed order and are itera-
tively employed twice on the same data, with the exception of spec-
trogram mixing, which is exclusively applied to a single view (based
on our experimental findings, this configuration demonstrated supe-
rior performance). To demonstrate the significance of each augmen-
tation technique, an ablation study is conducted in the subsequent
section.

– Spectrogram mixing: we add background sounds using ran-
dom samples from the same batch. The mixing follows: x̂1 =
αx1 + (1− α)x2. where x̂1 is considered as a view of x1 and
x2 is a random sample from the batch.

– Frequency shift: we approximate frequency shift by shifting
the spectrogram upwards by few bands.

– Random crop: we crop a patch from the spectrogram along the
time axis.

– Spectrogram resize: this augmentation is applied after the crop
to restore the spectrogram to its original size.

– Power gain: we attenuate the power of the spectrogram by mul-
tiplying it with a coefficient sampled uniformly between 0.75
and 1.

– Additive white Gaussian noise: we add a small additive white
Gaussian noise to the view

2.3. Transfer Learning

After training the feature extractor, we transfer the model to the val-
idation and test tasks. Each audio file is treated independently as a
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separate SED problem (as the challenge rules specify). We extract
the features of the five positive annotated prototypes (shots) indi-
cating the occurrence of the event of interest. We select intervals
preceding the positive events as for the negative prototypes indicat-
ing the absence of the event. We train a binary classifier on these
two prototypes using cross-entropy loss. The encoder layers can
be either frozen or fine-tuned. We use a sliding window along the
audio file (starting from the end of the fifth positive shot) to select
queries for making predictions. The class activity is determined in-
dependently in each query window using the classifier. The onsets
and offsets decision is made based on the precise moment when the
label for the window transitions from a negative class to a positive
class and from a positive class to a negative class, respectively.

3. EXPERIMENTS

3.1. Data

The bioacoustic few-shot sound event detection DCASE task devel-
opment set consists of a training set and a validation set, for more
details we refer the reader to the description of the task in 2022 [8]
as these sets did not change from the previous edition.

3.1.1. Training

We train our system on the official training set. We select all the
positively annotated segments within each audio file. We compute
Mel spectrogram features with a FFT of size 512, a hop length of
128, a number of mels of 128 and a sampling rate of 22.05 kHz.
Each positive annotated segment from the training set is chunked
into patches of length 200 ms with 100 ms overlap. We apply min-
max normalization on each patch.

3.1.2. Validation and test

For each audio file, we extract the first five positively annotated
segments. The duration of these segments varies due to the wide
range of animals and classes covered by the dataset. Following the
approach proposed by Tang et al. [22], we determine the window
length based on the mean duration of the events in the file. To
compute Mel spectrogram features, we employ identical parame-
ters and normalization technique as those used during the training
phase. The shift size equals to half of the window length to predict
the class for each query window along the remaining duration of the
audio.

3.2. Model

We use a ResNet [23] consisting of three blocks, each comprising
three convolutional layers. The feature maps of these convolutions
have sizes of 64, 128, and 256, respectively. Following each con-
volutional layer, we apply batch normalization and a leaky rectified
linear unit (ReLU) activation function. Max pooling operations are
performed after each block. Specifically, we employ a 2x2 kernel
for the first and second blocks, while for the third block, we use a
1x2 kernel. This choice is made to preserve frequency information
by avoiding excessive pooling of the frequency bands, as suggested
by Hertkorn [24].

To ensure consistent output dimensions despite varying input
lengths, we incorporate adaptive max pooling at the end of the net-
work. This pooling operation is configured to yield a desired output
size of (8, 1), resulting in a latent vector of size 8 x 256 = 2048. A

MLP projector is added, consisted of a hidden layer with a dimen-
sion of 2048 and an output layer with a dimension of 512.

3.3. Training details

3.3.1. Data augmentation

The spectrogram mixing coefficient α is sampled from a β(5, 2)
distribution. The frequency shift size is uniformly sampled be-
tween 0 and 10. The crop size (i.e. how much total duration is kept
from the original audio) in the Random crop augmentation is uni-
formly sampled between 60% and 100%. Power gain augmentation
is achieved by multiplying the mel spectrogram with a coefficient
uniformly sampled between 0.75 and 1. The additive white Gaus-
sian noise is incorporated by adding noise with a mean of zero and
a variable standard deviation, which is uniformly chosen between 0
and 0.1.

3.3.2. Training and evaluation

We train our model from scratch on the training set using SCL
framework with a temperature τ = 0.06 using SGD optimizer with
a batch size of 128, a learning rate of 0.01 with a cosine decay
schedule, momentum of 0.9, and a weight decay of 0.0001 for 50
epochs. After training, we discard the MLP projector and transfer
the encoder to the validation and test sets by training a linear binary
classifier on the pretrained representations. In this phase we used
random resized crop along the time axis with a crop size ranging
from 90% to 100% of the original size. We submitted four distincts
systems to the challenge : freezing all pretrained layers (Frozen), or
finetuning the last, two last and all layers (FineTune-1, FineTune-2
and Finetune-3). We optimize our systems using Adam optimizer
with a learning rate of 0.01 for 20 epochs for the first system, and
40 epochs with a learning rate of 0.001 for the others. The selection
of these hyperparameters is based on evaluation conducted on the
validation set.

3.4. Results

The performance of our four systems on the validation set is pre-
sented in Table 1. For PB dataset, where events are short (therefore
only few patches are available, because we divide longer events
into multiple chunks), the first system outperforms the others, in-
dicating that fine-tuning degrades the performance when only few
positive patches are present. Conversely, for the HB dataset, where
events tend to be longer, the third and fourth systems outperform the
others. This indicates that finetuning a greater number of layers is
advantageous when more positive patches are present. The second
system demonstrates satisfactory performance across all datasets,
outperforming the other systems across all datasets with a max F1
score of 63.46%. It is important to note that our results on the val-
idation set exhibit significant variability, primarily attributed to the
instability of our proposed cross-entropy adaptation strategy. We
acknowledge this limitation and plan to address it in future work.

Table 2 displays the performance scores of our systems on the
test sets. Remarkably, the ranking order of these systems on the test
set aligns with that observed on the validation set. This consistency
further validates the robustness and generalizability of our models
across different datasets.
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Table 1: Performance of different systems on the validation set; freezing all layers, fine-tuning one, two or all three layers.

System Precision Recall F1-score HB ME PB
Pr Re F1 Pr Re F1 Pr Re F1

Frozen 71.41 55.19 62.26 77.14 81.57 79.29 65.45 69.23 67.28 72.64 36.17 48.29
FineTune-1 73.93 55.59 63.46 82.95 82.32 82.63 67.69 84.61 75.21 72.72 33.33 45.71
FineTune-2 72.90 55.14 62.79 79.73 89.72 84.43 74.60 90.38 81.73 65.57 31.06 42.19
FineTune-all 67.08 51.58 58.32 81.20 91.38 85.99 58.75 90.38 71.21 65.00 27.65 38.80

*We highlight in bold the best scores for each metric

Table 2: F-score on the test sets of the different submissions
F-score

Frozen 35.6% (35.3 - 36.0)
FineTune-1 42.7% (42.2 - 43.1)
FineTune-2 38.3% (37.9 - 38.7)
FineTune-all 34.4% (33.9 - 34.8)

*with 95% confidence interval

3.5. Ablation study

Table 3 presents our ablation study on data augmentation. Ad-
ditionally, Table 4 compares pre-training methods : SCL, cross-
entropy training (CE), and the self-supervised training method Sim-
CLR [15], which has the same formula as SCL but without positive
label pairs. We perform these studies on the validation set using the
first system Frozen, where we freeze all layers, as it better captures
the impact of the pre-training strategy. We use the same hyperpa-
rameter setting described in 3.3 for all experiments except for CE
training where we use a learning rate of 0.0001 after thorough ex-
ploration. Additionally, we modify the training duration for Sim-
CLR, extending it to 100 epochs. This adjustment is made to ac-
count for the longer training requirements typically associated with
self-supervised approaches. To ensure reliable results, we trained
the model five times on the training set and conducted five evalua-
tions for each run, resulting in a total of twenty-five runs per exper-
iment.

Table 3: Ablation of Data augmentation on the validation set
DA removed Mean [Min, Max]
Frozen (with all DAs) 56.47 [49.37, 62.39]
- Spectrogram mixing 56.59 [47.99, 64.65]
- Frequency shift 58.60 [49.73, 66.18]
- Time stretch 55.68 [49.20, 62.83]
- Power gain 56.02 [47.04, 63.01]
- Additive noise 59.04 [52.68, 67.47]

*Best score is highlighted in bold

The analysis presented in Table 3 indicates that certain data
augmentation techniques have a negative impact on the model’s
performance. Surprisingly, these effects were not evident during
the challenge submission due to the limited number of experiments
conducted at that time. Notably, the data augmentation setting that
yielded the highest score was the setting without the additive white
Gaussian noise to the spectrogram. This finding suggests that this
particular augmentation strategy was either enforcing an invariance
that is not beneficial for the downstream task at hand, or that the
task becomes hard given the small size of the training dataset.

We can observe from the results of Table 4 that SCL consis-

tently outperforms both SimCLR and CE frameworks for transfer
learning. The superior performance of SCL highlights its efficacy
in capturing discriminative features. These findings emphasize the
importance of incorporating SCL as a powerful framework for ad-
vancing feature representation learning, particularly for enhancing
transferability in downstream tasks.

Table 4: Ablation of the pretraining methods on the validation set
Method Mean [Min, Max]

CE 51.96 [43.013-57.42]
SimCLR 50.89 [39.28-57.41]

SCL 56.27 [49.37, 62.39]
*Highest F-score is highlighted in bold

4. DISCUSSION AND PERSPECTIVES

In this study, we have provided a comprehensive description of a
simple approach for bioacoustic few-shot sound event detection.
We have detailed the methodology behind the systems we devel-
oped and submitted for the DCASE 2023 challenge task five. Our
approach involves pretraining a feature extractor using supervised
contrastive learning and data augmentation on the training set, fol-
lowed by training binary classifiers on positive and negative proto-
types for each audio file in the validation/evaluation sets. We pro-
posed four systems. The first system, which utilized a linear clas-
sifier on frozen representations, demonstrated the robustness and
transferability of the learned features. When fine-tuning the last
layer (the second system) or the last two layers (the third system),
the performance is increased. However, our current adaptation strat-
egy, involving training classifiers on available shots, showed perfor-
mance instability. We also note the gap in performance between the
validation and the test sets. HB validation dataset is made of con-
trolled lab recordings, which may make the detection easier, while
PB recordings are in the wild with noisy background. Settings of
the test set are more close to PB than HB [25]. To address the limi-
tation and instability of our approach, future work will explore more
effective adaptation techniques such as meta-learning. Notably, the
winning systems in the 2022 and 2023 editions of the DCASE bioa-
coustic few-shot sound event detection challenge (Tang et al. [22];
Du et al. [26]) employed a frame-level approach, offering a higher
time resolution capability compared to our window-level approach.
Exploring the frame-level approach, as well as a proposal-based ap-
proach [27] for detecting variable length temporal regions of inter-
est, which has not been previously investigated in this task, will be
considered for future research. Combining representation learning
(meta-learning, self-supervised learning, or supervised learning) is
a promising direction for learning useful representation leveraging
knowledge from large data, that can transfer well to new tasks.
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