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Neural SPDE solver for uncertainty quantification
in high-dimensional space-time dynamics

Maxime Beauchamp, Hugo Georgenthum and Ronan Fablet

IMT Atlantique Bretagne Pays de la Loire

Abstract

Historically, the interpolation of large geo-
physical datasets has been tackled using
methods like Optimal Interpolation (OI)
or model-based data assimilation schemes.
However, the recent connection between
Stochastic Partial Differential Equations
(SPDE) and Gaussian Markov Random
Fields (GMRF) introduced a novel approach
to handle large datasets making use of sparse
precision matrices in OI. Recent advance-
ments in deep learning also addressed this
issue by incorporating data assimilation into
neural architectures: it treats the reconstruc-
tion task as a joint learning problem involv-
ing both prior model and solver as neural
networks. Though, it requires further de-
velopments to quantify the associated uncer-
tainties. In our work, we leverage SPDE-
based Gaussian Processes to estimate com-
plex prior models capable of handling non-
stationary covariances in space and time. We
develop a specific architecture able to learn
both state and SPDE parameters as a neural
SPDE solver, while providing the precision-
based analytical form of the SPDE sampling.
The latter is used as a surrogate model along
the data assimilation window. Because the
prior is stochastic, we can easily draw sam-
ples from it and condition the members by
our neural solver, allowing flexible estimation
of the posterior distribution based on large
ensemble. We demonstrate this framework
on realistic Sea Surface Height datasets. Our
solution improves the OI baseline, aligns with
neural prior while enabling uncertainty quan-
tification and online parameter estimation.

Preliminary work. Under review by AISTATS 2024. Do
not distribute.

1 Introduction

Over the last decade, the emergence of large spatio-
temporal datasets both coming from remote sensing
satellites and model-based numerical simulations
has been noticed in Geosciences. As a consequence,
the need for statistical methods able to handle both
the size and the underlying physics of these data is
growing. Data assimilation (DA) is the traditional
framework used by geoscientists to merge these two
types of information, data and model, by propagating
information from observational data to areas with
missing data. Broadly speaking, two main categories
of DA [Evensen, 2009, Evensen et al., 2022] exist:
variational DA and statistical DA. They both aim
at minimizing some energy or functional involving
a model-based dynamical prior and an observation
term. Importantly, statistical DA addresses jointly
interpolation and uncertainty quantification issues
[Tandeo et al., 2020]. Besides, under linear and
Gaussian hypotheses, statistical DA stems from the
family of the so-called Optimal Interpolation (OI)
techniques, see e.g. Traon et al. [1998]. OI is also
known as (simple) Kriging in Spatial Statistics [Chilès
and Delfiner, 2012, Chilès and Desassis, 2018] and
it directly relates to BLUE [Asch et al., 2016] in
the data assimilation formulation, being at the core
of the statistical DA methods. The OI implies to
factorize dense covariance matrices which turns out
to be an issue when the size of the spatio-temporal
datasets is large. Reduced-rank approximations, see
e.g. Cressie and Wikle [2015], have already been
investigated to tackle this specific problem. More
recently, the use of sparse covariance matrices has also
been proposed by using tapering strategies [Furrer
et al., 2006, Bolin and Wallin, 2016] or by making
use of the link seen by Lindgren et al. [2011] between
Stochastic Partial Differential Equations (SPDE) and
Gaussian Processes. For the latter, if the original
link was made through the Poisson SPDE equation
[Whittle, 1953], it can be extended to more complex
linear SPDE involving physical processes such as
advection or diffusion processes[Lindgren et al.,



2011, Fuglstad et al., 2015a,c, Clarotto et al., 2022].
Thus, it opens new avenues to cope with large-scale
observational datasets in geosciences while making
use of the underlying physics of such processes. Let
note that the so-called SPDE-based approach can
also be used as a general spatio-temporal model, even
if it is not physically motivated, since it provides a
flexible way to handle local anisotropies of a large
set of geophysical processes. It has known numerous
applications in the past few years, see e.g. Sigrist et al.
[2015], Fuglstad et al. [2015b]. These applications
generally rely on off-line strategies [Fuglstad et al.,
2015b]. As the parameters of SPDE should vary
across space and time for most of the case-studies,
this remains a critical shortcoming for the uptake of
SPDE formulations in real-world applications.

From another point of view, deep learning frameworks
provide new means to develop data-driven interpola-
tion schemes. While the missing data rates and sam-
pling patterns encountered in geoscience make less rel-
evant interpolation approaches introduced in compu-
tational imaging and computer vision, recent advances
bridge deep learning and data assimilation [Boudier
et al., 2023, Fablet et al., 2020]. These studies leverage
neural parameterizations of elementary components of
DA schemes and train end-to-end DA solvers from
data. Interestingly, in Fablet et al. [2020], the so-called
4DVarNet neural scheme exploits a trainable gradient-
based solver of a variational DA formulation, which
can also involve trainable components. This generic
framework also applies to OI [Beauchamp et al., 2023a]
with a linear scaling of the solution on the number of
space-time variables, leading to a significant speed up
in the computation of the solution. Real-world appli-
cations Johnson et al. [2023] of these neural interpo-
lation schemes involve purely data-driven priors and
do not address uncertainty quantification Beauchamp
et al. [2023b].

In this work, we leverage both SPDE priors and train-
able neural DA solvers to introduce a neural SPDE
solver and address jointly interpolation, uncertainty
quantification and SPDE calibration issues. Formally,
we state the considered problem as the joint inversion
of a state trajectory and of space-time-varying SPDE
parameters. For a real case-study, namely ocean al-
timetry [Johnson et al., 2023], we reach similar interpo-
lation performance as when using purely data-driven
neural priors while bringing the ability to sample in
the posterior distribution. The key contributions are
four-fold:

• We develop the explicit solver of the considered
SPDE prior. It relies on the analytical expression
for the SPDE-based precision matrix of any state

trajectory, based on a finite-difference discretiza-
tion of the grid covered by the tensors involved in
our neural scheme;

• We exploit this SPDE parametrization as surro-
gate prior model in the proposed variational for-
mulation and leverage a trainable gradient-based
solver to address jointly the interpolation of the
state trajectory and the estimation of SPDE pa-
rameters from irregularly-sampled observations.
The end-to-end training of the solver targets both
the expectation of the state given the observa-
tions, together with the SPDE parametrization
maximizing its likelihood given the true states;

• The SPDE prior paves the way to uncertainty
quantification through the sampling of the prior
pdf and the conditioning by the neural gradient-
based solver.;

• We demonstrate how the proposed framework re-
lates to many ideas commonly shared among gen-
erative deep learning models;

To make easier the reproduction of our results, an
open-source version of our code is available 1.

2 Background

2.1 GP and Optimal Interpolation

For a m-dimensional Gaussian process x with mean µ
and covariance P:

x ∼ GP (µ(x),P (x,x′)) , (1)

and a Gaussian likelihood of partial and noisy obser-
vations y ∈ Rp:

y | x ∼ N (HΩ · x,R) , (2)

the posterior p(x | y), can be computed in closed form,
at a computational cost O

(
n3
)
. This is the so-called

optimal interpolation that states the reconstruction as
the minimization of a variational cost:

x? = arg min
x
‖y −HΩ · x‖2R + λ ‖x− µ‖2P (3)

with HΩ denotes the observation matrix to map state
x over domain D to the observed domain Ω. ‖ · ‖2R is
the Mahanalobis norm w.r.t. the covariance of the ob-
servation noise R and ‖ · ‖2P the Mahanalobis distance
with prior covariance P.

The OI variational cost (3) being linear quadratic, the
solution of the optimal interpolation problem is given
by:

x? = µ+ K · y (4)

1To be made available in a final version



with K referred to as the Kalman gain
PHT

Ω(HΩPHT
Ω + R)−1 [Asch et al., 2016], where

PHT
Ω ∈ Rm×p and HΩPHT

Ω ∈ Rp×p resp. denotes the
(grid,obs) and (obs,obs) prior covariance matrix. For
high-dimensional spatio-temporal state sequences of
length N and large observation domains, the compu-
tation of the Kalman gain becomes rapidly intractable
due to the inversion of a |Ω| × |Ω| covariance matrix.
This has led to a rich literature to solve minimization
3 without requiring the above-mentioned |Ω| × |Ω|
matrix inversion, among others gradient-based solvers
using matrix-vector multiplication (MVMs) reformu-
lation Pleiss et al. [2020], Aune et al. [2013], Charlier
et al. [2020], Cutajar et al. [2016] and methods based
on sparse matrix decomposition with tapering [Furrer
et al., 2006, Romary and Desassis, 2018].

2.2 Spatio-temporal GP as SDE

In the last decade, the connection proposed by
Lindgren et al. [2011] between Stochastic Partial
Differential Equations (SPDE) and Gaussian Markov
Random Fields (GMRF) introduced a novel ap-
proach to handle large datasets making use of sparse
precision-based matrix parameterizations in OI
schemes [Carrizo Vergara, 2018, Clarotto et al., 2022,
Fuglstad et al., 2015a].

Starting from a general formulation of the continu-
ous state space x, its dynamical evolution states as a
stochastic differential equation (SDE):

dx = F(x, t)dt+ G(x, t)dw (5)

where F(·, t) : Rm → Rm, G(·, t) : Rm → Rm×m and
w(s, t) is the standard Wiener process (Brownian mo-
tion).

Proposition 1 When operator F(x, t) is linear and
noise effect G(x, t) denotes the square root of the pre-
cision matrix Qz, t of the colored noise zt = dw/dt,
then denoted Ft and Lz,t, one possible discretization
of SDE (5) gives the following state space trajectory
x = {x0, · · · ,xN}, which identifies to state equation
in data assimilation schemes:

xt+1 = Mt+1xt + zt+1, zt+1 ∼ N (0,Q−1
z,t+1)

x0 ∼ N (0,P0) (6)

where Mt+1 is the state transition matrix from time t
to t+ 1:

Mt+1 = (I− dtFt+1)
−1 ∈ Rm×m

and Tt+1 = Mt+1Lz,t+1 ∈ Rm×m

Proof comes along with the backward Euler discretiza-
tion of SDE (5):

xi+1 − xi
dt

=Fi+1xi+1 + Lz,i+1zi+1

(I− Fi+1) xi+1 =xi + Lz,i+1zi+1

=Mi+1xi + Ti+1zi+1

More often, instead of involving complex colored noise
effects Lz,t, a simple time-dependent variance regular-
ization g(t) : R → R is used and zt+1 ∼ N

(
0, g2(t)I

)
is pure white noise.

The solution of Eq. (6) is a GP, see e.g. Lindgren et al.
[2011], Särkkä and Solin [2019]. When the likelihood
is Gaussian, the posterior is also a GP, then available
in closed form. Sequential Kalman recursions are gen-
erally used with computational scaling O

(
Nm3

)
to

solve efficiently the posterior distribution by a prelim-
inary filtering (forward pass) followed by a smoothing
(backward pass).

2.3 Sparse precision matrix and OI

An Optimal Interpolation scheme can also be used,
but its time computational complexity is generally pro-
hibitive O

(
(Nm)3

)
[Asch et al., 2016]. Hopefully, effi-

cient inference algorithms with much lower time com-
putational complexity O

(
(Nm)3/2

)
[Lindgren et al.,

2011, Chilès and Desassis, 2018] can be used by switch-
ing from dense covariance matrices P to sparse preci-
sion matrix Q, see Proposition 2.

When considering the augmented state vector [y,x]
with covariance matrix PG:

PG =

[
Pyy Pyx

Pxy Pxx

]
=

[
P PHT

Ω

HΩP HΩPHT
Ω + R

]
(8)

Then, the precision matrix QG is still sparse and
writes:

QG =

[
Qyy Qyx

Qxy Qxx

]
=

[
Q + HT

ΩR−1HΩ −HT
ΩR−1

−R−1HΩ R−1,

]
(9)

and by noticing that:

PGQG =

[
Iyy 0yx

0xy Ixx

]
(10a)

PyyQyx + PyxQxx =0yx (10b)

QyxQ−1
xx + P−1

yyPyx =0yx, (10c)

adding Eqs. (10b) and (10c) and finally transposing,
we rewrite the Kalman gain K ∈ Rm×p in terms of
precision matrix:

K = PxyP−1
yy

= −Q−1
xxQxy =

(
Q + HT

ΩR−1HΩ

)−1
HT

ΩR−1

(11)



Proposition 2 Because of the formulation of Mt and Tt, the precision matrix Q = P−1 writes:

Q =
1

dt



P−1
0 +Qz,1 −Qz,1M−1

1 0 0 0 ... 0

−(MT
1)

−1
Qz,1 MT

1Qz,1M1+Qz,2 −Qz,2M−1
2 0 0 ... 0

0 −(MT
2)

−1
Qz,2 MT

2Qz,2M2+Qz,3 −Qz,3M−1
3 0 ... 0

0
...

...
...

...
... 0

0
...

...
...

...
... 0

...
...

...
... −(MT

N−1)
−1

Qz,N−1 MT
NQz,N−1MN−1+Qz,N −Qz,NM−1

N

0
...

...
... 0 −(MT

N)
−1

Qz,N MT
NQz,NMN


(7)

Proof is given in App. 1.

and the posterior precision matrix is Q(x | y) =
Q(x) + HT

ΩR−1HΩ

3 Neural solver for posterior and
SPDE prior parametrization

For high-dimensional state space, even sparse
precision-based inference may lead to high complexity.
In that case, matrix-free approaches can be used using
iterative solvers without explicitly build and store the
precision matrix Q [Saad, 2003, Pereira and Desassis,
2019, Pereira et al., 2022]. Still, all these methods
became hardly tractable when the problem of estimat-
ing the posterior distribution p(x | y) comes jointly
with the estimation of the prior SPDE parameter Θ.
For stationary SPDEs, Clarotto et al. [2022] use the
Broyden, Fletcher, Goldfarb, and Shanno optimization
algorithm [Nocedal and Wright, 2006] involving the
second-order derivative of the objective function, while
for pure spatial GPs, Fuglstad et al. [2015a] forms a
hierarchical spatial model for p(x | y,Θ) whose infer-
ence is handled numerically by the INLA methodology
[Rue et al., 2017]. All these methods are either time-
consuming or comes with simplified assumptions on
the SPDE formulation. In this Section, we show how
we can escape from solving the linear system and draw
from the equivalent variational OI scheme to learn
jointly how to compute the posterior and estimate the
SPDE parameters. Also, if the training dataset is large
enough, our approach provides an efficient way to es-
timate online the SPDE parametrization for any new
sequence of input observations, without any additional
inference to make.

3.1 Neural variational scheme

Variational formulations have also been widely ex-
plored to solve inverse problems. Similarly to (3),
the general formulation involves the sum of a data
fidelity term and of a prior term [Asch et al., 2016].

In a model-driven approach, the latter derives from
the governing equations of the considered processes.
For instance, data assimilation in geoscience generally
exploits PDE-based terms to state the prior on some
hidden dynamics from observations. In signal process-
ing and computational imaging, similar formulations
cover a wide range of inverse problems, including in-
painting issues [Bertalmio et al., 2001]:

x? = arg min
x
‖y −HΩ · x‖2 + λ ‖x− Φ(x)‖2 (12)

where λ a positive scalar to balance the data fidelity
term and the prior regularization term. Prior Φ
can be seen as a projection operator, comprising
gradient-based formulations using finite-difference
approximations, proximal operators as well as plug-
and-play priors Aubert and Kornprobst [2006], Lucas
et al. [2018], McCann et al. [2017]. As mentioned
above, these formulations have also gained interest for
the definition of deep learning schemes based on the
unrolling of minimization algorithms [Andrychowicz
et al., 2016, Aggarwal et al., 2019] for Eq. (12).

We benefit from automatic differentiation tools asso-
ciated with neural operators to investigate iterative
gradient-based solvers of Eq. (12), denoted as Γ in the
following. To speed up the gradient descent, we rely
on a neural operator K that combines an LSTM cell
[Shi et al., 2015] together with a final linear layer to
map the hidden state of the LSTM cell to the space
spanned by state x. The state updates writes:

x(k+1) = x(k) −K
[
∇xJΦ

(
x(k),y,Ω

)]
(13)

Overall, the neural architecture is denoted
ΨΓ(x(0),y,Ω) given some initial conditions x(0)

and observations y on domain Ω.



3.2 SPDE as interpretable prior

Here, we use the neural scheme introduced above as
neural solver for an SPDE-based formulation of the
interpolation problem.

Prior operator Φ is not easily interpretable, simply act-
ing as a projection of state x to help in the gradient-
based minimization process. Here, we bring both inter-
pretability and stochasticity in the neural scheme by
considering as prior surrogate model a linear SPDE
(6). Operator F states as the finite difference dis-
cretization scheme (FDM ) of a fractional advection-
diffusion operator:

F = FDM
({
κ2
t −∇ ·mt −∇ ·Ht∇

}α/2)
with mt and Ht resp. the advection vector and dif-
fusion tensor, κt acts as a scaling parameter and α
relates to the smoothness of the underlying GP. Op-
erator G is simplified so that the right-hand side of
the SPDE is a white noise with variance regulariza-
tion τ t. Back to the OI variational problem (3) and
the results obtained for precision matrix Q of state
sequences x = {x0, · · · ,xT }, see Proposition 2, the
variational cost to minimize becomes:

x? = arg min
x
‖y −HΩ · x‖2 + λ · xTQx (14)

which is a specific case of Eq. (12) where ||x −
Φ(x)||2 = xTQx with Φ = (1−S), and S is the square
root of the precision matrix Q.

3.3 Training scheme

Finding the best set of parameters for the SPDE
to optimize the reconstruction and helps to uncer-
tainty quantification may be intricate. Drawing
from our neural variational framework, the trainable
prior is now SPDE-based, and the parameters Θ =[
κ m H τ

]T
are now embedded in an augmented

state formalism, i.e.:

x̃ =
[
x Θ

]T
(15)

Latent parameter Θ is non stationary in both space
and time and its size directly relates to the size N
of the state sequence. The joint learning of SPDE
parametrization Θ and solvers Γ for the reconstruction
x? states as the minimization of:

arg min
Θ,Γ
L(x,Θ?,x?) s.t. x̃? = ΨΓ(x̃(0),y,Ω) (16)

with L(x,Θ?,x?) = λ1L1(x,x?) + λ2L2(x,Θ?).
L1(x,x?) = ||x − x?||2 is the reconstruction cost, i.e.
the MSE w.r.t Ground Truth and L2(x,Θ?) is the neg-
ative log-likelihood −p(x | Θ?) with:

p(x | Θ?) = −|Q(Θ?)|+ xTQ(Θ?)x (17)

used as the prior regularization cost. The log-
determinant of the precision matrix log |Q(Θ?)| is usu-
ally difficult to handle.

Proposition 3 Based on its particular block-sparse
structure and the notations already introduced for the
spatio-temporal precision matrix Q:

log |Q(Θ?)| = log |P−1
0 |+ 2

L∑
i=1

m∑
j=1

log Li(j, j) (18)

where Li denotes here the Cholesky decomposition of
S−1
k and Sk = TkT

T
k .

Based on Powell [2011] to compute the determinant
of an N × N complex block matrix in terms of its
constituent blocks, Proof is given in App. 2. Note
that |S−1

k | is now the determinant of a sparse matrix
∈ Rm, symmetric and positive definite matrix. The
computation of its determinant can be obtained by
Cholesky decomposition. Also, because precision ma-
trix Q and submatrices Sk are used in the forward
pass of our architecture, the backward pass for their
Cholesky decomposition is needed. Given a symmet-
ric, positive definite matrix A, its Cholesky factor L
is lower triangular with positive diagonal, such that
the forward pass of the Cholesky decomposition is de-
fined as A = LLT. Given the output gradient L and
the Cholesky factor L, the backward pass compute the
input gradient A defined as :

A =
1

2
L−Tltu(LTL)L−1 (19)

where ltu(·) generates a symmetric matrix by copying
the lower triangle to the upper triangle.

3.4 Sampling of the posterior

Inspired by kriging-based conditioning [Wackernagel,
2003], we draw SPDE-based conditional simulations
with our neural scheme:

x?,i = x? + (xis − x?,is ) (20)

where x? denotes the neural-based interpolation, xis
is an SPDE simulation of the space-time trajectory
{x0, · · · ,xN} based on the parameters Θ? and x?,is is
the neural reconstruction of this non-conditional sim-
ulation, using as pseudo-observations a subsampling
of xis based on the actual data locations.

4 Generative models as related works

The targeted interpolation problem, stated as the sam-
pling of the posterior pdf of a state given some partial



observations, relates to conditional generative models,
where the conditioning results from the partial ob-
servations. Generative models have received a large
attention in the deep learning literature with a vari-
ety of neural schemes including among others GANs
[Goodfellow et al., 2014], VAEs [Kingma and Welling,
2022], normalizing flows [Dinh et al., 2017] and diffu-
sion models [Ho et al., 2020]. We discuss further these
connections below.

As we rely on an explicit SPDE-based state-space for-
mulation, we can make explicit the gradient of the in-
ner variational cost J (x,y,Ω). From Eq. (14), consid-
ering a covariance matrix R for the observation noise,
we can derive the following expression:

∇xJ (x,y,Ω) = ∇x

[
dTR−1d + xTQ−1x

]
= −HT

ΩR−1d + Q−1x

= ∇xlogp(y|x) +∇xlogp(x) (21)

where d = y − HΩx. Score-based approaches [Sohl-
Dickstein et al., 2015] exploits similar formulations.
However, they directly parameterize the gradient of
the likelihoods rather than the likelihoods themselves.
Here, we exploit the latter through an observation op-
erator and the SPDE prior. Another important dif-
ference with score-based approaches lies in the con-
sidered gradient-based procedure to sample the poste-
rior. Score-based schemes generally rely on Langevin
dynamics [Grenander and Miller, 1994] i.e. a stochas-
tic gradient descent for posterior x|y. Here, we ex-
ploit a gradient-based LSTM solver similarly to train-
able optimizers exploited in meta-learning schemes
[Andrychowicz et al., 2016]. This greatly speeds up
the convergence of the inner minimization and allows
us to train the overall neural scheme end-to-end. As we
do not exploit a stochastic solver, our ability to sample
the posterior does not derive from the implementation
of Langevin dynamics but we exploit the analytic form
of the SPDE to sample in the prior. Future works
could explore further whether Langevin dynamics fits
within the proposed framework.

In (21), we could consider using only the regulariza-
tion cost if we are only interested to learn SPDE surro-
gate generative models using as training data gap-free
states. In such a case, the proposed formulation re-
lates to variational autoencoder (VAE) formulations
[Kingma and Welling, 2022], see also Fig.1b), in which
the encoder projects the state x to the parameter space
Θ. The encoder is trained on the NLL of Θ. The de-
coder is simply the SPDE, and does not require any
training. Back to the encoder part, it may compress
the original high-dimensional input space into a lower-
dimensional space, if the SPDE is stationary for in-
stance. More generally, when complex spatio-temporal
anisotropies are involved, and without a parametriza-

x(0)

Θ(0)
x(1)

Θ(1)
x(2)

Θ(2)
. . . . . . x(N)

Θ(N)

[
xk

Θ(k)

]
=

[
xk−1

Θ(k−1)

]

−LSTM
[
ρ∇x,Θ (logp(x | Θ)) + logp(y | x))

]

(a) Langevin-related dynamics

x

Encoder

Θ0 Θ1 ΘK
· · ·

Θi = Θi−1 − LSTM
[
ρ∇Θlogp(Θ|x))

]

Θ

z

Decoder

LΘx′ = z

x′

(b) SPDE-based VAE formulation

xN x0

Forward process (backward in time)
dx = f(x, t)dt+G(x, t)dw

xN x0
Reverse process (forward in time)

dx = f̃(x, t)dt+G(x, t)dw

(c) Diffusion-based analogy

Figure 1: Example of analogies between our combina-
tion of SPDE prior and neural solver with generative
models

tion model for the latent variable Θ, the latter has high
dimensionality (same as the original data or higher),
as it is done in diffusion-based models, see e.g. [Sohl-
Dickstein et al., 2015, Ho et al., 2020]. Along this line,
starting from any initial conditions Θ0, the optimal set
of parameters Θ? (given x) would be obtained by the
iterations:

Θi = Θi+1 −K
[
ρ∇Θlog p(x | Θ)

]
because the target cost function would not be the
4DVar cost anymore but its regularization part (prior
cost), i.e. log p(x | Θ). As already said above, this
relates to Langevin dynamics formalism.

Eq.(6) provides a simple way to generate SPDE-driven
GP simulations starting from white or colored noise
z0.It can be seen as the so-called reverse process in
diffusion-based models [Ho et al., 2020]. Because we
deal with space-time processes, this reverse process
would actually go forward in time, while the corre-
sponding forward process would go backward in time
till the initial noise used in the SPDE to generate re-
alistic space-time sequences. Considering our formu-
lation, the reverse process can be reformulated as fol-



lows:

xi+1 = Mi+1xi + Ti+1zi

= xi − Fi+1Mi+1xi + Ti+1zi (22)

because of the Woodbury matrix identity Mi+1 = I−
FMi+1. By [Anderson, 1982], we also know that given
a forward process (data to noise):

xi = xi+1 + fi+1(xi+1) + Gi+1zi+1

the corresponding reverse process (noise to data)
writes:

xi+1 = xi + fi(xi)−
1

2
∇ ·
[
GiG

T
i

]
− 1

2
GiG

T
i ∇logpi(xi) + Gizi

Then, by simple identification, the drift term fi(xi) is:

fi(xi) = −Fi+1Mi+1 +
1

2
∇ ·
[
Ti+1T

T
i

]
+

1

2
Ti+1T

T
i+1P

−1
i+1xi+1 (23)

since ∇logpi+1(xi+1) = −P−1
i+1xi+1 Fig.1c) demon-

strates this link when simulating with Eq. (22) a GP
with global anisotropy on a uniform Cartesian grid
with dx, dy and dt all set to one and shows how we
can retrieve the forward process from Eq. (23). This
opens a new challenge for future work to estimate the
underlying stochastic differential equation of the for-
ward process for space-time sequences, then being able
to generate realistic space-time dynamics.

5 Experiments

We apply the proposed neural SPDE scheme to a real-
world dataset, namely the interpolaton of sea surface
height (SSH) fields from irregularly-sampled satellite
altimetry observations Johnson et al. [2023]. The SSH
relates to sea surface dynamics [Le Guillou et al., 2020]
and satellite altimetry data are characterized by an
average missing data rate above 90%.

Experimental setting We exploit the experimen-
tal setting defined in [Johnson et al., 2023] 2. It relies
on a groundtruthed dataset given by the simulation of
realistic satellite altimetry observations from numeri-
cal ocean simulations. Overall, this dataset refers to
2d+t states for a 10◦ × 10◦ domain with 1/20◦ res-
olution corresponding to a small area in the West-
ern part of the Gulf Stream. Regarding the evalu-
ation framework, we refer the reader to SSH map-
ping data challenge above mentioned for a detailed

2SSH Mapping Data Challenge 2020a: https:
//github.com/ocean-data-challenges/2020a_SSH_
mapping_NATL60

Figure 2: From left to right: Pseudo-observations (4
nadirs and SWOT), the reconstruction obtained with
our neural SPDE variational solver, and deviations to
the optimal reconstruction obtained from 3 conditional
simulations. Results are given at the center of the data
assimilation window along the 42 days test period and
every 6 days (from top to bottom).

presentation of the datasets and evaluation metrics.
The latter comprise the MSE w.r.t the Ground Truth,
the minimal spatial and temporal scales resolved. For
learning-based approaches, the training dataset spans
from mid-February 2013 to October 2013, while the
validation period refers to January 2013. In all the re-
ported experiments, we use Adam optimizer over 200
epochs and NVIDIA A100 Tensor Core mono-GPU ar-
chitectures. All methods are tested on the test period
from October 22, 2012 to December 2, 2012.

Benchmarked models For benchmarking pur-
poses, we consider the approaches reported in Le Guil-
lou et al. [2020], namely: the operational baseline (DU-
ACS) based on an optimal interpolation, multi-scale
OI scheme MIOST [Ardhuin et al., 2020] and model-
driven interpolation schems BFN [Le Guillou et al.,
2020] and DYMOST [Ubelmann et al., 2016, Bal-
larotta et al., 2020]. We also include a state-of-the-art
UNet architecture to train a direct inversion scheme
Cicek et al. [2016]. As stated in Section 4, we also
implemented a time-dependent UNet to approximate
the gradient of the log-prior distribution ∇logp(x) to
replace our LSTM solver. Last, for all neural schemes,
we consider N = 15 days space-time sequences to
account for time scales considered in state-of-the-art



µ(RMSE) σ(RMSE) λx (degree) λt (days)
OI (1 swot + 4 nadirs) 0.92 0.02 1.22 11.06
BFN 0.92 0.02 1.23 10.82
DYMOST 0.91 0.02 1.36 11.91
MIOST 0.93 0.01 1.35 10.41
UNet 0.92 0.02 1.25 11.33
UNet (time-dependent) 0.91 0.02 1.29 10.84
4DVarNet - UNet prior 0.94 0.01 1.17 6.86
4DVarNet - BilinRes prior 0.97 0.01 0.89 4.40
4DVarNet - SPDE prior 0.96 0.01 0.90 5.03

Table 1: Interpolation performance for the satellite altimetry case-study: for each benchmarked models, we
report the considered performance metrics averaged on the test period.

Figure 3: Parameter estimation of the SPDE prior in
the neural scheme along the 42 days test period and
every 6 days. From left to right: dumpin and variance
parameters, advection fields and diffusion tensors.

OI schemes. Regarding the parameterization of our
framework, we consider a bilinear residual architecture
for prior Φ, the same UNet used in the direct inversion
and the SPDE prior proposed throughout the paper.
For the solver Γ, we use a 2d convolutional LSTM cell
with 150-dimensional hidden states.

Results Table 1 further highlights the performance
gain of the proposed scheme. The relative gain is
greater than 50% compared to the operational satel-
lite altimetry processing. We outperform by more than
20% in terms of relative gain to the baseline MIOST
and UNet schemes, which are the second best interpo-
lation schemes. Interestingly, our scheme is the only
one to retrieve time scales below 10 days. Figure 2
displays the reconstruction obtained with our neural
variational scheme as well as the deviations to the op-
timal reconstruction obtained from 3 conditional sim-
ulations, see Eq. (20): we can see how their variance is

high along the main meander of the Gulf Stream and
highly energetic eddies but lower elsewhere. Regarding
Figure 3 and the SPDE parameters estimated along
the 42 days test period every 6 days, they seem con-
sistent with state x that partially encodes the SPDE
parametrization. The capability of our approach to
span parameter distribution that are not standardized
is demonstrated, which is particularly the case for the
diffusion tensor H. Last, Figure 4 shows the posterior
standard deviations computed when using the SPDE-
based generation of 250 members and the reconstruc-
tion error x− x? for the tenth day of the test period.
Contrary to OI, the posterior variance is not only con-
ditioned by the observations, it is more continuous and
flow dependent. The correlation with the reconstruc-
tion error is good, thus it is consistent: when low, the
average reconstruction is generally very good.

Figure 4: Ensemble-based posterior standard devia-
tions and reconstruction error x− x?

6 Conclusion

We have derived a new neural architecture to tackle
the reconstruction of a dynamical process from par-
tial and noisy observations. Both state trajectory and
stochastic prior parametrization are learnt so that we
also provide uncertainty quantification of the mean
state. In this work, we use an SPDE-driven GP as flex-
ible prior whose parameters are added as latent vari-
ables in an augmented state. A bi-level optimization
scheme is used on both the inner variational cost de-
rived from OI-based formulations and the outer train-
ing loss function of the neural architecture, which
drives the optimization of the LSTM-based residual
solver leading to the reconstruction of the state.
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