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Context

Over the last years, a very active field of research aims at exploring new data-driven and learning-based methodologies to propose computationally efficient
strategies able to benefit from the large amount of observational remote sensing and numerical simulations for the reconstruction, interpolation and prediction of
high-resolution derived products of geophysical fields.

We use the BOOST-SWOT ocean data challenges (ODC) as playground
datasets.
The 2020 ODC provides the dataset to train our models: the Ground Truth
(GT) is the high-resolution 1/60◦ NATL60 configuration of the NEMO (Nucleus
for European Modeling of the Ocean) model. A 10◦×10◦ GULFSTREAM region
is used with downgraded resolution to 1/20◦. Nadir pseudo-observations Y are
sampled from GT based on real along-track satellites paths.
The 2021 ODC provides the dataset to test our model on real-world dataset. In
the following experiments, we apply our ensemble-based 4DVarNet approach
with 60 members on the 6 nadir constellation on January 2017.
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Figure 1: SSH (Ground Truth) and ||∇SSH|| on October 25, 2012

We investigate how the ensemble-based extension of 4DVarNet (En4DVarNet) helps to quantify the uncertainty of SSH spatio-temporal fields x = {xt−L, · · · ,xt+L}.

Neural variational scheme with SPDE priors

Basic concepts

From a methodological point of view, 4DVarNet [Fablet et al., 2021] derives an
end-to-end neural architecture from an underlying variational data assimilation
formulation:

JΦ(x,y,Ω) = λ1||y −H(x)||2Ω + λ2||x− Φ(x)||2, (1)

where λ1,2 are predefined or tunable scalar weights. In the regularization term,
we substitute to the traditional dynamical prior M a neural operator Φ which
convolutional architecture. Then, we can exploit the automatic differentiation
tools embedded in deep learning framework to consider the following iterative
gradient-based solver Γ for the minimization of variational cost JΦ w.r.t. state
x:

x(i+1) = x(i) −K
[
α ·∇xJΦ(x

(i),y,Ω), h(i), c(i)
]

(2)

where K is a convolutional LSTM model and α a normalization scalar. This
iterative rule based on a trainable LSTM operator is similar to that classically
used in meta-learning schemes [Andrychowicz et al., 2016]. Overall, a 4DVar-
Net scheme defines a neural architecture with a joint learning of operators
{Φ,Γ}, stated as the minimization of a reconstruction cost L, which typically
stands for the MSE (mean squared error) w.r.t. the Ground Truth.

Stochastic extension

Prior operator Φ is not easily interpretable, simply acting as a projection of
state x to help in the gradient-based minimization process. Here, we bring
both interpretability and stochasticity in the neural scheme by considering as
prior surrogate model a linear SPDE:

xt+1 = Mt+1xt + zt+1, Mt+1 = (I + Lt(Θt))
−1 , zt+1 ∼ N (0, τ2t+1I) (3)

Operator L(Θ) states as the finite difference discretization scheme of a
fractional advection-diffusion operator

{
κ2(s, t)−∇ ·m(s, t)−∇ ·H(s, t)∇

}α/2
with m and H resp. the advection vector and diffusion tensor. τt acts as
variance regularization over space and time and Θ encompasses the SPDE
parameters. Back to the OI variational problem, the prior regularization cost
simply becomes xTQΘx, where QΘ denotes the precision matrix of the prior
state trajectory, and the joint learning of SPDE parametrization Θ with solver
Γ for the reconstruction x⋆ states as the minimization of:

argmin
Θ,Γ

L(x,Θ⋆,x⋆) s.t. x⋆ = ΨΘ,Γ(x
(0),y,Ω) (4)

with L(x,Θ⋆,x⋆) = λ1L1(x,x
⋆) + λ2L2(x,Θ

⋆). L1(x,x
⋆) = ||x − x⋆||2 is the re-

construction cost, i.e. the MSE w.r.t Ground Truth and L2(Θ
⋆|x) is the negative

log-likelihood −L(Θ⋆|x) with:

L(Θ⋆|x) = −|Q(Θ⋆)| + xTQ(Θ⋆)x (5)

used as the prior regularization cost.

Results

Figure 2: Example of ensemble-based 4DVarNet mean and spreads
on the GulfStream domain (2017-01-10) based on the 6 nadirs

agregation dataset

Such SPDE formulation enables to draw samples xs,i in the prior
distribution p(x). To make these simulations compliant with the
observations, we draw from traditional geostatistics and kriging-
based conditioning [Wackernagel, 2003] and replace the prior
model and kriging solver, also known as Optimal Interpolation (OI)
or BLUE (Best Linear Unbiased Estimator) in the DA community,
see e.g. [Asch et al., 2016], by our neural scheme. A conditional
simulation x⋆,i writes:

x⋆,i = x⋆ + {xs,i − x⋆,s,i} (6)

It was shown that 4DVarNet estimation [Beauchamp et al., 2022;
Fablet et al., 2021] enables to improve the OI, i.e. it is still unbi-
ased but with lower MSE w.r.t the ground truth, i.e. lower error
variance. Running an ensemble of N simulations conditioned by
4DVarNet will provide an approximation of the probability distribu-
tion function px|y with both improvements on the two first moments
x⋆ and P⋆ compared to simulations conditioned by kriging.

Figure 3: From left to right along the 2020 ODC 42 days test period
and every 6 days: Pseudo-observations (nadir and SWOT), Neural
variational scheme with SPDE prior (mean), and deviations to the

mean for 5 conditional simulations

Figure 4: Parameter estimation of the SPDE prior in the neural
scheme along the 2020 ODC 42 days test period and every 6
days. From left to right: κ, τ (variance regularization), m1, m2

(advection fields), H1,1, H1,2 and H2,2 (diffusion tensor).

Validation

Fig.5 displays the SSH spread from 2016-12-31 to 2017-
01-25 (every 5 days). We can see how the observations
help in decaying the reconstruction uncertainty. Then,
when moving away from the observations at the center of
the assimilation window, the uncertainty growths quickly,
not only based on the distance from the nadir altimeters
but also influenced by the SSH spatio-temporal dynamics.

Figure 5: 4DVarNet SSH ensemble-based standard deviations from 2016-12-31 to 2017-01-25 (every 5 days)
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