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Context

Over the last years, a very active field of research aims at exploring new data-driven and learning-based methodologies to propose computationally efficient strategies able to benefit from the large amount of observational remote sensing and numerical simulations for the reconstruction, interpolation and prediction of high-resolution derived products of geophysical fields.

We use the BOOST-SWOT ocean data challenges (ODC) as playground datasets.

The 2020 ODC provides the dataset to train our models: the Ground Truth (GT) is the high-resolution 1/60 • NATL60 configuration of the NEMO (Nucleus for European Modeling of the Ocean) model. A 10 • ×10 • GULFSTREAM region is used with downgraded resolution to 1/20 • . Nadir pseudo-observations Y are sampled from GT based on real along-track satellites paths. The 2021 ODC provides the dataset to test our model on real-world dataset. In the following experiments, we apply our ensemble-based 4DVarNet approach with 60 members on the 6 nadir constellation on January 2017. We investigate how the ensemble-based extension of 4DVarNet (En4DVarNet) helps to quantify the uncertainty of SSH spatio-temporal fields x = {x t-L , • • • , x t+L }.

Neural variational scheme with SPDE priors

Basic concepts

From a methodological point of view, 4DVarNet [START_REF] Fablet | Joint interpolation and representation learning for irregularly sampled satellitederived geophysical fields[END_REF] derives an end-to-end neural architecture from an underlying variational data assimilation formulation:

J Φ (x, y, Ω) = λ 1 ||y -H(x)|| 2 Ω + λ 2 ||x -Φ(x)|| 2 , ( 1 
)
where λ 1,2 are predefined or tunable scalar weights. In the regularization term, we substitute to the traditional dynamical prior M a neural operator Φ which convolutional architecture. Then, we can exploit the automatic differentiation tools embedded in deep learning framework to consider the following iterative gradient-based solver Γ for the minimization of variational cost J Φ w.r.t. state x:

x (i+1) = x (i) -K α • ∇ x J Φ (x (i) , y, Ω), h(i), c(i) (2)
where K is a convolutional LSTM model and α a normalization scalar. This iterative rule based on a trainable LSTM operator is similar to that classically used in meta-learning schemes [START_REF] Andrychowicz | Learning to learn by gradient descent by gradient descent[END_REF]. Overall, a 4DVar-Net scheme defines a neural architecture with a joint learning of operators {Φ, Γ}, stated as the minimization of a reconstruction cost L, which typically stands for the MSE (mean squared error) w.r.t. the Ground Truth.

Stochastic extension

Prior operator Φ is not easily interpretable, simply acting as a projection of state x to help in the gradient-based minimization process. Here, we bring both interpretability and stochasticity in the neural scheme by considering as prior surrogate model a linear SPDE:

x t+1 = M t+1 x t + z t+1 , M t+1 = (I + L t (Θ t )) -1 , z t+1 ∼ N (0, τ 2 t+1 I) (3)
Operator L(Θ) states as the finite difference discretization scheme of a fractional advection-diffusion operator κ 2 (s, t)

-∇ • m(s, t) -∇ • H(s, t)∇ α/2
with m and H resp. the advection vector and diffusion tensor. τ t acts as variance regularization over space and time and Θ encompasses the SPDE parameters. Back to the OI variational problem, the prior regularization cost simply becomes x T Q Θ x, where Q Θ denotes the precision matrix of the prior state trajectory, and the joint learning of SPDE parametrization Θ with solver Γ for the reconstruction x ⋆ states as the minimization of: 

arg min Θ,Γ L(x, Θ ⋆ , x ⋆ ) s.t. x ⋆ = Ψ Θ,Γ (x (0) , y, Ω) (4) with L(x, Θ ⋆ , x ⋆ ) = λ 1 L 1 (x, x ⋆ ) + λ 2 L 2 (x, Θ ⋆ ). L 1 (x, x ⋆ ) = ||x -x ⋆ || 2 is
L(Θ ⋆ |x) = -|Q(Θ ⋆ )| + x T Q(Θ ⋆ )x (5)
used as the prior regularization cost. Such SPDE formulation enables to draw samples x s,i in the prior distribution p(x). To make these simulations compliant with the observations, we draw from traditional geostatistics and krigingbased conditioning [START_REF] Wackernagel | Multivariate Geostatistics. An Introduction with Applications[END_REF] and replace the prior model and kriging solver, also known as Optimal Interpolation (OI) or BLUE (Best Linear Unbiased Estimator) in the DA community, see e.g. [START_REF] Asch | Data Assimilation. Fundamentals of Algorithms[END_REF], by our neural scheme. A conditional simulation x ⋆,i writes:

Results

x ⋆,i = x ⋆ + {x s,i -x ⋆,s,i } (6)
It was shown that 4DVarNet estimation [START_REF] Beauchamp | 4dvarnet-ssh: end-to-end learning of variational interpolation schemes for nadir and wide-swath satellite altimetry[END_REF][START_REF] Fablet | Joint interpolation and representation learning for irregularly sampled satellitederived geophysical fields[END_REF] enables to improve the OI, i.e. it is still unbiased but with lower MSE w.r.t the ground truth, i.e. lower error variance. Running an ensemble of N simulations conditioned by 4DVarNet will provide an approximation of the probability distribution function p x|y with both improvements on the two first moments x ⋆ and P ⋆ compared to simulations conditioned by kriging. (advection fields), H 1,1 , H 1,2 and H 2,2 (diffusion tensor).

Validation

Fig. 5 displays the SSH spread from 2016-12-31 to 2017-01-25 (every 5 days). We can see how the observations help in decaying the reconstruction uncertainty. Then, when moving away from the observations at the center of the assimilation window, the uncertainty growths quickly, not only based on the distance from the nadir altimeters but also influenced by the SSH spatio-temporal dynamics. 
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 1 Figure 1: SSH (Ground Truth) and ||∇ SSH || on October 25, 2012

  the reconstruction cost, i.e. the MSE w.r.t Ground Truth and L 2 (Θ ⋆ |x) is the negative log-likelihood -L(Θ ⋆ |x) with:
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 2 Figure 2: Example of ensemble-based 4DVarNet mean and spreads on the GulfStream domain (2017-01-10) based on the 6 nadirs agregation dataset
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 3 Figure 3: From left to right along the 2020 ODC 42 days test period and every 6 days: Pseudo-observations (nadir and SWOT), Neural variational scheme with SPDE prior (mean), and deviations to the mean for 5 conditional simulations

Figure 5 :

 5 Figure 5: 4DVarNet SSH ensemble-based standard deviations from 2016-12-31 to 2017-01-25 (every 5 days)