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Abstract

Channel estimation in high-mobility environments is a challenging problem for advanced mobile communi-

cation systems (5G and beyond). In this manuscript, we first propose an iterative algorithm for channel

estimation and data detection in the delay-Doppler domain for multiple-input multiple-output orthogonal

time frequency space system. Then, in order to increase the spectral efficiency of the system, we use a

superimposed pilot pattern. The proposed algorithm takes advantage from the sparse nature of the chan-

nel in the delay-Doppler domain and iterates between message passing-aided data detection and data-aided

channel estimation. For channel estimation, we propose two algorithms. The first one consists in estimating

all channel parameters, including the number of path gains, delay taps, Doppler taps, and channel gains by

using a mean-field approximation and the variational Bayesian expectation maximization algorithm. The

second one, based on the fact that delay and Doppler taps remain unchanged for a rather long period of

time, uses an MMSE approach combined with Cholesky decomposition to only estimate channel gains in

each transmitted frame. For data detection, we adapt the message-passing algorithm proposed in the liter-

ature. We also derive a lower bound on the signal-to-interference-plus-noise ratio of the proposed scheme,

and maximize it by optimally allocating power between pilots and data symbols. Finally, we compare the

complexity and the performance in terms of normalized mean square error, bit error rate, and spectral ef-

ficiency against existing methods. Simulation results, conducted in high-mobility scenarios show that the

proposed algorithm achieves a good compromise between complexity and performance.

Keywords: OTFS, MIMO, channel estimation, data detection, superimposed pilot pattern.

1. Introduction1

Future advanced mobile-communications systems require high reliability, low latency and high spectral2

efficiency (SE) communications [1, 2]. Orthogonal frequency division multiplexing (OFDM), which is the3
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most popular modulation technique used in today’s mobile-communication systems, offers high throughput4

and high SE but its performance deteriorates in high mobility scenarios, such as high-speed vehicular, high-5

speed trains and even in aircraft flying scenarios [3]. These performance degradations are caused by the6

doubly-dispersive nature of the wireless channel in high mobility environments. This nature causes severe7

inter-carrier-interference in OFDM systems.8

Orthogonal time frequency space (OTFS) modulation, which has been recently proposed in [4, 5], is9

a promising solution. Its robustness and better performance, compared to OFDM, are attractive for high-10

speed vehicular communication systems. The secret of OTFS is that it transforms a doubly-selective wireless11

channel to an almost flat one in the delay-Doppler (DD) domain thanks to the inverse symplectic finite Fourier12

transform (ISFFT). The fact that the doubly-dispersive channel is transformed into a flat fading channel13

can be exploited to reduce the bit error rate (BER). The sparsity of the channel in the DD domain can also14

be exploited to reduce the pilot overhead required to estimate a rapidly time-varying channel.15

As with OFDM, multiple-input multiple-output (MIMO) can also be combined with OTFS and benefit16

from the diversity to further increase the transmission rate [6–10]. To ensure robust data transmission in a17

MIMO-OTFS system, efficient channel estimation and data detection algorithms are required at the receiver18

side. Several channel estimation schemes for MIMO-OTFS systems have been proposed in the literature19

[11–21]. Let us briefly review the most recent and popular of them.20

In [11], a channel estimation scheme in the DD domain designed for MIMO-OTFS system is suggested.21

The designed channel estimation method uses impulses in the DD grid as pilots for estimation. Thanks to the22

pilot pattern used in [11] for pilots, data symbols and guard intervals, there is no interference between pilots23

and data symbols. Simulation results show that the proposed channel estimation scheme for MIMO-OTFS24

achieves good performance and outperforms the MIMO-OFDM system under high-Doppler scenarios.25

In [12], a 3D orthogonal matching pursuit (3D-OMP) algorithm is suggested to solve the challenging26

downlink channel estimation problem for massive MIMO-OTFS system. First, the authors of [12] show that27

the MIMO-OTFS channel exhibits a 3D-structured sparsity. The channel is block sparse along the Doppler28

dimension because the system bandwidth is much greater than the Doppler shift of a path, i.e., the only one29

non-zero block is concentrated around zero, but its length is unknown. It is normal sparse along the delay30

dimension because the number of dominant propagation paths is limited. It is also burst sparse along the31

angle dimension, this is due to the fact that the angle-of-departure spread of a path at the base station is32

usually small. Although the non-zero burst lengths can be depicted as constant, it is unknown where each33

burst starts. Then, the downlink channel estimation is formulated as a sparse recovery problem. Simulations34

show that the designed algorithm can acquire a good channel state information (CSI) with reduced pilot35

overhead.36
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In [13], a downlink massive MIMO-OTFS channel estimation is regarded from a Bayesian perspective.37

First, the massive MIMO-OTFS signal model in the time domain is derived. Then, the variational Bayesian38

framework is adopted to recover the uplink channel parameters (the angle, the delay, the Doppler shift, and39

the channel gain) for each physical scattering path. Next, the reciprocity of the channel between the uplink40

and the downlink is exploited to reconstruct the parameters for the downlink massive channels at the base41

station. Simulations results confirm the validity and robustness of the proposed scheme.42

In [14], authors use a tensor-based OMP channel estimation algorithm that exploits the channel sparsity43

in the DD-angle domain. A novel pilot design for OTFS in the time-frequency domain is firstly suggested.44

Then, based on this pilot pattern, the channel estimation is formulated as a sparse recovery problem and the45

tensor decomposition, and parallel support detection are introduced into the tensor-based OMP algorithm46

to reduce the signal processing dimension significantly. Numerical results show the superiority and the47

robustness of the proposed algorithm.48

In [15], a scheme to acquire the state of massive MIMO-OTFS channels has been designed. A pilot49

pattern is then proposed to reduce pilot overhead and save memory consumption. Then, a channel estimation50

algorithm based on a modified sensing matrix is designed to acquire the downlink CSI. Numerical results51

show that this scheme has significant advantages over previous algorithms.52

In [16], a low pilot overhead channel estimation scheme for cyclic prefix (CP)-OFDM-based massive53

MIMO-OTFS system is suggested. First, the CP-OFDM-based massive MIMO-OTFS system channel with54

antenna directivity pattern is analysed, and the burst sparsity in the angle domain is transformed into block55

sparsity by using non-uniform Fourier transform. Then, to solve the problem that the pilot overhead grows56

linearly with the number of antennas, a three-dimensional dynamic support detect algorithm is suggested.57

Simulation results show that the proposed algorithm has lower pilot overhead and higher channel estimation58

accuracy compared to the conventional OMP and the 3D-structured OMP algorithms.59

A new receiver architecture based on the basic expansion model (BEM) OTFS is designed in [19] for high60

mobility communications with Doppler spread channel. First, the analytical BEM-OTFS system model is61

derived. Then, a low-order generalized complex exponential aided rough channel estimation with low pilot62

overhead is suggested. Finally, a high-resolution generalized complex exponential BEM model with a large63

BEM order is adopted for the channel estimation refinement and equalization. The data symbols are exploited64

as pseudo-pilots, leading to higher estimation accuracy. Simulation results show that the suggested method65

outperforms existing solutions in terms of BER and mean squared error (MSE) for channel estimation, while66

featuring low pilot overhead.67

In another work [20], a new channel estimation scheme for MIMO-OTFS is suggested. The 2D structure68

in Doppler-angle domain for channel is considered and characterized via a local Beta process. The uplink69
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channel estimation problem is formulated as a sparse recovery problem, and it is solved via the estimation of70

the delay, the Doppler shift and the angle of the channel using sparse Bayesian learning. Therefore, downlink71

channel estimation is performed with the help of these estimated parameters. Simulation results show that72

the proposed scheme achieves good performance of channel estimation and also shows robust adaptation to73

variable Doppler.74

In [21], to improve signal reconstruction in high-Doppler scenarios, a compressive sampling matching75

pursuit (CoSaMP) algorithm is suggested for the downlink channel estimation in massive MIMO-OTFS76

system. Simulation results show the gain brought by the CoSaMP algorithm with interleaving compared to77

the state-of-the-art channel estimation schemes with a lower computational complexity.78

In [17], in order to reduce the pilot overhead, training duration and the pre-processing complexity, an79

end-to-end input-output MIMO-OTFS model is derived and a new model for sparse channel estimation, in80

which pilots are placed in the time-frequency domain, is suggested. The two main contributions of this work81

is that the suggested channel estimation scheme can estimate the fractional Doppler shifts efficiently and the82

SE of the system is increased compared to the previous state-of-the-art methods.83

The authors in [18] proposed an efficient channel estimation method for MIMO-OTFS systems. The84

channel estimation problem is formulated as a block sparse recovery problem and it is solved via the designed85

block sparse Bayesian learning with block reorganization method. Simulation results show that the suggested86

method outperforms previous state-of-the-art methods in terms of performance and noise robustness.87

To the best of our knowledge, except [22], [23], and [24], all channel estimation algorithms for SISO-OTFS88

modulation in the DD domain use two groups of channel estimation methods. The first group concern the89

conventional pilot aided (CPA) design with a super-frame architecture, where two frames are sent for each90

transmission: one frame for channel estimation and another for symbol detection [11]. The second one is91

the embedded pilot (EP)-aided channel estimation, where a pilot pattern regrouping pilots, data symbols,92

and guard intervals in the same frame is used [25]. Both schemes suffer from the degradation of the SE of93

the system. This problem becomes even more difficult in a MIMO-OTFS system due to the large number of94

guard intervals required in the DD domain.95

The second group of channel estimation methods, which is the most widely used in the literature, can96

be further divided, according to the type of pilot pattern, into three schemes. We will define these three97

schemes through three methods: a reference method [25] and two recent methods [17, 18], one method for98

each scheme. In the first scheme, which is called pilot type-1 [25], pilots are designed with higher power than99

data and guard intervals are inserted around pilot to alleviate the interference of data symbols. Using pilot100

type-1, the channel estimation step is simple and less complex as it is performed with a simple threshold101

method. However, the performance is poor with high pilot overhead (low SE) and high peak-to-average102
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power ratio (PAPR) due to guard intervals and different power design for data and pilots. To remedy these103

shortcomings, the second and third schemes were proposed. In the second scheme, called pilot type-2 [18],104

there is no guard intervals between the pilots and data symbols. The pilot type-2 tolerates some interference105

between the data symbols and part of the pilots, but on the other hand it improves the pilot overhead by106

removing the guard intervals and therefore improves the SE. In the third scheme, called pilot type-3 [17],107

another strategy has been adopted, which consists in directly transmitting pilots over the time-frequency108

domain grid for estimating the DD domain CSI. This leads to a reduction of the pilot overhead, training109

duration and pre-processing complexity.110

Although the pilot type-2 and pilot type-3 schemes offer better SE than the pilot type-1 scheme and the111

CPA design, the pilot overhead of both schemes increases with increasing delay and Doppler spread of the112

channel. For example, in a high Doppler spread channel, more pilots are needed for good channel estimation.113

This increases the pilot overhead and decreases the SE. Hence, the need for a superimposed pilot pattern114

and data symbols, where pilots and data symbols are superimposed in the same locations in the DD grid.115

Superimposed schemes allow for the cancellation of pilot overhead due to the non-use of guard intervals116

and the non-allocation of a particular space for pilots, but their use for MIMO systems requires the develop-117

ment of a powerful channel estimation and data detection scheme to manage the interference between pilots118

and data symbols. Furthermore, to improve SE and to minimize the BER, the transmitted power must be119

optimally distributed between the pilots and data symbols. Considering the challenges mentioned earlier,120

the objective of this work is to develop an iterative scheme for channel estimation and data detection in the121

DD domain for MIMO-OTFS systems, utilizing superimposed pilot pattern to increase the SE. The main122

contributions of this work can be summarized as follows:123

1. We propose an algorithm for MIMO-OTFS channel estimation and data detection that uses super-124

imposed pilot pattern in the DD domain and benefices from the sparse nature of the channel in this125

domain. The proposed design mitigates the interference between the pilots and data symbols by it-126

erating between message passing-aided data detection and data-aided channel estimation in the DD127

domain, and has better BER and SE. For channel estimation, we design two formulations and two128

solutions to solve this problem. The first formulation consists in estimating the channel parameters,129

including delay taps, Doppler taps and path gains, as a sparse recovery problem. This problem has130

been solved by adapting the suggested algorithm for SISO-OTFS system in our previous works [26, 27]131

to MIMO-OTFS system. This algorithm uses a mean-field approximation and VB-EM algorithm. The132

second formulation consists in estimating a compact vector containing only the path gains, based on133

the fact that the delay taps and Doppler taps remain unchanged for a given period. This problem has134
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been solved via a low complexity MMSE and the Cholesky decomposition.135

136

2. For data detection step, we propose to this context an adapted version of the message-passing algo-137

rithm (AMPA). This algorithm is computationally-efficient as it exploits the channel sparsity in the138

DD domain. In its detection process, it takes into account the interference of the pilots on data symbols.139

140

3. We derive a lower bound on the signal-to-interference-plus-noise-ratio (SINR) of the proposed scheme,141

which is subsequently optimized to derive the optimal pilot power expression. It is demonstrated that142

the optimal power level reduces the BER and increases further the SE of the proposed scheme.143

144

4. We numerically validate the narrowness of the optimal distribution of transmitted power between pilots145

and data symbols and show its effect on the NMSE, BER and SE of the proposed scheme. Then, we146

compare the complexity and the performance of the proposed algorithm against four state-of-the-art147

methods, named: embedded pilots (EP) [25], block sparse Bayesian learning with block reorganization148

(BSBL-BR) [18], row-group OMP (RG-OMP), and row-group bayesian learning (RG-BL) [17], in terms149

of SE, normalize mean squared error (NMSE) and BER. Finally, we show the good compromise achieved150

by the proposed scheme between NMSE and BER performance, SE, computational complexity and151

PAPR.152

The rest of the paper is structured as follows. Section 2 is reserved for the description of the MIMO-153

OTFS system model using superimposed pilot pattern. The suggested algorithm for channel estimation154

and data detection is detailed in Section 3. Section 4 is dedicated to the derivation of the optimal power155

distribution between pilots and data symbols. The complexity analysis of the proposed solution as well156

as the comparison of this complexity with the state-of-the-art methods are presented in Section 5. The157

performance of the designed scheme is evaluated in Section 6 by various experiments. Finally, conclusions158

are given in Section 7.159

Notations: We denote by a, a and A, a scalar, a column vector and a matrix, respectively. Symbols160

⊗ and ⊙ denote the Kronecker and the Hadamard products, respectively. Operators vec(.) and vec−1
m,n(.)161

designate the column vectorization of an m× n matrix into an mn× 1 vector and the invectorization of an162

mn× 1 vector to an m× n matrix, respectively. δ(.) is the Dirac-delta function and E{.} is the expectation163

operation. The notation diag{d1, d2, ..., dN} denotes an N ×N diagonal matrix with entry (i, i) equal to di,164

and the notation blkdiag{B1,B2, ...,BN} denotes a block diagonal matrix with Bi the ith block diagonal165
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entry. The modulo-M operator is given by [.]M . Hermitian transposition is denoted by the superscript (.)H .166

Matrices IN , Fn, and FH
n represent the N ×N identity matrix, the n-point DFT matrix, and the n-point167

IDFT matrix.168

2. MIMO-OTFS system model169

We consider a MIMO-OTFS system whose parameters are given in Table 1. Its block diagram is shown170

in Fig. 1.171

Table 1: Parameters of a MIMO-OTFS system.

Parameter Physical signification
M , N delay bins, Doppler bins
Nt, Nr number of Tx and Rx antennas
Wt, Wr transmit pulse matrix, receive pulse matrix
fc carrier frequency
∆t(s), ∆f(Hz) slot duration, subcarrier spacing
kν , lτ maximum Doppler tap, maximum delay tap
N∆t, M∆f frame duration, frame bandwidth
tc coherence time

Figure 1: Block diagram of a MIMO-OTFS system: (I)SFFT: (Inverse) symplectic finite Fourier transform, HT: Heisenberg
transform, WT: Wigner transform, CP: Cyclic prefix, TF: Time-frequency.

At the transmitter side, the 2D grid of symbols in the DD domain XDD is formed, for each antenna, by172

a superposition of data symbols and pilots as follows:173
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X

(1)
DD =D(1) + P (1),

...

X
(Nt)
DD =D(Nt) + P (Nt),

(1)

where D(i) ∈ CM×N is the matrix formed by data symbols and P (i) ∈ CM×N is the matrix formed by the174

pilots in the i -th branch.175

The DD domain signal XDD, in each branch, is then transformed into a time-frequency domain signal176

XTF via an ISFFT as follows:177



X
(1)
TF (n,m) =

1√
MN

N−1∑
k=0

M−1∑
l=0

X
(1)
DD(k, l)ej2π(

nk
N −ml

M ),

...

X
(Nt)
TF (n,m) =

1√
MN

N−1∑
k=0

M−1∑
l=0

X
(Nt)
DD (k, l)ej2π(

nk
N −ml

M ).

(2)

Next, XTF is converted to waveform s(t) using the Heisenberg transform as178


s(1) =(FH

N ⊗Wt)x
(1)
DD,

...

s(Nt) =(FH
N ⊗Wt)x

(Nt)
DD ,

(3)

where s(i) = vec(S(i)) with S(i) = WtF
H
M (FMX

(i)
DDFH

N ) = WtX
(i)
DDFH

N , and x
(i)
DD = vec(X

(i)
DD). Wt is a179

pulse shaping matrix (for rectangular pulse Wt = IM ). One CP is added to the signal s(t) in each branch180

before its transmission.181

The MIMO wireless channel in the DD domain is sparse with few parameters. The channel between the182

t-th transmitting antenna and the r-th receiving antenna has P taps. Thus, the baseband channel impulse183

response can be represented as184

hrt(τ, ν) =

P∑
i=1

h
(rt)
i δ(τ − τi)δ(ν − νi), (4)

where h
(rt)
i , νi, and τi are the complex channel gain, the Doppler shift, and the delay of the i-th path,185

respectively. The i-th delay and Doppler taps (li, ki) can be written as li = τiM∆f, ki = νiN∆t.186

We derive the linear system describing the input/output relations of the MIMO channel as187
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r(1) =H11s
(1) + ...+H1Nt

s(Nt) + n(1),

r(2) =H21s
(1) + ...+H2Nts

(Nt) + n(2),

...

r(Nr) =HNr1s
(1) + ...+HNrNt

s(Nt) + n(Nr),

(5)

where Hrt =
∑P

i=1 h
(rt)
i Πli∆ki ∈ CMN×MN is the corresponding channel matrix between the t-th transmit-188

ting antenna and the r-th receiving antenna with Π ∈ CMN×MN , is the permutation matrix (forward cyclic189

shift):190

Π =



0 · · · 0 1

1
. . . 0 0

...
. . .

. . .
...

0 · · · 1 0


. (6)

∆ = diag[α0, α1, ..., αMN−1] ∈ CMN×MN , where α = e
j2π
MN . n(i) ∼ CN (0, σ2

n) is an additive complex191

Gaussian noise variable at the i-th receiving antenna.192

Let rm = [(r(1))T , (r(2))T , ..., (r(Nr))T ]T , sm = [(s(1))T , (s(2))T , ..., (s(Nt))T ]T , nm = [(n(1))T , (n(2))T , ..., (n(Nr))T ]T ,193

and194

HM =



H11 H12 · · · H1Nt

H21 H22 · · · H2Nt

...
...

. . .
...

HNr1 HNr2 · · · HNrNt


, (7)

Thus,195

rm = HMsm + nm, (8)

where rm,nm ∈ CMNNr×1, sm ∈ CMNNt×1, and HM ∈ CMNNr×MNNt .196

The received signal in the DD domain, for the i-th antenna, is written in a vector form as y
(i)
DD =197

(FN ⊗ Wr)r
(i), where y

(i)
DD = vec(Y

(i)
DD). Based on the fact that r(i) =

∑Nt

j=1 Hijs
(j) + n(i) and s(j) =198

(FH
N ⊗Wt)x

(j)
DD, we get199

ym = Hxm +
∼
n, (9)
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where ym = [(y
(1)
DD)T , (y

(2)
DD)T , ..., (y

(Nr)
DD )T ]T , xm = [(x

(1)
DD)T , (x

(2)
DD)T , ..., (x

(Nt)
DD )T ]T ,

∼
n = [((FN⊗Wr)n

(1))T , ((FN⊗200

Wr)n
(2))T , ..., ((FN ⊗Wr)n

(Nr))T ]T , and201

H =



H11 H12 · · · H1Nt

H21 H22 · · · H2Nt

...
...

. . .
...

HNr1 HNr2 · · · HNrNt


, (10)

with202

Hij = (FN ⊗Wr)Hij(F
H
N ⊗Wt),

= (FN ⊗Wr)

(
P∑

p=1

h(ij)
p Πlp∆kp

)
(FH

N ⊗Wt),

=

P∑
p=1

h(ij)
p Λp,

(11)

where Λp = (FN ⊗ Wr)ϑp(F
H
N ⊗ Wt), and ϑp = Πlp∆kp . Since (FN ⊗ Wr) is a unitary matrix and203

n(i) ∼ CN (0, σ2
nIMN ),

∼
n and n share the same distribution. The additive noise vector

∼
n has a mean204

m∼
n
= E{∼n} = 0MNNr

and covariance matrix205

C∼
n
= E{∼n∼

n
H
} = σ2

nIMNNr . (12)

The transmitted vector xm contains pilots and data symbols. It is written in the form xm = p + d,206

where p = [(p(1))T , (p(2))T , ..., (p(Nt))T ]T , and d = [(d(1))T , (d(2))T , ..., (d(Nt))T ]T with p(i) = vec(P (i)) and207

d(i) = vec(D(i)). Thus, equation (9) can be written as follows:208

ym = H(p+ d) +
∼
n = yp + yd +

∼
n, (13)

where yp = Hp and yd = Hd. The term yp = Hp can also be written as209

yp = Φphm, (14)

where Φp = blkdiag(B1,B2, ...,BNr ) ∈ CMNNr×PNtNr is a block diagonal matrix with B1 = B2 = ... =210

BNr
= [Λ1p

(1), ....,ΛPp
(1), ...,Λ1p

(Nt), ...,ΛPp
(Nt)], and hm = [h

(11)
1 , ..., h

(11)
P , ..., h

(NrNt)
1 , ..., h

(NrNt)
P ]T is an211

(NtNrP × 1) vector formed by the channel coefficients of all paths. hm has zero mean and the following212

covariance matrix:213
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Chm
= E{hmhH

m},

= diag{σ2

h
(11)
1

, ..., σ2

h
(11)
P

, ..., σ2

h
(NrNt)
P

}.
(15)

Assuming pilot symbols are chosen independently with uniform distribution, the matrix Φp has a zero214

mean and a covariance matrix given as follows:215

CΦp = E{ΦpΦ
H
p } = NtPσ2

pIMNNr . (16)

Proof. : Since Φp = blkdiag(B1, ...,BNr ), its covariance matrix can be expressed as follows:

CΦp = E{ΦpΦ
H
p },

= blkdiag(E{B1B
H
1 }, ...,E{BNr

BH
Nr

}).
(17)

Letting E{p(n)(p(n))H} = σ2
pIMN , the expression E{BiB

H
i } is expressed as follows:216

E{BiB
H
i } =

∑Nt

n=1

∑P
i=1 ΛiE{p(n)(p(n))H}ΛH

i ,

= σ2
p

∑Nt

n=1

∑P
i=1 ΛiΛ

H
i .

(18)

Since Λi = (FN ⊗Wr)ϑi(F
H
N ⊗Wt), ϑi = Πli∆ki , and by taking Gr = FN ⊗Wr and Gt = FH

N ⊗Wt,217

we have218

ΛiΛ
H
i = GrϑiGtG

H
t ϑH

i GH
r ,

= Grϑiϑ
H
i GH

r ,

= GrΠ
li∆ki(∆ki)H(Πli)HGH

r ,

= GrΠ
li(Πli)HGH

r ,

(19)

Note that ΠΠH = IMN , that is ΠH = Π−1. Then,219

Πli(Πli)H = IMN , (20)

and inserting (20) into (19) we get ΛiΛ
H
i = GrG

H
r = IMN . Then,220

E{BiB
H
i } = NtPσ2

pIMN , (21)

leading thus to Eq. (16).221

Let h = [(h(11))T , ..., (h(21))T , ..., (h(NrNt))T ]T being the LNtNr sparse vector of channel, where h(ij) ∈222

CL is a sparse vector of channel between the i-th Tx antenna and the j-th Rx antenna containing only P223
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non-zero elements. Equation (14) can also take the following form:224

yp = (K⊙Ψ)h = Ah, (22)

where K ∈ CMNNr×LNtNr is the pilots matrix given as follows:225

K =



K11 K12 · · · K1Nt

K21 K22 · · · K2Nt

...
...

. . .
...

KNr1 KNr2 · · · KNrNt


, (23)

with L = (2kν+1)(lτ+1), and the elements of the sub-matrices Kij of the matrix K are calculated as follows:226

Kij [i
′, l′(2kν + 1) + k′ + kν ] = P (i)[(k − k′)N , (l − l′)M ], for i′ = 0 : MN , l′ ∈ [0, lτ ] and k′ ∈ [−kν , kν ].227

Ψ ∈ CMNNr×LNtNr is an additional phase shift matrix given by228

Ψ =



Ψ11 Ψ12 · · · Ψ1Nt

Ψ21 Ψ22 · · · Ψ2Nt

...
...

. . .
...

ΨNr1 ΨNr2 · · · ΨNrNt


, (24)

where the elements of the sub-matrices Ψij of the matrix Ψ are calculated as follows: Ψij [i
′, l′(2kν + 1) +229

k′ + kν ] = exp(k′(l − l′)/MN).230

Therefore, equation (13) can take the two following forms:231

ym = Hd+Φphm +
∼
n. (25)

ym = Hd+Ah+
∼
n. (26)

3. Proposed algorithms232

In this section, we detail the proposed algorithm for channel estimation and symbol detection. The233

first step in the proposed algorithm is the estimation of the number of channel paths P and the delay and234

Doppler taps {li, ki}i=1:P . Since {li, ki}i=1:P remain unchanged for a period Ts, for a doubly-underspread235

(DU) channel [28], the estimation of these parameters is done once every Ts = NTT seconds, where NT is236

the number of frames in the period Ts and T is the frame duration. Only the channel gains {hi}i=1:NtNrP237
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will be estimated in each OTFS frame. For this purpose, we propose the frame architecture shown in Fig 2.238

In each branch of the MIMO-OTFS system, the first frame (FT1
) is used for channel estimation including the239

number of channel paths P , the delay and Doppler taps {li, ki}i=1:P , and the channel gains {hi}i=1:NtNrP .240

In each of the other frames (FT2 , ..., FTN
), only the estimation of the channel gains is considered.241

Figure 2: Frame architecture (■: data, ◦: pilot).

3.1. Iterative SoBaP-AMPA algorithm for channel estimation and data detection242

This algorithm operates in the FT1
transmitted frame and iterates between data-aided channel estimation243

and AMPA-assisted data detection.244

3.1.1. Data-aided channel estimation (SoBaP algorithm)245

The model (26) can be rewritten as follows:246

ym =

LNtNr∑
i=1

siciai +
∼
vd, (27)

where ai is the i-th column of A, h = s ⊙ c = [s1c1, s2c2, ..., sLNtNr
cLNtNr

]T , where s ∈ {0, 1}LNtNr is

the support vector of channel and c denotes the vector of channel gains.
∼
vd = Hd +

∼
n ∼ CN (0,C∼

vd
)

(see proof) is a mixture involving the additive noise, the channel contributions and the data symbols.
∼
vd

can also take the form
∼
vd = Φdhm +

∼
n, where Φd = blkdiag(C1,C2, ...,CNr

) ∈ CMNNr×PNtNr with

C1 = C2 = ... = CNr
= [Λ1d

(1), ....,ΛPd
(1), ...,Λ1d

(Nt), ...,ΛPd
(Nt)]. In the same way as Φp, one can easily

verify that Φd has a zero mean and a covariance matrix given as follows:

CΦd
= E{ΦdΦ

H
d } = NtPσ2

dIMNNr
. (28)
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Proof. : Since mhm
= E{hm} = 0PNtNr

and m∼
n
= E{∼n} = 0MNNr

, the mean of
∼
vd is

m∼
vd

= E{∼vd} = 0MNNr
, (29)

and its covariance matrix is calculated as follows:

C∼
vd

= E{∼vd
∼
v
H

d },

= E{ΦdhmhH
mΦH

d }+ E{∼n∼
n

H
}.

(30)

The expression E{ΦdhmhH
mΦH

d } can be evaluated based on the following property [29]: if X is a K × L247

random matrix that satisfies E{XXH} = σ2
xIK , then for any L × L hermitian matrix Y , E{XY XH} =248

Tr(Y )
L E{XXH}. Therefore,249

E{ΦdhmhH
mΦH

d } =
Tr(hmhH

m)

PNtNr
E{ΦdΦ

H
d },

=

(∑PNtNr

i=1 σ2
hi

PNtNr

)
E{ΦdΦ

H
d }.

(31)

By replacing the expressions (12), (28) and (31) in (30) we get250

C∼
vd

=

(
σ2
n +

σ2
d

Nr

PNtNr∑
i=1

σ2
hi

)
IMNNr . (32)

251

Letting cs the (PNtNr ×1) vector and As the (MNNr ×PNtNr) matrix constructed, respectively, from252

the elements of c and A considering the indices i where si ̸= 0. Thus,253

p(ym|c, s) = CN (Ascs,C∼
vd
). (33)

The inputs of the vector h are modeled by a Bernoulli-Gaussian model. This model allows to take into254

account the sparsity of the vector h. We suppose that c follows the probabilistic model given by255

p(c|s) =
LNtNr∏
i=1

p(ci|si), (34)

where p(ci|si) = CN (0, σ2
si) and σ2

1 ≫ σ2
0 .256

With the model (33), (34), the vector ym can be seen as a noisy mixture of atoms specified by the257

support s. It is worth noting that the variances σ2
ci of Gaussian distributions are independent of the support258

s. It is also to be noted that, to detect the location of spikes, the variables si corresponding to the inputs259
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of h are assumed to be independent Bernoulli random variables (si = 1 if a spike is present at hi and260

si = 0 otherwise). The unstructured sparsity treated here can be modelled using a standard product of the261

Bernoulli distributions:262

p(s) =

LNtNr∏
i=1

p(si), (35)

where p(si) = Ber(pi) and pi = p(bi = 1) = 1− p(bi = 0).263

Furthermore, in modern approaches, instead of trying to approximate the means of the posterior distri-264

butions from MCMC simulations, one tries to iteratively compute an exact variational approximation of the265

target posterior distribution.266

For the sparse channel estimation problem that we would like to solve in this work, we propose a MAP-267

estimator, which correspond to the optimal Bayesian estimator using Bayesian cost. Therefore, the first268

approach to solve the channel estimation problem consists in solving the following joint MAP problem:269

(ŝ, ĉ) = argmax
s,c

log p(s, c|ym). (36)

It has been shown in [30] that the solution set of the joint MAP problem (36) is the same as the standard270

sparse recovery problem using the Bernoulli-Gaussian model (34), (35). This close connection motivates the271

use of the Bernoulli-Gaussian model in the channel estimation problem treated in this work.272

More specifically, we are interested here in the determination of channel support s using the MAP273

criterion. The decision minimizing the decision error probability on support s is given by:274

ŝ = argmax
s∈A

log p(s|ym), (37)

where A = {0, 1}LNtNr .275

The evaluation of log p(s|ym) for all 2card(A) sequences of s ∈ A is required for solving problem (37).276

This makes problem (37) complex.277

In order to reduce this complexity, individual decision on each input of the support vector s is classically278

considered. This decision is taken from a marginalized MAP estimation problem, conducting to279

ŝi = argmax
si∈{0,1}

log p(si|ym). (38)

Even if the problem (38) seems easy to solve because the search space contains only two elements (si ∈280

{0, 1}), the evaluation of p(si|ym) remains intractable due to the costly marginalization of p(s|ym) over281
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the sj ’s, for j ̸= i. To solve this problem, we compute a tractable surrogate q(si) of p(si|ym). The282

procedure adopted here allows to compute an approximation q(si) of p(si|ym) and is named the mean-field283

approximation. It is summarized in Appendix A. In this case, problem (38) becomes284

ŝi = argmax
si∈{0,1}

log q(si). (39)

Based on the mean-field approximation, problem (39) can be solved by a threshold method as follows:285

ŝi =

 1, if q(si = 1) > ρ,

0, otherwise,
(40)

where ρ = 0.5, which is a value that minimizes the Bayes risk when uniform and equal costs are selected286

[31, Section II.B]. Once the support vector s is estimated, the vector of channel gains c can be estimated287

by MAP estimate ĉ = argmax
c

log p(c|ŝ,ym):288

ĉŝ = (AT
ŝ Aŝ +∆)−1AT

ŝ ym,

and ĉi = 0 if si = 0,
(41)

where ∆ = diag[σ2/σ2
c1 , σ

2/σ2
c2 , ..., σ

2/σ2
cLNtNr

]. Aŝ and ĉŝ denote the corresponding columns of A and the289

entries of c limited to ŝ, respectively. This solution reduces to the least-square solution when σ2 ≪ σ2
ci290

and to matched filtering when σ2 is large. The proposed algorithm for channel estimation is summarized in291

Algorithm 1.292

Algorithm 1 Channel estimation algorithm

Require: ym ∈ CMNNr , A ∈ CMNNr×LNtNr

Ensure: ŝ ∈ {0, 1}LNtNr , ĉ ∈ CLNtNr×1

1: p(s) =
∏

k p(sk)
2: prior mean for c: m = 0LNtNr

3: probability q: q(0) ∼ (U[0,1])1:LNtNr

4: r: r(0) = ym −A(s⊙m)

5: while k ≤ K and |q(s(k)i )− q(s
(k−1)
i )| < ϵ do

6: for l = 1 : LNtNr do

7: Σ(sk|ym) =
σ2
ck

σ2

σ2+skσ2
ck

AT
k Ak

8: m(sl|ym)(k) = sl
σ2
cl

σ2+slσ2
cl
AT

l Al
rTl Al

9: q
(k)
l = q(sl|ym)(k) ∝

√
Σ(sl|ym)e

(
1
2

m(sl|ym)2

Σ(sl|ym)

)
p(sl)

10: r(k): r(k) = r(k) −Al(s
(k)
l m(sl|ym)(k))

11: end for
12: end while
13: estimate support s: ŝ = (q > 0.5)
14: estimate c conditional to ŝ: ĉŝ = (AT

ŝ Aŝ +∆)−1AT
ŝ ym and ĉk = 0 if sk = 0
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3.1.2. AMPA-aided data detection293

Once the channel estimation is done, the obtained results, namely the channel coefficients as well as the294

delay and Doppler taps will be used to form the following model allowing the detection of data symbols:295

yd = ym −Ah = Ĥd+
∼
we, (42)

where
∼
we = A(h− ĥ)+

∼
n is formed by the additive noise and the channel estimation error h− ĥ. The mean296

m∼
we(k)

and variance var∼
we(k)

of the k-th element of
∼
we are given as follows:297

m∼
we(k)

= E{∼we(k)} = 0, (43)

var∼
we(k)

= σ2
n + σ2

pMh, (44)

where Mh = E{||h− ĥ||2} is the MSE of channel estimation.298

Proof. : Letting eh = A(h − ĥ), then
∼
we = eh +

∼
n. One can easily verify that the (l + kM)-th element of299

the vector eh can be written as follows:300

eh(l + kM) =

LNtNr∑
j=1

A[l + kM, j](h(j)− ĥ(j)), (45)

where A[l+kM, j] = β(l+kM, j)P (i)[(k−kj)N , (l− lj)M ] and βj(l+kM) is an additional shift phase given301

as follows:302

β(p, q) =


e−j2π n

N ej2π
ki([m−lq ]M )

MN , if p = λq, and m < lq

ej2π
kq([m−lq ]M )

MN , if p = λq, and m ≥ lq

0, otherwise,

(46)

where λq = [M − lq]M +M [n− kq]N .303

Because all pilot symbols have a zero mean and an equal power of σ2
p, the mean and the variance of304

eh(l + kM) are given as follows:305

meh(l+kM) = E{eh(l + kM)} = 0, (47)

and

var{eh(l + kM)} = σ2
p

∑LNtNr

i=1 E{|h(i)− ĥ(i)|2},

= σ2
pE{||h− ĥ||2} = σ2

pMh.
(48)
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Finally, since eh and
∼
n are statistically independent and based on (12), (47) and (48), the mean and the306

variance of
∼
we(k) are calculated as follows:307

m∼
we(k)

= E{eh(k)}+ E{∼n(k)} = 0, (49)

and

var{∼we(k)} = var{eh(k)}+ var{∼n(k)} = σ2
n + σ2

pMh, (50)

where Mh = E{||h− ĥ||2}.308

309

The aim here is to estimate the data symbol vector d from yd, Ĥ, m∼
we(k)

and var∼
we(k)

. For this purpose,310

we adapt the low-complexity MP algorithm proposed in [32], which is suitable for uncoded OTFS, taking311

advantage of the channel sparsity in the DD domain.312

Based on (42), and by observing that Ĥ is sparse: each row of Ĥ contains only PNt non-zero elements313

and each column of Ĥ contains only PNr non-zero elements, the system is modelled as a sparsely connected314

factor graph with MNNt variable nodes and MNNr observation nodes corresponding, respectively, to d315

and yd. The factor graph of the MP algorithm, which consists of observation nodes and variable nodes, is316

shown in Fig 3.317

(a) Observation node messages. (b) Variable node messages.

Figure 3: Messages in factor graph.

Thanks to the channel sparsity in the DD domain, each variable node d(c) is connected to only PNr318

observation nodes {yd(ki), ki ∈ Ic}, and each observation node yd(r) is connected to only PNt variable319

nodes {d(ki), ki ∈ Ir}, where Ic and Ir denote, respectively, the sets of non-zero indices in the c-th column320

and the r-th row of Ĥ.321
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The application of the MAP criterion on (42) gives:322

d̂ = argmax
d∈ANMNr

p(d|yd, Ĥ), (51)

where A denote the employed finite modulation alphabet (e.g., QAM).323

Problem (51) is demanding in terms of complexity. Therefore, the following symbol by symbol MAP324

criterion is used:325

d̂(r) = argmax
aj∈A

p(d(r) = aj |yd, Ĥ),

= argmax
aj∈A

1

|A|
p(yd|d(r) = aj , Ĥ),

≈ argmax
aj∈A

∏
k∈Ir

p(yd(k)|d(r) = aj , Ĥ),

(52)

for r = 0 : MNNt − 1.326

It is worth noting that, thanks to the sparsity of the matrix Ĥ, the elements of vector ym are almost327

independent for a given d(k). It should also be noted that the entries of the vector of data symbols d328

are assumed to be equally likely. Problem (52) can be solved using the AMPA, which will be detailed329

below. The message that passes to the observation node yd(c), for c ∈ Ir, from the variable node d(r), for330

r = 0 : NMNt − 1 is the probability mass function (pmf) given as follows331

prc = {prc(ai)|ai ∈ A}. (53)

The relationship between the r-th observation node yd(r) and the c-th variable node d(c) is given as332

follows:333

yd(r) = d(c)Ĥ(r, c) + ϕrc, (54)

where Ĥ(r, c) denotes the element in the r-th row and c-th column of Ĥ, and ϕrc is the interference-plus-noise334

term expressed as follows:335

ϕrc =
∑

k∈Ir,k ̸=c

d(k)Ĥ(r, k) +
∼
we(r), (55)

Using the central-limit theorem, the first term of equation (55) is approximated by a Gaussian distri-336

bution.
∼
we(r) follows also a Gaussian distribution. Therefore, ϕrc is approximated to a Gaussian random337

variable.338
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In the t-th iteration of the AMPA, messages containing the mean µ
(t)
r,c and the variance (σ

(t)
r,c)2 of ϕrc339

passes from the observation node yd(r) to the variable node d(c), where c ∈ Ir. The major difference340

between the versions of MP algorithm proposed in the literature [11, 32] and the AMPA proposed here lies341

in the calculation of µ
(t)
r,c and (σ

(t)
r,c)2. This difference is mainly due to the two following points:342

� The previous versions of the MP algorithm assume perfect knowledge of CSI, i.e., the MIMO matrix343

H is perfectly known. In our case, we do not know H but we have an estimate Ĥ.344

345

� Unlike previous versions where the interference term contains only additive noise, in our case, this346

term is a function of additive noise
∼
n and the term eh containing the symbols of pilots and the error347

of channel estimation (42)-(44). This mixture is not present in previous versions of the MP algorithm348

for OTFS due to the use of guard intervals between pilot symbols and data symbols, which decreases349

the SE of the system.350

Using the mean and variance of
∼
we(k) that we derived in (49) and (50), the mean µ

(t)
r,c and the variance351

(σ
(t)
r,c)2 of the interference term are given as follows:352

µ(t)
r,c =

∑
k∈Ir,k ̸=c

|A|∑
i=1

aip
(t−1)
k,r (ai)Ĥ(r, k) +m∼

we(k)
, (56)

and353

(σ
(t)
r,c)2 =

∑
k∈Ir,k ̸=c

∑|A|
i=1 |ai|

2
p
(t−1)
k,r (ai)|Ĥ(r, k)|2 − |µ(t)

r,c|2 + var{∼we(k)}. (57)

The next step in the AMPA is to calculate the entries of the pmf vector P
(t)
r,c that passes as a message354

from the variable node d(c) to the observation node yd(r). The elements of the pmf vector are calculated355

using a damping method as in [11]:356

p(t)c,r(ai) = ∆p(t−1)
c,r (ai) + (1−∆)p(t−2)

c,r (ai), (58)

where ∆ ∈ (0, 1] is the damping factor allowing the improvement of the convergence of the AMPA, and357

p(t)c,r ∝
∏

k∈Ic,k ̸=r

exp

(
−
|yd(k) + µ

(t)
k,c + Ĥ(k, c)ai|

(σ
(t)
k,c)

2

)
. (59)

The AMPA stops if the maximum number of iteration niter is reached or if |p(t)c,r(ai) − p
(t−1)
c,r (ai)| < ϵ,358

where ϵ is a small value.359
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Finally, decision on the detected data symbols is given as follows:360

d̂(c) = argmax
ai∈A

p(t)c (ai), (60)

for c = 0 : NMNt − 1. The AMPA is summarized in Algorithm 2.361

Algorithm 2 AMPA for MIMO-OTFS data detection

Require: yd, Ĥ,
∼
we(k): m∼

we(k)
, var∼

we(k)
, niter

Ensure: d̂
1: Iteration index t = 0
2: The probability mass function (pmf): p

(0)
rc = 1

|A| for r = 0 : NMNt − 1 and c ∈ Ir
3: while t ≤ niter and |p(t)c,r(ai)− p

(t−1)
c,r (ai)| < ϵ do

4: The mean µ
(t)
r,c and the variance (σ

(t)
r,c)2 of the interference term ϕrc pass from the observation node

yd(r) to the variable node d(c)

5: The pmf vector p
(t)
r,c is updated and passes as a message from the variable node d(c) to the observation

node yd(r)
6: The distribution of the transmitted symbols d is updated
7: t = t+ 1
8: end while

3.2. Iterative LMMSE-AMPA algorithm for channel estimation and data detection362

As previously stated, since the number of paths P , delay and Doppler taps {li, ki}i=1:P remain un-363

changed for a period of time Ts, only the channel gains vector {hi}i=1:P will be estimated in the frames364

FT2
, FT3

, ..., FTN
. In the same way as above, we propose an iterative algorithm for channel estimation and365

data detection. For channel estimation, we propose a low complexity MMSE. For data symbol detection,366

the AMAP is used.367

3.2.1. Data-aided channel estimation (LMMSE algorithm)368

Based on the fact that yd = Φdhm, equation (25) can be written as follows:369

ym = Φdhm +Φphm +
∼
n. (61)

Letting Φ̂
(0)
d the first estimate of Φd, the equation (61) is re-written as follows:370

ym = (Φp + Φ̂
(0)
d )hm + (Φd − Φ̂

(0)
d )hm +

∼
n,

= Φ
(0)
pd hm + µ

(0)
d ,

(62)

where µ
(i)
d = (Φd − Φ̂

(i)
d )hm +

∼
n is the noise-plus-interference vector whose mean is given as follows:371
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m
(i)

µ
(i)
d

= E{µ(i)
d } = 0MNNr

, (63)

and in the same way as (32), its covariance matrix is derived as follows:

C
(i)

µ
(i)
d

= E{µ(i)
d (µ

(i)
d )H},

=
(
σ2
n +

2σ2
d

Nr

∑PNtNr

i=1 σ2
hi

)
IMNNr

.
(64)

From (62) and based on (63), (64), the MMSE estimate of the channel vector hm in the i-th iteration is372

given as follows:373

ĥ(i)
m = ((Φ

(i−1)
pd )H(C

(i−1)

µ
(i−1)
d

)−1Φ
(i−1)
pd +C−1

hm
)−1(Φ

(i−1)
pd )H(C

(i−1)

µ
(i−1)
d

)−1ym. (65)

It is worth noting that this estimator benefits from the channel sparsity in the DD domain by calculating374

the inverse of a (PNtNr × PNtNr) matrix, where P ≪ MN .375

Equation (65) requires the inversion of the matrix M = ((Φ
(i−1)
pd )H(C

(i−1)

µ
(i−1)
d

)−1Φ
(i−1)
pd + C−1

hm
). As M376

is a bounded positive definite Hermitian matrix (see Appendix B) with a lower and upper bound PNt, we377

propose a low complexity MMSE (LMMSE) by computing M−1 via the Cholesky decomposition. Algorithm378

3 summarize the estimate of the channel vector hm in the i-th iteration.379

Algorithm 3 LMMSE algorithm for channel estimation

Require: Φ
(i−1)
pd , (C

(i−1)

µ
(i−1)
d

)−1, C−1
hm

, ym

Ensure: ĥ
(i)
m

1: Compute the Hermitian bounded matrix M = (Φ
(i−1)
pd )H(C

(i−1)

µ
(i−1)
d

)−1Φ
(i−1)
pd +C−1

hm

2: Compute the Cholesky decomposition of M = LDLH

3: Solve the system Ls1 = (Φ
(i−1)
pd )H(C

(i−1)

µ
(i−1)
d

)−1ym

4: Solve the system Ds2 = s1
5: Solve the system LHs3 = s2
6: ĥ

(i)
m = s3

3.2.2. AMPA-aided data detection380

Once the channel is estimated, the AMPA is used for data detection. The observation vector
∼
y
(i)

d at the381

i-th iteration used for the symbol detection can be expressed as follows:382

∼
y
(i)

d = ym − Ĥ
(i)
p = Ĥd+

∼
w

(i)

ẽ , (66)
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where
∼
w

(i)

ẽ = (H− Ĥ
(i)
)p+

∼
n. In the same way as (43) and (44) we can easily show that the mean of the383

k-th element of
∼
w

(i)

ẽ is given by m∼
w

(i)

ẽ (k)
= 0 and its variance is expressed as var∼

w
(i)

ẽ (k)
= σ2

n + σ2
pM

(i)
h .384

The channel estimation and data detection algorithm designed in this work is outlined in Algorithm 4385

Algorithm 4 Channel estimation and data detection algorithm

Require: ym, A, Niter, Φpd, (Cµd
)−1, C−1

hm
, frame index fP

Ensure: d̂, P̂ , {P̂i, k̂i}i=1:P , {ĥi}i=1:P̂NtNr

1: while n ≤ Niter & |h(n)
m − h

(n−1)
m | < ϵ do

2: if fP == 1 then
3: Use the SoBaP algorithm (Algorithm 1): {P̂ , {l̂i, k̂i}i=1:P̂ , {ĥi}i=1:P̂NtNr

} = SoBaP (ym,A)
4: else
5: Use the LMMSE algorithm (Algorithm 3): {{ĥi}i=1:P̂NtNr

} = LMMSE
(
ym,Φpd, (Cµd

)−1,C−1
hm

)
6: end if
7: Compute: yd, Ĥ,

∼
we(k) : m∼

we(k)
, var∼

we(k)

8: Use the AMPA (Algorithm 2): d̂ = MAP
(
yd, Ĥ,

∼
we(k) : m∼

we(k)
, var∼

we(k)

)
9: end while

4. Optimal power distribution between pilots and data symbols386

In the proposed scheme, the pilots and data symbols are superimposed in the same DD locations. There-387

fore, the power must be optimally distributed between the pilots and data symbols to maximise the SINR.388

Consequently, the maximization of SINR leads to the maximization of SE and the minimization of BER389

[33]. In what follows, we will derive the SINR lower bound which will be maximised to obtain the optimal390

pilot power σ2
p,opt and the optimal data symbol power σ2

d,opt = 1− σ2
p,opt. For the sake of simplicity, we will391

consider one iteration of the proposed algorithm. Eq. (66) can be rewritten as follows:392

∼
yd = ym −Φpĥm,

= Φdhm +Φp

(
hm − ĥm

)
+

∼
n,

= Φdĥm + (Φd +Φp)
(
hm − ĥm

)
+

∼
n,

= Φdĥm +
∼
we,

(67)

where
∼
we = (Φd +Φp) h̃m +

∼
n and h̃m =

(
hm − ĥm

)
.393

Using (67), the [k, l]-th element of the received DD signal at the Rx j-th antenna can be expressed as394

[22]395
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Y
(j)
d [k, l] =

∑Nt

i=1

∑P
p=1 ĥ

(ji)
β,pD

(i)[[k − kp]N , [l − lp]M ] +
∑Nt

i=1

∑P
p=1 h̃

(ji)
β,p (D

(i)[[k − kp]N , [l − lp]M ]

+ P (i)[[k − kp]N , [l − lp]M ]) +
∼
n[k, l],

(68)

where ĥ
(ji)
β,p = ĥ

(ji)
m,pβ[k, l] and h̃

(ji)
β,p =

(
h
(ji)
m,p − ĥ

(ji)
m,p

)
β[k, l].396

Equation (68) can be rewritten as397

Y
(j)
d [k, l] = d̃T ĥβ +

(
d̃+ p̃

)T
h̃β +

∼
n[k, l],

= d̃T ĥβ + v[k, l],
(69)

where v[k, l] =
(
d̃+ p̃

)T
h̃β +

∼
n[k, l] is the noise-plus-interference term, d̃ ∈ CPNt×1, p̃ ∈ CPNt×1 denote398

data and pilot vectors. Their p-th element is given by D(i)[[k− kp]N , [l− lp]M ] and P (i)[[k− kp]N , [l− lp]M ],399

respectively. The p-th element of h̃β and ĥβ are the scalars h̃
(ji)
β,p and ĥ

(ji)
β,p , respectively.400

Using (69), the SINR of the [k, l]-th symbol can be expressed as follows:401

SINR[k, l] =
E{|d̃T ĥβ |2}
E{|v[k, l]|2}

. (70)

The numerator of (70) depends on the channel estimate and its denominator depends on the estimation402

error. These two entities are independent because, for a linear MMSE estimator, the estimation error is403

orthogonal to the observations [34] and the noise is independent of data symbols. Since E{d̃∗d̃T } = σ2
dIPNt404

and β[k, l] is a phase factor, the numerator of (70) can be expressed as405

E{|d̃T ĥβ |2} = E{(ĥβ)
HE{d̃∗d̃T }ĥβ},

= σ2
dE{∥ĥm∥2},

(71)

The term E{∥ĥm∥2} = Tr(E{ĥm(ĥm)H}) can be calculated using (67) as follows:406

Tr(E{ĥm(ĥm)H}) = σ2
h −Mh, (72)

where σ2
h = Tr(Chm

) =
∑PNtNr

i=1 σ2
hi

and Mh is the MSE of channel estimation defined in (50). From (71)407

and (72), the expression of the SINR numerator can be expressed as follows:408

E{|d̃T ĥβ |2} = σ2
d(σ

2
h −Mh). (73)

The denominator of (70) can be simplified as follows:409
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E{|v[k, l]|2} = E{(h̃β)
H(E{d̃∗d̃T }+ p̃∗p̃T )h̃β}+ E{|∼n[k, l]|2},

= σ2
dE{∥h̃m∥2}+Tr(E{(h̃βh̃β)

H}+ p̃∗p̃T ) + σ2
n.

(74)

The second term of (74) can be simplified using the following property: for two positive semi-definite410

matrices X ∈ CK×K and Y ∈ CK×K , Tr(XY ) ≤ Tr(X)Tr(Y ) [35]:411

Tr(E{(h̃βh̃β)
H}p̃∗p̃T ) ≤ Tr(E{(h̃βh̃β)

H})Tr(p̃∗p̃T ) = PNtσ
2
pMh. (75)

Using (75), (74) can be simplified as follows:412

E{|v[k, l]|2} ≤ σ2
dMh + PNtσ

2
pMh + σ2

n. (76)

By replacing (73) and (76) in (70), the SINR expression becomes413

SINR ≥ σ2
d(σ

2
h −Mh)

σ2
dMh + PNtσ2

pMh + σ2
n

. (77)

To evaluate the expression of the SINR, it is necessary to calculate the MSE Mh for the superimposed-414

aided channel estimation. We show that Mh is lower bounded as415

Mh ≥ (PNtNr)
2(σ2

n + 2σ2
hσ

2
d/Nr)

PMNNtNrσ2
p + τ̃2h(σ

2
n + 2σ2

hσ
2
d/Nr)

. (78)

where τ̃2h =
∑PNtNr

i=1
1

σ2
hi

.416

Proof. : For any positive definite matrix X ∈ CK×K , Tr(X−1) ≥ K2

Tr(X) [35]. Using this result, Mh =

Tr(((Φp)
H(Cµd

)−1Φp +C−1
hm

)−1) can be expressed as follows:

Mh ≥ (PNtNr)
2

Tr((Φp)H(Cµd
)−1Φp +C−1

hm
)
. (79)

Using (32) and the property used in (31) and letting τ̃2h =
∑PNtNr

i=1
1

σ2
hi

, the denominator of (79) can be

simplified as follows:

Tr((Φp)
H(Cµd

)−1Φp +C−1
hm

) =
Tr((Φp)

HΦp)

σ2
n + 2σ2

hσ
2
d/Nr

+ τ̃2h . (80)

We have, by using (17) and (21)

Tr((Φp)
HΦp) = PMNNtNrσ

2
p. (81)
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We get the desired result in (78) by substituting (81) in (80) then (80) in (79).417

By accounting for (78) in (77), and by substituting σ2
d = 1− σ2

p, the SINR becomes418

SINR ≥
a0 + a1σ

2
p + a2σ

4
p

b0 + b1σ2
p + b2σ4

p

, (82)

where a0 = −N3
rN

2
t P

2σ2
n − 2N2

rN
2
t P

2σ2
h + Nrσ

2
hτ̃

2
hσ

2
n + 2σ4

hτ̃
2
h , a1 = −N3

rN
2
t P

2σ2
n − MNN2

rNtPσ2
h −419

4N2
rN

2
t P

2σ2
h + Nrσ

2
hτ̃

2
hσ

2
n + 4σ4

hτ̃
2
h , a2 = −2σ4

hτ̃
2
h + 2N2

rN
2
t P

2σ2
h + MNN2

rNtPσ2
h, b0 = N3

rN
2
t P

2σ2
n +420

2N2
rN

2
t P

2σ2
h+Nr τ̃

2
hσ

4
n+2σ2

hτ̃
2
hσ

2
n, b1 = −2σ2

hτ̃
2
hσ

2
n−4N2

rN
2
t P

2σ2
h+MNN2

rNtPσ2
n−N3

rN
2
t P

2σ2
n+2N2

rN
3
t P

3σ2
h+421

N3
rN

3
t P

3σ2
n and b2 = −2N2

rN
3
t P

3σ2
h + 2N2

rN
2
t P

2σ2
h.422

In order to determine the optimal pilot power, the first step is to differentiate the lower bound of SINR,423

and set the resulting equation equal to zero. Once this equation has been solved, the optimal pilot power424

can be obtained as425

σ2
p,opt =

∣∣∣∣∣−b+
√
b2 − 4ac

2a

∣∣∣∣∣ , (83)

where a = b1a2 − b2a1, b = 2b0a2 − 2b2a0 and c = b0a1 − b1a0.426

5. Complexity analysis427

We will focus on the most complex term for each operation. For the sake of simplicity, we assume that428

Nt = Nr = Na.429

The complexity of the proposed technique contains two terms. The first one concerns the channel esti-430

mation, named Cce, while the second one concerns the data detection, named Cdd. Therefore, the overall431

complexity of the proposed algorithm is C = Cce + Cdd.432

The complexity of one iteration of the detection algorithm requires the computation of (56), (57), (58),433

and (60). Each of (56), (57), and (58) has a complexity of O(MNNaP |A|). In addition, the complexity of434

(58) is O(MNNa|A|). So, the overall complexity of the data detection algorithm is dominated by Cdd =435

O(n
(dd)
iterMNNaP |A|), where n(dd)

iter is the number of iteration required to the convergence of the data detection436

algorithm.437

For the channel estimation step, we have two proposed algorithms. For the SoBaP algorithm, the most438

complex operation per iteration is the update (A.9), which is O(MNLN3
a ). Therefore, the overall complexity439

for the SoBaP algorithm is dominated by C
(sobap)
ce = O(n

(ce)
iterMNLN3

a ), where n
(ce)
iter is the number of iteration440

required to the convergence of the SoBaP algorithm.441
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The LMMSE algorithm, is divided into five steps. The first one is the computation of the Hermitian442

bounded matrix M = (Φ
(i−1)
pd )H(C

(i−1)

µ
(i−1)
d

)−1Φ
(i−1)
pd +C−1

hm
, its computational cost is 1

2 (Q
2+3Q+2)R, where443

Q = NaP and R = PN2
a . The second step is the Cholesky decomposition, which requires 1

2 (Q
2 + 3Q)R444

operation. The third and the fifth steps can be solved by band forward and backward substitutions and445

each of them require QR operation. Th forth step, which consists in solving a diagonal system requires446

R operation. Therefore, the overall complexity of the the proposed LMMSE algorithm is dominated by447

C
(lmmse)
ce = O(N4

aP
3). Finally, the complexity of the channel estimation step of the proposed algorithm448

is an average between the complexity of SoBaP and LMMSE, it is given as Cce =
Csobap

ce +(Nf−1)Clmmse
ce

Nf
≈449

O(
(Nf−1)NaP

3+n
(ce)
iterMNL)

Nf
N3

a ).450

It should be noted that (Nf − 1)NaP
3 ≪ n

(ce)
iterMNL in practice, this means that the complexity of the451

channel estimation step reduced to Cce = O(
n
(ce)
iterMNL

Nf
N3

a ).452

Table 2 summarizes the complexity of the proposed channel estimation algorithm and that of each of the453

state-of-the-art methods listed in this paper.454

Table 2: Computational complexities of the proposed and existing channel estimation methods.

Scheme Computational complexity
EP [25] O(NlτNa)
BSBL-BR [18] O(NiterN

3
aLK

2)
RG-OMP [17] O(M3N3

p )

RG-BL [17] O(G3N3
a )

SoBaP-LMMSE-AMPA O(
n
(ce)
iterMNL

Nf
N3

a )

Note that K = (2kν + 2Q + 1)(lτ + 1) and G = (Mτ + 1)(Gν + 1). We note also Cm the complexity of455

the method m and we compare the complexities of all the methods.456

It is clear that the EP is the least complex of all the methods considered here because its complexity457

varies linearly with N . It is also clear that RG-OMP is the most complex due to the M3 factor in the458

expression of its complexity.459

Since kν < Nν < N , lτ < Mτ < M , Nν ≪ Gν , and Niter ≈ 10 in practice, we have NiterLK
2 < G3,460

which leads to CBSBL-BR < CRG-BL.461

Since n
(ce)
iter ≈ 10, we can also easily check that n

(ce)
iterMNL/Nf < NiterLK

2, so, we have CSoBaP-LMMSE-AMPA <462

CBSBL-BR. We can conclude that CEP < CSoBaP-LMMSE-AMPA < CBSBL-BR < CRG-BL < CRG-OMP.463

6. Simulation results464

In this section, we first evaluate the performance of the proposed algorithm in terms of NMSE, BER and465

SE. Then, we compare obtained results against four state-of-the-art methods: EP (pilot type-1), BSBL-BR466
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(pilot type-2), RG-OMP and RG-BL (pilot type-3).467

6.1. Simulation setting468

The simulation parameters are given in Table 3.469

Table 3: Simulation parameters.

Parameter Value Parameter Value
fc 4 GHz ∆f 15 kHz
(N,M) (16, 16) (Nt, Nr) (2, 2)
tc 541 µs T 1 ms
Modulation ’BPSK’ (Wt,Wr) ’rectangular’

For the channel delay model, we use a 5-tap DD model whose parameters are given in Table 4. Each470

delay tap owns a single Doppler shift in the form νk = νmax cos(θk), where νmax is the maximum Doppler471

shift of the channel and θk ∼ U[0,π]. The maximum delay tap lτ = 4 and the maximum Doppler tap kν = 2472

correspond to a high mobility scenario with a maximum relative speed ν = 500 km/h.473

Table 4: Power delay profile [22].

Path no. 1 2 3 4 5
delay (µs) 2.08 5.20 8.33 11.46 20.8
Path power (dB) 1 -1.80 -3.57 -5.38 -8.86

The NMSE expression used in this work is given as follows:474

NMSE = 1−

(
|hH ĥ|

||h||2||ĥ||2

)2

. (84)

We assume that each location in the DD grid has a power of σ2
x. The total power of each OTFS frame475

is MNσ2
x. Thus, by taking σ2

x = σ2
d + σ2

p = 1, the total power for each OTFS frame is fixed to MN . For a476

fair comparison with the state-of-the-art schemes, this total power must remain the same for each scheme.477

For the EP scheme [25], due to the insertion of guard intervals between the pilots and data symbols, all the478

power that is assigned to the guard interval positions must be assigned to the pilots and data symbols, i.e.,479

σ2
p = σ2

d = MN
MN+Nt−Lp

. Therefore, we have a total power per frame of Ntσ
2
p + (MN − Lp)σ

2
d = MN . For480

BSBL-BR method [18], there is no guard intervals between the L pilots and the MN − L data symbols.481

Thus, by taking σ2
p = σ2

d = 1, we have a total power per frame of σ2
pL+σ2

d(MN −L) = MN . For RG-OMP482

and RG-BL methods [17], in each frame, MNp symbols are pilots in a block of M(N + Np) symbols. By483

taking σ2
p = σ2

d = N
N+Np

, we have a total power per frame of MNσ2
d +MNpσ

2
p = MN .484

Table 5 presents a summary of the optimal pilot power σ2
p,opt for various SNR values, as calculated using485

the expression derived in equation (83). It is evident from the table that, based on the given simulation486
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parameters, the average optimal pilot power is approximately 0.3. To maximize the SE and minimize the487

BER of the proposed superimposed-aided design, it is recommended to allocate 30% of the total power to488

pilots and 70% to data, which is also confirmed by numerical verification.489

Table 5: Optimal pilot power with P = 5 and M = N = 16.

SNR (dB) 0 5 10 15 20
σ2
p,opt 0.2520 0.2995 0.3135 0.3178 0.3191

6.2. Stationarity of the channel490

The channel used here is a doubly-underspread (DU) channel. For this type of channels, the delay and491

Doppler taps {li, ki}i=1:P remain practically constant over a period of time. Here, we first check that the492

channel used is indeed DU. Then, we look for the number of frames Nf for which the delay and Doppler493

taps {li, ki}i=1:P remain almost constant.494

It is shown in [28] that a DU channel satisfies the following condition: ∆νmax∆τmax ≪ νmaxτmax ≪ 1.495

∆νmax = 2νmax sin(δ/2) is the maximum Doppler correlation lag where δ denotes the maximum angular496

spread of the scatters. ∆τmax = ω/c is the maximum delay correlation lag where ω denotes the maximum497

spatial extension. In our case, νmax = 1850 Hz and τmax = 20.8 µs, thus νmaxτmax = 0.03848. Letting498

δ = 3◦ and ω = 30 m [28], ∆νmax = 96.9 Hz and ∆τmax = 0.1 µs, thus, ∆τmax∆τmax = 9.69 10−7. Finally,499

we see that ∆νmax∆τmax ≪ νmaxτmax ≪ 1. Therefore, the channel used here is a DU channel.500

We have Nf = Ts/T , where T is the frame duration given as T = N/∆f and Ts denotes the duration for501

which {li, ki}i=1:P remain practically constant. This duration is computed as Ts = 1/∆νmax. In our case,502

Ts = 10.3 ms, and T = 1 ms, so, Nf ≈ 10. It is worth noting that, for constant N , ∆f and δ, the number503

of frames Nf is proportional to vmax. Thus, for speeds below 500 km/h, Nf increases.504

6.3. Influence of the power of pilots on BER performance505

The power allocated to the pilots influences the performance of the system. We investigate the variation506

of the BER as a function of the power of the pilots σ2
p. Fig 4 shows the variation of the BER of the proposed507

algorithm by varying the power of the pilots in the interval [0.1; 0.9] for SNR = 5, 10, 15 dB.508

We observe that, for the three SNR values, the minimum BER is reached at σ2
p = σ2

p,opt ≈ 30%. The509

degradation of the BER performance away from σ2
p,opt is due to the following two factors: If σ2

p < σ2
p,opt, the510

degradation is due to a poor channel estimation and if σ2
p,opt < σ2

p, this degradation is due to the reduced511

data power since we have set σ2
d = 1− σ2

p.512
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Figure 4: BER versus pilot power performance for the proposed algorithm with Nt = Nr = 2, N = M = 16 and SNR = 5, 10,
15 dB.

We now investigate in Fig 5 the BER of the proposed scheme, for different pilot powers. We observe from513

this figure that the proposed scheme exhibits the lowest BER when the optimal power allocation is used.514

This confirms the optimal pilot power which is calculated analytically in section 4 and shown in Table 5.515
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p,opt

2
)

Figure 5: Effect of pilot power on the BER of the proposed scheme with Nt = Nr = 2, N = M = 16.
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6.4. Convergence of the SoBaP-LMMSE-AMPA algorithm516

Fig 6 shows the BER performance of the proposed SoBaP-LMMSE-AMPA algorithm versus the number517

of iterations with SNR = 5, 15 dB, σ2
p = σ2

p,opt dB, and BPSK modulation. From Fig 6, it can be seen that,518

for both SNR values, the BER decreases with increasing number of iterations, and it saturates after about 5519

or 6 iterations. The convergence and the effectiveness of the proposed SoBaP-LMMSE-AMPA algorithm are520

confirmed by the steady states reached by the two curves of the BER after a few iterations. It can be also521

observed that, as expected, the scenario with higher SNR exhibits superior convergence speed and detection522

accuracy.523

1 2 3 4 5 6 7 8 9

SoBaP-LMMSE-AMPA iterations

10-8

10-6

10-4

10-2
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B
E

R

SoBaP-LMMSE-AMPA (SNR = 5 dB)

SoBaP-LMMSE-AMPA (SNR = 15 dB)

Figure 6: BER performance of the SoBaP-LMMSE-AMPA algorithm versus the number of iterations with Nt = Nr = 2,
N = M = 16, σ2

p = σ2
p,opt and SNR = 5, 15 dB.

6.5. Channel NMSE performance524

We now investigate the variation of NMSE as a function of SNR. Fig 7 shows a comparison in terms525

of NMSE between the proposed algorithm and EP [25], BSBSL-BR [18], and RG-OMP and RG-BL [17]526

methods.527

From Fig 7, we observe that the proposed algorithm has the lowest NMSE value compared to the other528

methods, it exceeds the RG-BL, which is the best performing state-of-the-art method, by about 5 dB at529

SNR = 10 dB. The EP method is most affected by noise owing to the threshold method.530
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Figure 7: NMSE versus SNR performance for the MIMO-OTFS system with Nt = Nr = 2, N = M = 16, and σ2
p = σ2

p,opt.

6.6. BER performance evaluation531

We now investigate the variation of BER as a function of SNR. Fig 8 shows the BER over SNR perfor-532

mance of the proposed algorithm and EP [25], BSBSL-BR [18], and RG-OMP and RG-BL [17] methods.533

From Fig 8, we observe that the EP and the BSBL-BR methods perform almost similarly. We also534

observe that the proposed algorithm outperforms all the other methods. It exceeds the RG-BL method by535

about 3 dB at BER = 10−4.536

6.7. SE performance evaluation537

We now investigate the average SE as a function of SNR. The SE expression of a scheme s is given as538

follows [22]:539

Rs = (1− ηs) log2(1 + SINRs), (85)

where s = EP, BSBL-BR, RG-OMP, RG-BL, SoBaP-LMMSE-AMPA, ηs denotes the pilot overhead related540

to the scheme s.541

The pilot overhead ηs is calculated using the frame-structure for the scheme s. The SINR expressions542

for all the schemes are derived in the same way as in [22]. Table 6 shows the expressions of SINRs and ηs543

for each scheme s.544
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Figure 8: BER versus SNR performance for the MIMO-OTFS system with Nt = Nr = 2, N = M = 16, and σ2
p = σ2

p,opt.

Table 6: Expressions of SINRs and ηs.

Scheme (s) ηs SINRs

EP [25]
Lp

MN
(σ2

h−Mh,EP)σ2
d

σ2
n+σ2

dMh,EP

BSBL-BR [18] L
MN

(σ2
h−Mh,BSBL-BR)σ2

d

σ2
n+σ2

dMh,BSBL-BR

RG-OMP [17]
Np

Np+N
(σ2

h−Mh,RG-OMP)σ2
d

σ2
n+σ2

dMh,RG-OMP

RG-BL [17]
Np

Np+N
(σ2

h−Mh,RG-BL)σ
2
d

σ2
n+σ2

dMh,RG-BL

SoBaP-LMMSE-AMPA 0
(σ2

h−Mh,PS)σ
2
d,opt

σ2
n+σ2

d,optMh,PS+σ2
p,optPNtMh,PS

where Lp = (4kν + 1)(Ntlτ + lτ +Nt), Np is the number of pilots along time-axis for the RG-OMP and545

RG-BL schemes and Mh,s is the channel MSE of scheme s.546

Fig 9 shows the average SE comparison between the proposed scheme and the EP, BSBL-BR, RG-OMP,547

and RG-BL schemes for N = M = 16 and for different values of lτ and kν . It is not surprising to see from548

this figure that the SE of all the methods increases as the SNR increases. It is important to note that the549

SE of the proposed scheme exhibits a significant increase compared to that of the EP design regardless of550

the values of lτ and kν . We observe from this figure that as lτ and/or kν increase, the SE of all state-of-551

the-art schemes degrades. This is because the pilot overhead of these schemes increases with lτ and kν . The552

proposed designs, in contrast, avoid this pilot overhead. We also see that for lτ = 4 and kν = 1, the SE of the553

proposed scheme is close to those of BSBL-BR, RG-OMP, and RG-BL schemes, because the pilot overhead554

decrease with lτ and/or kν .555
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Figure 9: SE versus SNR performance for the MIMO-OTFS system with Nt = Nr = 2 and N = M = 16.

7. Conclusion556

In this manuscript, we have proposed an iterative algorithm for channel estimation and data detection557

in the delay-Doppler domain for MIMO-OTFS systems that we have named SoBaP-LMMSE-AMPA. To558

improve the spectral efficiency of the system, we adopted a superimposed pilot pattern. The proposed559

algorithm iterates between message passing-aided data detection and data-aided channel estimation. For560

the channel estimation step, two algorithms have been proposed. The first one consists in estimating all the561

parameters of the channel, including the number of channel paths, delay taps, Doppler taps, and channel562

gains via mean-field approximation and the so-called VB-EM algorithm. The second one is based on LMMSE563

combined with Cholesky decomposition. This second solution is only used to estimate the channel gains when564

the delay and Doppler taps remain unchanged. For data detection, we adapted the MP algorithm to our565

context. We have also derived a lower bound on the signal-to-interference-plus-noise ratio of the proposed566

scheme, and maximized it by optimally allocating power between pilots and data symbols. The proposed567

algorithm has been compared to four state-of-the-art methods, including a recognized MP method, and568

three recent solutions (BSBL-BR, RG-OMP and RG-BL). Complexity analysis and simulation results have569

shown that the proposed algorithm achieves a good compromise with the state-of-the-art methods in terms570

of computation complexity and performs significantly better in terms of NMSE, BER, and SE.571
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Appendix A. Calculation of the mean field approximation572

The methodology called Mean Field (MF) approximation is adopted here to compute an approximation573

q(si) of the posterior probability p(si|ym). The MF approximation [36, 37] of p(θ|ym), where θ = (s, c) and574

p(θ|ym) its posterior distribution, is the surrogate distribution q⋆(θ) which satisfies575

q⋆(θ) = argmin
q(θ)

{∫
θ

q(θ) log

(
q(θ)

p(θ|ym)

)
dθ

}
, (A.1)

subject to

q(θ) =
K∏

k=1

q(θk),
∫
θk

q(θk)dθk = 1 ∀k ∈ [1,K] . (A.2)

Successive minimizations of the Kullback-Leibler divergence [38] with respect to the parameters of factors576

q(θi) can solve the problem (A.1), (A.2) [39]. The procedure given in [36] named VB-EM algorithm [40–42],577

is ensured to converge to a saddle point or a (local or global) maximum of problem (A.1), (A.2) under mild578

conditions [36].579

To approximate the marginals p(θi|ym), the MF approximations offer a good framework. Indeed,

p(θi|ym) =
∫
θ−i

p(θ|ym)dθ−i,

≃
∫
θ−i

q(θ|ym)dθ−i,

≃ q(θi|ym),

(A.3)

where the last equality stems from (A.2).580

Here, we consider the particular case where the MF approximation q(c, s) of p(c, s|ym) simply writes581

q(c, s) =
∏

i q(ci, si). Together with models (34), (35), the corresponding VB-EM update is given as follows:582

q(ci, si|ym) = q(ci|si,ym)q(si|ym), (A.4)

where583

q(ci|si,ym) = N (m(si),Σ(si)) (A.5)

q(si|ym) ∝
√
Σ(si) exp

(
1

2

m(si)
2

Σ(si)

)
p(si) (A.6)

and584
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Σ(si|ym) =
σ2
ciσ

2

σ2 + siσ2
ciA

T
i Ai

, (A.7)

m(bi|ym) = si
σ2
ci

σ2 + siσ2
ciA

T
i Ai

rTi Ai, (A.8)

ri = ym −
∑
l ̸=i

q(sl = 1)m(sl = 1)Al, (A.9)

From (A.3), an approximation of p(sk|ym) derive easily from the following relationship:

p(si|ym) ≃
∫

q(ci, si|ym)dci = q(si). (A.10)

Appendix B. Analysis for positive definiteness of matrix M585

Let the matrix X ∈ CK×K . It is said to be positive definite if it satisfies the following property: For any586

non-zero vector z ∈ CK , zHXz is a strictly positive real number [43].587

The matrix M is given by M = ((Φpd)
H(Cµd

)−1Φpd + C−1
hm

) , where Cµd
= λIMNNr

, with λ is588

a positive number given by λ =
(
σ2
n +

2σ2
d

Nr

∑PNtNr

i=1 σ2
hi

)
and Chm

= diag{σ2
h1
, σ2

h2
, ..., σ2

hPNtNr
}. For all589

non-zero z ∈ CPNtNr×1, we have590

zHMz = zH((Φpd)
H(Cµd

)−1Φ
(i−1)
pd +C−1

hm
)z,

= zH(Φpd)
H(λIMNNr

)−1Φpdz + zH
(
diag{σ2

h1
, σ2

h2
, ..., σ2

hPNtNr
}
)−1

z,

= 1
λz

H(Φpd)
HΦpdz +

∑PNtNr

i=1
|zi|2
σ2
hi

,

= 1
λ (Φpdz)

HΦpdz +
∑PNtNr

i=1
|zi|2
σ2
hi

,

= 1
λ∥Φpdz∥2 +

∑PNtNr

i=1
|zi|2
σ2
hi

.

(B.1)

We have 1
λ∥Φpdz∥2 +

∑PNtNr

i=1
|zi|2
σ2
hi

> 0, which means that M is a positive definite matrix.591
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