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Neural Networks as Catalysts for Enhanced Lossless Compression
in Satellite Communications

Thibault PIANA†, Matthieu ARZEL††, Abdeldjalil AÏSSA-EL-BEY††, and Alain THOMAS†, Nonmembers

SUMMARY Satellite communication systems enter the New Space era
with a growing pressure on the ground segment, whose architecture con-
verges to that of mobile networks with Centralized Radio Access Networks
(C-RAN). Lossless data compression is a key feature for such systems, for
which we propose an alternative strategy to conventional methods, such as
Linear Predictive Coding (LPC), by using nonlinear predictors based on
neural networks that show substantial performance improvements in high-
SNR conditions (compression ratio increased by more than 10 percentage
points with some architectures), while preserving signal quality. These
neural networks demonstrate robustness by maintaining comparable per-
formance with LPC in low-SNR conditions (𝐸𝑠/𝑁0 < 10dB). We provide
a comprehensive comparison between these methods under varying SNR
conditions and delve into the influence of network parameters on perfor-
mance. Our results suggest that neural networks could serve as an effective
tool for improving lossless data compression in modern communication
systems.
key words: C-RAN, GSaaS, Lossless compression, Satellite communica-
tions, Neural networks, LPC

1. Introduction

1.1 Inspiration and Challenges

Ground Station as a Service (GSaaS) was introduced by
Amazon Web Services (AWS), KSAT and Microsoft Azure
and has helped many companies to offer services — espe-
cially for Earth Observation (EO) — although they could
not afford expensive infrastructures, as ground stations and
complex terrestrial networks. Based on the experience of
the cost-efficient mobile networks, they have exploited the
benefits of centralized radio access networks (C-RAN) [1].
A key feature of C-RANs is their centralized nature, which
allows cost-effective maintenance, efficient resource alloca-
tion, and improved operational benefits, especially in large-
scale deployments. However, as illustrated in Figure 1, it
requires splitting the signal processing chain so that most
of or all the digital processing is done in centralized dat-
acenters, the base/ground stations being only responsible
for transmitting/receiving raw samples provided to/by their
analog front-ends. Therefore, data transfers in C-RAN oc-
cur primarily through raw complex samples, representing
the baseband signal, and thus require high bandwidths on
the network interconnecting the base/ground stations and
the datacenters. To tackle this issue, efficient and adaptive
lossless compression methods are sought [1]–[3], and espe-
cially in satellite communications which use very large band-
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Fig. 1: Overview of remote/centralized modem process-
ing architectures used in satellite communications systems.
Compressing the digitized raw signals is the key to limit the
congestion with an affordable network infrastructure.

widths such as in the Ka band for EO applications whereas
in mobile communications signals are the aggregation of rel-
atively small bandwidths. To address these challenges, new
research directions are being explored in the realm of data
compression, seeking high compression ratios, signal quality
preservation, reduced network load, and effective handling
of various waveforms.

1.2 Our Contributions

This paper primarily presents a novel exploration of a nonlin-
ear predictive system based on neural networks for lossless
data compression. This strategy enhances the data compres-
sion efficiency in high Signal-to-Noise Ratio (SNR) environ-
ments, providing an edge over the existing Linear Predictive
Coding (LPC) methods in Centralized Radio Access Net-
works (C-RAN) of satellite communication systems. Addi-
tionally, our research advances a simple and adaptive net-
work architecture as well as a training methodology which
focuses on specific ranges of noise, resulting in improved
performance in noise management and signal compression.

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers
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Lastly, we provide a detailed comparison between the neural
network-based predictor and traditional LPC, offering a com-
prehensive understanding of their performance under vary-
ing SNR conditions. This comparison lays the foundation
for future research and improvements in data compression
techniques.

2. Related works

2.1 Predictive coding

Predictive compression is an effective data reduction tech-
nique that leverages historical data patterns to predict future
values. In essence, it works by creating a model of the data
being compressed, and then using this model to predict sub-
sequent data points. The actual data are then replaced with
the difference between the real and predicted values, com-
monly referred to as the residual or error. Since the residuals
tend to be smaller numbers, the entropy of the residual is
also smaller, leading to efficient compression.
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Fig. 2: Classical architecture for compression/decompression
scheme using predictive coding.

2.2 Linear Predictive Coding (LPC) for Data Compression

Linear Predictive Coding (LPC) plays a pivotal role in pre-
dictive coding because of its efficiency. Essentially, LPC
predicts future data points by deploying a linear combina-
tion of past samples. It can be considered as a state-of-
the-art method due to its performance and its usage is var-
ious fields, including digital communications [2]–[7]. This
method is also very popular in audio codecs, such as FLAC
or SHORTEN, for its robust performance [8], [9]. Although
LPC offers advantages such as efficient coefficient computa-
tion and easy hardware implementation, it faces difficulties
when the number of samples per symbol is reduced by re-
sampling, as shown in Figure 3. Reducing the number of
samples per symbol can result in predictions that are not
as accurate. This can compromise the efficiency of com-
pression. This is because the remaining residual signal may
not follow a typical Gaussian distribution, which adversely
affects the performance of the Golomb-Rice coder. To in-
crease the compression ratio, it is then necessary to conceive
better predictors which can also handle low oversampling.
Linear alternatives exist, such as ARMA decomposition, but
struggle with their own limitations, such as parallelization
challenges, stability issues, and minor performance improve-
ments, which restrict their application in data compression.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

Samples per symbol (β)

0

10

20

30

C
o
m

p
re

ss
io

n
ra

ti
o

(%
)

Resampling
Resampling + LPC + Rice (QPSK RRC 0.25)
Resampling + LPC + Rice (16-QAM RRC 0.22)
Resampling + LPC + Rice (64-QAM RRC 0.22)

Fig. 3: Graph depicting the progression of the overall com-
pression ratio for several waveforms. Signals are processed
using LPC-based compression after resampling. Original
signals are sampled with 2 samples per symbol.

2.3 Neural Predictors for Data Compression

Under high SNR, the signals used in satellite communi-
cation exhibit characteristics such as stationarity or cyclo-
stationarity, constant power over time, known envelope, and
a constant dynamic range. This regularity allows us to con-
sider the application of a nonlinear predictive system. De-
spite their implementation challenges and complexity, non-
linear systems offer higher sensitivity than linear systems,
which makes them suitable for stable datasets. Neural net-
work (NN) predictors have already found applications in
various fields, as their nonlinear nature can enable superior
predictions. In the medical domain, they have been used for
the efficient compression of EEG signals [10]. Similarly,
they have been used to compress large amounts of satellite
telemetry data before transmission [11]. Despite these varied
applications, it is worth noting that such methods have not
been explored yet for use in the field of telecommunication
and satellite telecommunications. The effectiveness of neu-
ral network predictors in these varied applications, however,
highlights their considerable potential in signal compression.

Our objective is then to study how efficient a nonlinear
predictor based on NN can be and how the addition of noise
can affect the compression performance.

3. Experimental Setup

The present study utilized a set of computer-generated sig-
nals, synthesized via Matlab. These signals span across var-
ious waveforms pertinent to distinct sectors of wireless com-
munications, including but not limited to terrestrial, aero-
nautical and satellite communications, thereby fortifying the
real-world applicability of our methodology. The datasets
are made of sampled baseband I/Q signals. Before feeding
the network, signals are resampled at a predefined sampling
rate, quantized on 12 bits, and normalized based on the signal
level. Subsequently, the signal was divided into fragments
according to a sliding window of size 𝑊 .

Network training is carried out offline, separately from
their operational deployment. This approach confers several
advantages. The resultant network weights, derived from
this offline training, are pre-shared between the compressor
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and decompressor ends before any data transmission. Im-
portantly, this eliminates the need for weight transmission
during compression, enhancing the efficiency and security
of the compression and decompression process. This strat-
egy ensures the operational readiness of the networks while
minimizing computational overhead during their active use
in data compression and decompression. Figure 4 presents
the neural network used in our study. It is a multi-layer feed-
forward network with four layers. The chosen architecture
is relatively simple, yet powerful, with careful consideration
given to maintaining a balance between complexity and per-
formance. We also designed it to be really adaptable to the
resources available.
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Fig. 4: Architecture of our prediction network

The usage of Batch Normalization (BatchNorm) is
highly beneficial for noisy data. By normalizing inputs
across each mini-batch, it stabilizes learning, reduces train-
ing epochs required, and enhances robustness. It makes
the neural network less sensitive to noise, mitigating issues
such as vanishing or exploding gradients. Thus, simulations
showed that it improves the stability and accuracy of predic-
tions and the compression performance in noisy conditions.

The architecture was designed with a deliberate intent
to keep the model ’light’, using a limited number of lay-
ers and neurons. The intent was to enable easy hardware
implementation and parallelization while delivering strong
performance. The network was trained on various sets of
baseband I/Q signals, striving to predict the most likely next
sequence in the data, thus reducing the residual error and
improving the compression ratio.

In our study, we trained the networks so that the param-
eters are learned specifically for successive 𝐸𝑆/𝑁0 ranges of
7.5dB. Our simulations show that a network trained across
a wide noise range tends to underperform compared to one
that is tuned to a specific noise range. In practice, this is
not a significant hurdle. The noise range in which a sig-
nal resides is generally known, even if the exact signal-to-
noise ratio is uncertain. This knowledge aids in effectively
assigning the appropriate trained network. Moreover, the
simplicity of training and implementing networks and the
ease of switching between sets of parameters, facilitated by
indicating the set used in a header, contribute to the feasibil-
ity and efficiency of this approach in real-world applications
when multiple parameter sets are needed. However, this

training approach can potentially induce threshold effects at
the borders of various noise ranges, leading to the observed
”wave-like” patterns in the curves in Figure 5.

If the following examples, we took (𝑊, 𝑁) equal to
(16, 64) and (32, 512), which correspond to two architec-
tures of 4,900 and 180,000 parameters.

4. Results and Discussion
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(a) 16-QAM signal shaped with RRC of 0.22 rolloff. Resampling
is 1.25 sample per symbol
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(b) 8-PSK signal shaped with RRC of 0.25 rolloff. Resampling is
1.22 sample per symbol
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Fig. 5: Compression ratio obtained for various signals and
SNRs. All the signals have an original sampling rate of 2
samples per symbol. Simulations showed that performing
resampling before applying lossless compression increases
global compression ratio. NNs were specifically trained for
successive 𝐸𝑆/𝑁0 ranges of 7.5dB. The parameter men-
tioned for each network is the tuple (𝑊, 𝑁).

Our experiments show a clear advantage for the NN-
based compression systems over LPC in high-SNR envi-
ronments (𝐸𝑆/𝑁0 > 10 dB). Compared to LPC, our NN
solutions offer compression ratios increased by up to 12
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percentage points. Such advantage is primarily displayed
in scenarios requiring high-accuracy data transmission and
environments characterized by low noise. The NN-based
system is proving to be a valuable asset in these contexts.

In contrast, under low-SNR conditions, the performance
of the NN-based system converges to that of LPC-based.
Note that LPC can be seen as a really simple case of neural
network since training a network with no activation function
(i.e., without non-linearities) will actually find the LPC co-
efficients [12]. The inherent randomness of noise introduces
some unpredictability that challenges the predictive abilities
of the neural network. The network’s performance is thus
reduced to a level similar to that of LPC in these noisy sit-
uations. This particular behavior, nonetheless, showcases
the system’s resilience, as it continues to maintain reliable
performance even in highly noisy conditions.

Furthermore, an interesting trend was observed con-
cerning the performance of neural networks in relation to
the number of their parameters. Our results demonstrate
that even with a comparatively low number of parameters
(4,900), the neural networks still deliver a commendable
performance. Switching from NN(16,64) to NN(32,512) al-
lows increasing the compression ratio by up to 5 percentage
points but it also requires increasing the number of param-
eters from 4,900 to 180,000 . Pruning NN(32,512) would
certainly reduce the number of parameters without signifi-
cant loss in performance. Such strategies offer an interesting
perspective for balancing performance and computational
efficiency.

Finally, in practical use cases, such as those using the
DVB-S2 standard, our method would be particularly bene-
ficial. Measured noise levels [13] indicate that the received
signal SNR in clear weather can sometimes exceed 35 dB
of 𝐸𝑆/𝑁0, and can even approach 50 dB for high elevations
(near 90°). These values are significantly higher than the op-
erating values for all DVB-S2 modulation and coding states.
In the case of using Constant Coding Modulation (CCM) or
Variable Coding Modulation (VCM), there are time inter-
vals where the use of neural predictors would be very useful,
as they would be operating at their full potential. In Au-
tomatic Coding Modulation (ACM), the measured margin
is so high that even with the highest modulation, it remains
large enough for effective compression. In less clear weather
conditions, our method could also benefit from the natural
margins coming from the link budget of the line. This ad-
vocates using our neural network-based system in real-world
applications, where it can leverage its strengths in high SNR
environments to enhance satellite signal compression and
thus the ground segment efficiency.

5. Conclusion

This paper delves into the complexities of lossless data com-
pression in Centralized Radio Access Networks (C-RAN)
for satellite communication systems, highlighting the limi-
tations of conventional methods like Linear Predictive Cod-
ing (LPC). It presents neural network-based predictors as

a promising alternative for enhancing compression perfor-
mance, showing substantial improvements in high SNR sce-
narios while retaining data integrity. The results show that
when a sufficient noise margin exists, the usage of a neural
predictor is always profitable (compression ratio increased
by up to 12 percentage points), and in the worst case, it has
similar performance to that of a linear predictor. Since neu-
ral networks echo the performance of traditional LPC under
low SNR conditions, it points towards a possible need for
exploring lossy compression methods for further compres-
sion gains, and thus offering a better usage of the limited
bandwidth of the ground segment network.
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