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In this work, we study blind equalization techniques to mitigate inter-symbol interference (ISI), and blind sources separation (BSS) in multiple inputs multiple outputs (MIMO) communication systems. Mainly, we are interested in the multi-user generic blind equalizer (MU-GBE). A MU-GBE has no prior information about the transmission channels and the used constellations. To solve this challenge, a joint MU-GBE, based on a new multi-criteria cost function and automatic modulation classification (AMC) is proposed. The new multi-users multi-criteria cost function is based on the probability density fitting (PDF) and the Knearest neighbors (KNN) algorithm is considered for the AMC stage. This approach is implemented in its linear and nonlinear versions. For the nonlinear case, we use a neural network. Numerical results, in terms of mean square error (MSE) and symbol error rate (SER) with quadrature amplitude modulation (QAM) signals show that our multi users multi-criteria GBE is effective in alleviating the ISI.

I. INTRODUCTION

Blind equalization and blind sources separation in a MIMO communication system are hot research topics, especially in the Internet of Things (IoT) communication system [START_REF] Ke | Massive access in cell-free massive MIMO-based Internet of Things: Cloud computing and edge computing paradigms[END_REF] [START_REF] Lee | Cell-free massive MIMO for massive lowpower internet of things networks[END_REF], targeting the development of efficient and low-complexity algorithms that reduce ISI and blindly separate sources. This will avoid the waste of bandwidth resulting from the training data. To estimate the transmitted signal, the MU-GBE blindly mitigates the ISI and separates the sources. Then, it robustly classifies the transmitted modulation using a suitable AMC technique. Massive access is of great interest in the Internet of Things (IoT) communication system, so we opted to provide our contribution with a MIMO communication system model. In the literature, some works address generic equalization. We can cite the multi-branch architecture [START_REF] Barbarossa | Classification of digital constellations under unknown multipath propagation conditions[END_REF], it uses several branches each linked to a constellation and the one that gives the smallest error matches the transmitted constellation. Other algorithms use the cost function relative to the quadrature phase shift keying (QPSK) constellation to equalize any transmit constellation belong-ing to the phase-shift keying modulation (PSK) or the QAM modulation [START_REF] Shi | Blind equalization and characteristic function based robust modulation recognition[END_REF] [START_REF] Fki | Blind equalization and automatic modulation classification based on PDF fitting[END_REF]. As a result, the output of the equalizer is constituted of symbols belonging to the transmitted constellation and compressed in the unit radius. All these previously cited works address the generic blind equalization and apply AMC after the equalization step. In [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF], authors propose a multi-criteria generic channel equalizer and they consider an updated PDF based criteria, corresponding to many assumed possible constellations, that are used jointly with an automatic modulation classification based on KNN algorithm. In this paper, we proposes a new generic equalizer for MIMO communication systems that combines jointly blind equalization and AMC. To the best of our knowledge, this is the first time that a generic blind equalizer (GBE) is proposed with a MIMO communication system and where are simultaneously applied blind equalization and AMC. Blind equalizers based on PDF like the stochastic quadratic distance (SQD) and multi modulus SQD (MSQD-ℓ p ) outperform equalizers based on high order statistical properties (HOSP) like constant modulus algorithm (CMA) and multi modulus algorithm (MMA) [START_REF] Farhati | Blind channel equalization based on Complexvalued neural network and probability density fitting[END_REF]. In [START_REF] Fki | Blind equalization and automatic modulation classification based on PDF fitting[END_REF] and for SISO communication systems, generic equalizer MSQDℓ 2gen based on MSQD-ℓ 2 criterion outperforms generic equalizer CMA gen based on CMA. Therfore, in [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF] and for SISO communication systems, the multi-criteria generic equalizer MC-MSQDℓ 2gen outeprforms the MSQD-ℓ 2gen . For this reason, we have considered MSQD-ℓ 2 criterion to propose a new multi users multi-criteria generic cost function. In addition, we implemented the proposed new MU-GBE in linear and nonlinear cases. The nonlinear case banks complex-valued neural networks (CV-NN). For the AMC step, in the literature, various al-gorithms for modulation classification are considered such us Maximum-likelihood [START_REF] Sills | Maximum-likelihood modulation classification for psk/qam[END_REF] [9] and order cyclic cumulants [START_REF] Marchand | Classification of linear modulations by a combination of different orders cycliC cumulants[END_REF] [START_REF] Marchand | Multiple hypothesis modulation classification based on cycliC cumulants of different orders[END_REF]. In this paper, we use the KNN algorithm with the fourth-order cumulants [START_REF] Ali | An M-QAM signal modulation recognition algorithm in AWGN channel[END_REF] [START_REF] Hashim | Recognition of QAM signals with low SNR using a combined threshold algorithm[END_REF]. Consequently, the main contributions of our work are summarized as follows:

• Derivation of a new multi-criteria cost function for a multi-users generic equalization.

• Multi-user generic blind equalization and sources separation.

II. SIGNAL AND SYSTEM MODEL

MIMO system model with linear time-invariant MIMO channel is illustrated in Fig. 1, K and Q are the number of transmit antennas and receive antennas respectively. In the sequel, we consider the following parameters and notations. We note that lowercase letters, e.g. x and bold lowercase letters e.g. x, stand for scalars and vectors respectively. {s i (n), i = 1, ..., k} are the input signals at a given time n, {h ij (n), i = 1, ..., Q, j = 1, ..., K} are the channel impulse responses, {b i (n), i = 1, ..., Q} are the additive white Gaussian noise at a given time n, {x i (n), i = 1, ..., Q} denote the received signals at a given time n. Assuming that the length of each channel h ij is L h we have :

x i (n) = K j=1 h T ij s j (n) + b i (n)i = 1...Q, (1) 
where s j (n) = [s j (n), s j (n -1), ..., s j (n -L h-1 )], and

h ij = [h ij (0), h ij (1), ..., h ij (L h-1 )].
We denote by G the equalizer function such as :

• Linear context :

G =
{w ij , i = 1, ..., K, j = 1, ..., Q} is the equalizer impulse response and {y i (n), i = 1, ..., k} are the equalized signals at time n. Assume that the length of each equalizer w ij is L w , we have :

y i (n) = Q j=1 w T ij x j (n)i = 1...k, (2) 
where

x j (n) = [x j (n), x j (n -1), ..., x j (n -Lw + 1)],
and

w ij = [w ij (0), w ij (1), ..., w ij (Lw -1)].
• Nonlinear context : G is a neural network that will be detailed in section III.B.

III. EQUALIZER MODEL

Fig. 2: Multi-user generic equalizer architecture.

In this work, two contributions are proposed. The first one is a generic linear multi users multi-criteria blind equalizer. The second one is a generic nonlinear multi users multi-criteria blind equalizer using a CV-NN. The new multi users multi-criteria cost function for the equalization part and the algorithm used for the AMC for each contribution will be detailed below.

A. Multi-users Multi-criteria MSQD-ℓ pgen (MU-MC-MSQD-ℓ pgen ) in linear case

As indicated in the previous section, equalizers based on PDF outperform equalizers with HOSP [START_REF] Farhati | Blind channel equalization based on Complexvalued neural network and probability density fitting[END_REF] and the multi criteria generic channel equalizer proposed in [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF] outperforms the two generic equalizers suggested in [START_REF] Shi | Blind equalization and characteristic function based robust modulation recognition[END_REF] and [START_REF] Fki | Blind equalization and automatic modulation classification based on PDF fitting[END_REF]. In addition, decomposing the equalization criterion into an in-phase component and a quadrature component is more efficient than processing two components together, with respect to a phase shift introduced by the transmission channels. These three reasons lead us to derive a new multi users multi-criteria generic cost function in a MIMO system with K transmitter based on the multimodulus stochastic quadratic distance MSQD-ℓ p algorithm. For p = 2, the MSQD-ℓ 2 cost function is [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF] :

J M SQD-ℓ2 (w) = - 1 Ns Ns m=1 Kσ(|y R (n)| 2 -|a R (m)| 2 ) - 1 Ns Ns m=1 Kσ(|y I (n)| 2 -|a I (m)| 2 ), (3) 
where N s is the number of symbols in the constellation, it is equals to 16 for 16-QAM modulation, y R (n) and y I (n) are the real and the imaginary parts of the equalizer output at a given time n and which depends on the weighted coefficient w, a R (m) and a I (m) are the real and the imaginary parts of the m th (m = 1 . . . N s ) symbol in the used constellation and K σ is a Gaussian kernel with zero means and a variance σ also denoted kernel width. The multi-user multi-modulus stochastic quadratic distance MU-MSQD-ℓ 2 cost function is derived from (3) as in [START_REF] Cong | Blind source separation and equalization for high order qam signals in mimo system[END_REF]:

J M U -M SQD-ℓ2 (w) = k i=1 - 1 Ns Ns m=1 i,R (n)| 2 -|a R (m)| 2 ) + k i=1 - 1 Ns Ns m=1 Kσ(|y i,I (n)| 2 -|a I (m)| 2 ) + β k i,j=1;i̸ =j δ 2 δ=δ 1 |C i,j [δ]| 2 , (4) 
where y i,R (n) and y i,I (n) denote the real and imaginary part of the i th equalizer output at a given time n respectively, k is the transmitter antennas number, β is a positive number between 0 and 1, δ 1 and δ 2 are set to values that ensure the equalizer convergence, and the cross-correlation term among i th and j th equalizer outputs is used for blind sources separation and can be defined as in [START_REF] Cong | Blind source separation and equalization for high order qam signals in mimo system[END_REF]:

C i,j = E y i (n)y * j (n -δ) .
The new multi-users multi-criteria generic cost function is a sum of several variations of (4) one for each constellation order multiplied by an updated penalty factor :

J M U -M C-M SQD-ℓ2gen (w) = G g=1 αgJ M U -M SQD-ℓ2g (w), (5) 
where G is the number of the considered constellations orders.The penalty factor α g in ( 5) is updated in each iteration according to the following expression such that we reach, over the iterations, the transmitted constellation cost function :

αg = sigmoid(classg), (6) 
where class g is the number of times where the g th constellation is successful in the classification result after the classification step. The equalizer coefficients are updated using the stochastic gradient descendent (SGD) algorithm as:

w(n + 1) = w(n) -µ ▽w J M U -M C-M SQD-ℓ 2gen (w) = w(n) -µ G g=1 αg ▽w J M U -M SQD-ℓ 2g (w), ( 7 
)
where µ is the step size. In the sequel, we will focus on the explicit expression of [START_REF] Fki | Blind equalization and automatic modulation classification based on PDF fitting[END_REF]. For this reason, we begin by calculating the gradient of (4) which leads to that of [START_REF] Fki | Blind equalization and automatic modulation classification based on PDF fitting[END_REF]. on the other hand, in [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF] we have the gradient of (3) :

▽wJ M SQD-ℓ2 (w) = ∂J M SQD-ℓ2 (w) ∂wr + j ∂J M SQD-ℓ2 (w) ∂w i = 1 √ 2πNsσ 3 Ns m=1 (sign(y R (n))|y R (n)| (|y R (n)| 2 -|a R (m)| 2 ) e -(|y R (n)| 2 -|a R (m)| 2 ) 2 /2σ 2 + jsign(y I (n))|y I (n)|(|y I (n)| 2 -|a I (m)| 2 ) e -(|y I (n)| 2 -|a I (m)| 2 ) 2 /2σ 2 )x * (n), (8) 
sign() is the signum function. The gradient of (4) is the sum of (8) for each equalizer output plus the gradient of correlation term :

▽wJ M U -M SQD-ℓ2 (w) = K i=1 ▽wJ M SQD-ℓ2 i (w) + 2β k i,j=1;i̸ =j δ 2 δ=δ 1 y i (n) |y j (n -δ)| 2 . (9)
The gradient of ( 5) is the sum of (9) for each constellation order multiplied by an updated penalty factor. In order to update the cost function, each equalized symbol is classified using the KNN algorithm with fourth-order cumulant [START_REF] Ali | An M-QAM signal modulation recognition algorithm in AWGN channel[END_REF] [13] as features. So that we do jointly the equalization and the AMC. The expressions of the p th order cumulant and moment are respectively as follows :

Cpq = cum(x p-q (x * ) q ) and Mpq = E[x p-q (x ) q ],
where E[.] is the expectation operator. In particular, consider :

C 40 = M 40 -3M 2 20 C 42 = M 42 -|M 20 | 2 -2M 2 21
as they are more suitable for M-QAM modulations [START_REF] Marchand | Multiple hypothesis modulation classification based on cycliC cumulants of different orders[END_REF]. A baseline containing C 40 and C 42 values for noisy symbols according to various values of signal-to-noise ratio (SNR) and belonging to {16, 32, 64, 128, 256}-QAM modulations is prepared. the classifier follows the following steps :

• Calculate S 1 = C 40 +C 42 the sum of the last 1000 equalized symbols.

• Calculate the Euclidean distances between S 1 and each sum in the reference base.

• A set of the k nearest neighbors from the baseline is created.

• Since each neighbor matches a specific constellation order, then we select the order is the most repeated order in the previous set.

Finally, according to the AMC, we update the penalty factors following [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF]. Then (5) will be updated.

B. Multi users Multi-criteria neural network NNMSQD-ℓ pgen (MU-MC-NNMSQD-ℓ pgen )

The used CV-NN combined with a KNN classifier is illustrated in Fig. 3. It's trained using the complex back propagation (CBP) algorithm [START_REF] Wang | Generalized derivation of neural network constant modulus algorithm for blind equalization[END_REF].

We assume N k neurons in the k th layer and we denote by ϕ k j and x k+1 j the input and the output of the j th neuron in the k th layer, such that :

ϕ k j = N k-1 i=1 w k ij x k i + θ k j and (10) 
x k+1 j = f k (Re(ϕ k j )) + jf k (Im(ϕ k j )), (11) 
Fig. 3: MIMO CVNN combined with a KNN classifier.

where x k i is the k th layer output, w k ij is the weight between the i th neuron in the k th layer and the j th neuron in the (k + 1) th layer, θ k j and f k (•) are the k th layer bias and activation function. During CV-NN training process, we have two main steps. The first one is forward step where the goal is to calculate the neural network outputs, by applying an activation function on the weighted sum in each layer. The second step is the CBP to update the synaptic weights according to our equalizer criterion. The network includes three layers: input, hidden, and output layers. In this work, we use the same activation function as in [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF] :

f (x) = x + α * sin(π * x),
where π is a mathematical constant approximately equal to 3.14159, α a positive number between 0 and 1 and sin is the trigonometric function. The cost function for the generic multi users multi-criteria neural network equalizer is the same as that of (5) :

J M U -M C-N N M SQD-ℓ 2gen (w) = G g=1 αgJ M SQD-ℓ 2g . (12) 
The penalty factor α g is calculated and updated as in the MU-MC-MSQD-ℓ 2gen algorithm and for each iteration, we follow the same steps. First, we equalize the received symbol, then we classify it, afterward, we update the neural network weights and finally, we update the penalty factors respectively. The weights of the neural network are updated using the SGD as :

w(n + 1) = w(n) -µ ▽w J M U -M C-N N M SQD-ℓ 2gen (w) = w(n) -µ G g=1 αg ▽w J M U -M SQD-ℓ 2g (w), (13) 
where µ is the step size. To update the output layer weights, the same process is used such in the linear version, We begin by calculating the gradient of (4) which leads to that of [START_REF] Ali | An M-QAM signal modulation recognition algorithm in AWGN channel[END_REF]. In [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF], we have the gradient of (3) for the neural version with SISO communication system and for simplification purposes, we introduce Q R,i , Q I,i , δ o p,i , and Υ i for the i th equalizer output, which are expressed as the following :

Q R,i = 1 Ns √ 2Πσ Ns m=1 e - (|y R,i (n)| 2 -|a R (m)| 2 ) 2 2σ 2 (|y R,i (n)| 2 -|a R (m)| 2 ) σ 2 , Q I,i = 1 Ns √ 2Πσ Ns m=1 e - (|y I,i (n)| 2 -|a I (m)| 2 ) 2 2σ 2 (|y I,i (n)| 2 -|a I (m)| 2 ) σ 2 , δ o p,i = Q R,i y R,i (n)f o ′ (φ o R,i ) + jQ I,i y I,i (n)f o ′ (φ o I,i ). ( 14 
)
Υ o p,i = 2βδ o p,i K j=1,j̸ =i δ 2 δ=δ 1 |y j (n -δ)| 2 . ( 15 
)
The gradient of (4) with respect to output layer weights is calculated as :

▽wJ M U -N N M SQD-ℓ2 (w) = (δ o p + Υ o p )I * p , (16) 
where φ o R,i , φ o I,i , are the i th real and imaginary inputs of the output layer, and I p is the output of the hidden layer.

f o ′ (φ o R,i ) and f o ′ (φ o I,i
) are the derivatives of the activation function in the output layer applied in the real and imaginary parts of the output layer i th input,

δ o p =        δ o p,1 . . . δ o p,Q       
, and

Υ o p =        Υ o p,1 . . . Υ o p,Q        .
The gradient of [START_REF] Ali | An M-QAM signal modulation recognition algorithm in AWGN channel[END_REF] with respect to the output layer weights is the sum of ( 16) for each constellation order multiplied by an updated penalty factor. Also, the gradient of ( 12) with respect to hidden layer weights is calculated by applying the CBP and SGD algorithms. In [START_REF] Farhati | Automatic modulation classification for multi-criteria generic channel equalizer[END_REF], we have have the gradient of (3) for neural version with SISO communication system and we simplify the calculation by introducing δ h p and Υ h p ,

δ h p = f h ′ (φ h R )ℜ((δ o p + Υ o p )w o * ) + jf h ′ (φ h I )ℑ((δ o p + Υ o p )w o * ). (17) 
Υ h p = 2βδ h p K j=1,j̸ =i δ 2 δ=δ 1 |y j (n -δ)| 2 . ( 18 
)
The gradient of (4) with respect to hidden layer weights is calculated as :

▽wJ M U -N N M SQD-ℓ2 (w) = (δ h p + Υ h p )X, (19) 
where φ h R , φ h I , are the real and imaginary inputs of the hidden layer, and X is the input vector of the equalizer. f h ′ (φ h R ) and f h ′ (φ h I ) are the derivatives of the activation function of the hidden layer applied in the real and imaginary parts of the hidden layer input. The gradient of [START_REF] Ali | An M-QAM signal modulation recognition algorithm in AWGN channel[END_REF] with respect to hidden layer weights is the sum of (19) for each constellation order multiplied by an updated penalty factor. Finally, the AMC process is applied using the same principle as for MU-MC-MSQD-ℓ 2gen .

IV. SIMULATION RESULTS

we have simulated our two equalizers: MU-MC-MSQD-ℓ 2gen and MU-MC-NNMSQD-ℓ 2gen in the case of MIMO system equipped with two transmitter antennas and four receiver antennas. So we have eight multipath channels, each containing six paths [START_REF] Farhati | Blind channel equalization based on Complexvalued neural network and probability density fitting[END_REF]. We obtained the MSE and SER values for various signal-to-noise ratio (SNR) values a 16-QAM constellation signal. We have used MU-MSQD-ℓ 2gen as a linear benchmark and MU-NNMSQD-ℓ 2gen as a nonlinear neural benchmark. These two benchmarks, consider the cost function relative to the QPSK constellation to equalize any transmitted constellation belonging to the PSK or the QAM modulation. high SNR values, we notice a better performance where we have an optimal learning phase.

V. CONCLUSION

In conclusion, we can use our approach with new communications techniques, especially in the fifth generation (5G) and beyond which use millimeter waves and power amplifiers (PAs). In this case, we have two challenges to solve, the linear ISI effect resulting from the multi-path channel and the PA non-linearity effects.
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