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ABSTRACT One of themajor problems faced in digital communication systems is Inter-Symbol Interference
(ISI), induced by the propagation channel in the single carrier based systems. Classic digital equalization
techniques based on pilot training sequences become tedious in the presence of nonlinear power amplifiers.
The existing techniques for digital pre-distortion need a high transmitter computation complexity and those
for the post-distortion require pilot overhead. In this review, we focus on fully generic blind processing
for both channel equalization and power amplifier post-distortion. We propose a receiver based on two
complex-valued neural networks (CV-NN). The first CV-NN is dedicated to generic blind equalization
(GBE) to mitigate ISI. The second one is used for generic blind post-distortion compensation (GBPDC)
of the power amplifier nonlinearity (PANL). The GBE and the GBPDC have no prior information about the
transmission channel, the used constellation, and the PAmodel. For the first CV-NN, we consider an updated
probability density fitting (PDF) based criteria, corresponding to many assumed possible constellations,
that are used jointly with an automatic modulation classification (AMC) based on the k-nearest neighbors
(KNN) algorithm. For the second CV-NN, we use the final updated PDF criterion resulting from the first
CV-NN training process. Numerical results show that our generic blind Deep learning-based signal receiver
formed with the two CV-NNs is effective in alleviating the two coupled signal distortions: the ISI and the
PANL. Compared with the state-of-the-art methods, banking on a supervised post-distortion compensation
and channel equalization, the proposed generic blind DL-based scheme exhibits good detection performance.

INDEX TERMS Automatic modulation classification, blind channel equalization, neural network, post-
distortion, power amplifier, pre-distortion, probability density fitting.

I. INTRODUCTION
The nonlinearity of power amplifiers (PA) remains one of the
serious constraints for the fifth generation (5G) and beyond
cellular systems since signals have extremely high peak-to-
average power ratio (PAPR). Moreover, channel estimation
and equalization remain hot topics in 5G and beyond
use cases and applications in various hard propagation
conditions. To avoid the overhead data in the pilot-aided
schemes for channel estimation and equalization, the blind
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approving it for publication was Walid Al-Hussaibi .

approach has been widely investigated to reduce the ISI due
to multipath propagation.

Moreover, the PANL can be mitigated in two ways:
linearization techniques at the transmitter side and post-
distortion approach at the receiver side. In the literature,
various linearization methods are proposed such as feed-
forward linearization [1], feedback linearization [2] and the
digital pre-distortion approach. The basic concept of the
pre-distortion approach is to add a distorter at the transmitter
side, based on an approximation of the PA inverse function.
The main challenge provided by the digital pre-distortion
approach is its high computational complexity that requires
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more energy and resources, leading to its limited use on the
base stations side. To overcome the pre-distortion challenges,
post-distortion has been widely investigated. It manages the
PANL compensation on the receiver side. This approach
is proposed for millimeter wave communication systems
in 5G and beyond [3]. In [3], two neural networks (NN)
are integrated, the first for ISI mitigation and the second
for PANL avoidance purposes. Authors in [4] propose a
deep learning-based receiver with PA. In [5] a Volterra
series-based convolution neural network (CNN) is suggested
to mitigate PANL. In the literature, several studies based on
post-compensation have been carried out [6], [7]. In all these
digital post-distortion-based solutions discussed above, the
two coupled distortions: linear ISI and PANL, are addressed
separately with non-blind training. In addition, we assume
a single carrier transmission system where the spectrum
emission constraints are satisfied.

In wireless communication, a multi-path channel intro-
duces ISI. Blind equalization is one of the techniques applied
to mitigate ISI, it avoids bandwidth waste resulting from
training data. In the literature, various blind equalizers
based on high-order statistical (HOS) properties are proposed
as the constant modulus algorithm (CMA) [8] and the
multi-modulus algorithm (MMA) [9]. Other blind equalizers
based on probability density fitting are also developed
as the stochastic quadratic distance (SQD) [10] and the
muti-modulus stochastic quadratic distance (MSQD-ℓp) [11].
PDF-based equalizers that exploit the full range of signal
distribution surpass equalizers based on HOS properties that
exploit a part of signal features [11]. For this reason, we are
interested in PDF-based criteria in this paper.

In the last decade, the neural network has been widely
operated in signal processing such as channel estimation and
equalization. In the literature, several works were investigated
to build blind neural equalizers like the neural network
constant modulus algorithm (NNCMA) [12] and the neural
network multi-modulus algorithm (NNMMA) [13]. These
algorithms outperform their linear versions: CMA andMMA.
In the same way, we have previously implemented the SQD
and MSQD-ℓp PDF based criteria with a neural network [14]
and have shown that using a neural network for these criteria
outperforms their linear versions.

Numerous neural network architectures were considered
for blind equalization. We can mention, the feedforward equ-
alizer (FFE) [12], the feedforward with decision feedback
equalizer (FFE-DF) [15], the recurrent neural network
equalizer (RNNE) [16] and variational autoencoders [17]. All
these previous architectures process the real and imaginary
parts of the signal separately, thus ignoring the correlation
between the real and imaginary parts. In addition, the
CV-NN [12] processes the real and imaginary parts together,
preserving the correlation between them and consequently
leading to a robust convergence.

In some communication scenarios, the receiver has no
information on the transmission channel and the used constel-
lation. Thus a GBE is used to cancel ISI. After equalization,

and before taking the final decision and exploiting the
received data, the receiver classifies the GBE output by an
AMC algorithm to reach the transmitted constellation.

In the state of the art, some works consider jointly
GBE and AMC. We can cite [18] where a multi-branch
architecture is used, each branch is linked to a specific
constellation. The branch provides the smallest error is
considered. Other approaches use GBE based on CMA and
MSQD-lp algorithms [19], [20]. They use this criterion
by reading with the quadratic phase shift keying (QPSK)
constellation to equalize any constellation belonging to the
phase shift keying modulation (PSK) or the quadrature
amplitude modulation (QAM). The resulting constellation is
scaled to ensure the targeted transmit power. All the cited
works proposed a linear GBE followed by an AMC process.

In [21], we have implemented a joint neural GBE using
CV-NN, and AMC based on a KNN classifier with the
fourth-order cumulants which deal with quadrature amplitude
modulation (QAM) [22], [23].

Moreover, since a PA has been included in a major part
of the communication systems, in this paper we focus on
its effect. In the literature, there are many PA models such
as the polynomial model [24], [25], Rapp’s model [26],
[27] and Saleh’s model [28]. The nonlinearity behavior of
these PA models is usually characterized by their amplitude
modulation-amplitude modulation (AM-AM) and amplitude
modulation-phase modulation (AM-PM) conversions. In this
paper, we consider the modified Rapp model [29], which has
both AM-AM and AM-PM conversion characteristics.

Employed orthogonal frequency division multiplexing
(OFDM) is used in communication systems such as 5G and
beyond [3]. However, there are other systems that still use
the single carrier communication system such as maritime
communication, satellite communication, and the Internet of
Things (IoT) technologies. The work proposed here considers
single input single output (SISO) communications and we are
currently working on its extension to MIMO systems.

In this work, we propose a fully blind Deep Learning(DL)-
based signal receiver with two sequential CV-NNs banking on
the probability density fitting (PDF) criterion. The first one
mitigates linear ISI and the second one compensates PANL.
We also propose a generic blind DL-based signal receiver that
mitigates the ISI by the neural network GBE (NNGBE) and
the PANL by the neural network GBPDC (NNGBPDC).

Accordingly, the main contributions of this paper are
resumed as follows:

• Joint simultaneously blind channel equalization, and
blind post-distortion compensation.

• Joint simultaneously generic blind channel equalization,
and generic blind post-distortion compensation.

To our knowledge, this is the first time that the PDC is
processed blindly.

The rest of this paper is organized as follows. Sec-
tion II describes the system and signal models. Section III
introduces the blind DL-based signal receiver. The generic
blind DL-based signal receiver is described in section IV.
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Simulation results in a complete transmitter/receiver chain
are discussed in section V. Finally, Section VI concludes this
work.

II. SYSTEM MODEL
A. SIGNAL MODEL
In the rest of this paper, we consider the following parameters
and notations. We note that lowercase letters, e.g. x, and
bold lowercase letters, e.g. x, denote scalars and vectors
respectively. ℜ(.) or (.)r denotes the real part of a complex
number, and ℑ(.) or (.)i denotes the imaginary part of a
complex number. ∗ denotes the conjugate operator.

Our base-band communication system is detailed in Fig.1.

FIGURE 1. Transmission system base-band model with a power amplifier,
and DL-based signal receiver.

• s(n)n∈Z is a normalized M-QAM sequence of indepen-
dent and identically distributed (i.i.d) complex symbols,

• x(n) is the PA input and α is a multiplicative factor to
adjust the average power of the signal at the PA input,

• a(n) is the PA output,
• h = [h0, h1, . . . , hLh−1] is a finite impulse response
(FIR) of the transmission channel,

• b(n) is an additive white Gaussian noise (AWGN),
• z(n) is the channel output,
• i1(n) and o1(n) are the input and the output of the first
CV-NN equalizer at a given time n, respectively,

o1(n) = G1(i1(n),w1,w2), (1)

whereG1 is the first CV-NN three layers global function,
i1(n) = [y(n), y(n− 1), . . . , y(n− L1 + 1)]T is a vector
of L1 complex data samples applied at its input layer. w1
is the matrix of synaptic weights between the input and
hidden layers and w2 is the matrix of synaptic weights
between the hidden and output layers.

• i2(n) and o2(n) are the input and the output of the second
CV-NN at a given time n, respectively:

o2(n) = G2(i2(n),u1,u2), (2)

where G2 is the second CV-NN three layers global
function, i2(n) = [p1(n), . . . , pL2+1(n)] is a vector of
L2 complex data samples applied at its input layer, with
pk (n) = o1(n)|o1(n)|k . u1 is the matrix of synaptic
weights between the input and hidden layers and u2 is
the matrix of synaptic weights between the hidden and
output layers.

B. CV-NN MODEL
The first CV-NN structure is shown in Fig.2. In the sequel,
we assume Nk neurons in the k th layer and we denote by φkj
and νk+1

j is the input and the output of the jth neuron, such
that:

φkj =

Nk−1∑
i=1

wkijν
k
i + θkj and (3)

νk+1
j = f k (Re(φkj )) + jf k (Im(φkj )), (4)

FIGURE 2. CV-NN architecture.

where νki is the k th layer input, wkij is the weight between
the ith neuron in the k th layer and the jth neuron in the
(k + 1)th layer, θkj and f k (·) are the k th layer bias and
activation function, respectively. The CV-NN is trained using
the complex backpropagation (CBP) algorithm [30].

The second CV-NN has the same structure as the first
CV-NN with the appropriate inputs defined in the previous
subsection.

C. POWER AMPLIFIER MODEL
In this work, we assume the memoryless nonlinearity
introduced by the modified Rapp’s PA model. This PA
is commonly used to model solid-state power amplifiers
(SSPAs) [31] and exhibits both the AM-AM and AM-PM
conversion characteristics. The signal at the output of the PA
model can be written as follows:

a(n) = Fa(ρ(n)) exp(j(ϕ(n) + Pa(ρ(n))), (5)

where ρ(n) and ϕ(n) are respectively the input signal (x(n))
modulus and phase. Fa(·) is the AM/AM conversion function,
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and Pa(·) is the AM/PM conversion function, expressed, for
the modified Rapp model, as follows:

Fa(ρ(n))=
gρ(n)(

1+

∣∣∣ gρ(n)Vsat

∣∣∣2p) 1
2p

, Pa(ρ(n))=
kρ(n)q(

1+

∣∣∣ρ(n)
u

∣∣∣q) ,

(6)

where g is the linear gain, Vsat is the saturation voltage and
p is a smoothness factor that controls the transition from the
linear region to the saturation one. k , u and q respectively
represent the adjustment parameters. In this paper, we assume
that Vsat = 1.9, g = 16, k = −345, u = 0.17, p = 1.1 and
q = 4 [26], [32]. This PA is applied for modeling sub−6GHz
communications for 4G and 5G systems [3]. In this paper,
we ignore the memory effects because the PA response is
assumed to be constant over the signal band [33].
The PA nonlinear conversion characteristics can produce

distortions in the constellation scheme, as well as spectral
regrowth, degrading the system performance [4]. In practice,
to reduce the nonlinearity effects, the PA is operated at a
given input back-off (IBO) level from its saturation point [3].
In the logarithmic scale, the IBO is defined by IBO =

10 log10
(
V 2
sat
Px

)
, wherePx is the average power of the PA input

signal x(n) = α s(n). We remind that α is a scaling factor
adjusted to reach the targeted IBO value.

III. BLIND DL-BASED SIGNAL RECEIVER
Communications systems integrate usually power amplifiers,
whose non-linear characteristics may affect transmission
quality. The received signal is impacted by two coupled
effects: ISI and PANL. ISI is often mitigated by the
receiver, but the PANL is compensated in two ways: either
by pre-distortion at the transmitter or with post-distortion
at the receiver side. In this section, we will detail the
blind DL-based signal receiver that we propose. It has the
advantage to equalize the wireless transmission channel and
compensate the PANL.

The receiver includes two sequential CV-NNs as shown in
Fig.3. The first one aims to mitigate ISI and the second one
aims to compensate PANL.

FIGURE 3. Blind DL-based receiver architecture.

The Two sequential CV-NNs are trained by employing the
MSQD-ℓp algorithm [11]. Specially for p = 2, the MSQD-ℓ2

has the following cost function:

JMSQD−ℓ2 (w) = −
1
Ns

Ns∑
k=1

Kσo (|or |
2
− |sr (k)|2)

−
1
Ns

Ns∑
k=1

Kσo (|oi|
2
− |si(k)|2), (7)

whereNs is the number of complex symbols in the considered
constellation andKσ0 is a Gaussian kernel with zeromean and
variance σ0 which is referred to kernel width. o and s are the
equalized output and the constellation symbols, respectively.

The blind equalization criterion based on PDF tries to
estimate the distribution of the transmitted data at the receiver
side. It minimizes the distance between the signal PDF at
the equalizer output and the emitted constellation during
iterations.

A. ISI CANCELLATION (CV-NN 1)
In the first stage, CV-NN 1 is trained according to (7) in
order to mitigate ISI. CBP was investigated for the training
process and we consider the stochastic gradient descent
(SGD) algorithm to update the network weights, such that:

wkij(n+ 1) = wkij(n) − µ
∂JMSQD−ℓ2

∂wkij(n)
. (8)

The gradient is calculated as in [14]. For simplification
purposes, we introduce two auxiliary parameters Qr and Qi
which are defined as follows:

Qr =
1
Ns

Ns∑
k=1

1
√
2πσ

e
−

(|or (n)|2 − |sr (k)|2)2

2σ 2

×
(|or (n)|2 − |sr (k)|2)

σ 2 ,

and

Qi =
1
Ns

Ns∑
k=1

1
√
2πσ

e
−

(|oi(n)|2 − |si(k)|2)2

2σ 2

×
(|oi(n)|2 − |si(k)|2)

σ 2 .

Let δop = Qror f o
′

(ϕor ) + jQioif o
′

(ϕoi ).
Further, the weights of the output layer are updated as the

following:

woj (n+ 1) = woj (n) − µδopI
∗
pj, (9)

where ϕo is the input of the output layer. Ipj is the output of
the hidden layer. f o(.) is the activation function of the output
layer. f o

′

(.) is the derivative of the activation functions of the
output layer.

The weights of the hidden layer are updated as follows:

whji(n+ 1) = whji(n) − µδhpjy
∗
pi, (10)

δhpj = f h
′

j (ϕhr )Re(δ
o
pw

o∗

j ) + jf h
′

j (ϕhi )Im(δ
o
pw

o∗

j ), (11)
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where ϕh is the input of the hidden layer and ypi is the input
of the network. f h

′

j (.) is the hidden layer derivative activation
function for the jth neuron.

B. PANL COMPENSATION (CV-NN 2)
After training CV-NN1, we obtain its optimal parameters.
Then, the training of CV-NN 2 is performed, and where the
training process is the same as the CV-NN1 (CBP, SGD) one.
The input of CV-NN2 is a polynomial constructed from the
output of CV-NN1 as described in equation (2).

Once the learning is done for both networks and the optimal
parameters are procured, both models are performed online
to cancel ISI in the first stage and compensate PANL in the
second stage.

IV. GENERIC BLIND DL-BASED SIGNAL RECEIVER
We now assume that the receiver has no information about
the used constellation. So, it becomes a generic receiver for
different possible M-QAM constellations and it is built from
two sequential CVNNs with an AMC block as shown in
Fig.4. The first CV-NN mitigates ISI, and the second one
compensates PANL.

FIGURE 4. Generic blind DL-based receiver architecture.

We have trained the first CV-NN with a new multi-criteria
generic cost function as a sum of several variations of
equation (7), one for each constellation order multiplied by
an updated penalty factor. So, the criterion will be:

JMC−MSQD−ℓ2gen
(w) =

C∑
m=1

αmJMSQD−ℓ2m
(w), (12)

where C is the number of the constellation orders.
The penalty factor αm in (12) is updated in each iteration

according to equation (13) such that we reach, over the
iterations, the transmitted constellation cost function:

αm = sigmoid(classm), (13)

where classm is the number of times where the mth

constellation is successful in the classification result after
the classification step. At the end of the CV-NN 1 training
process, (13) will converge to a specific cost function that
deals with the classified constellation. This cost function will
be used for the CV-NN 2 training.

A. ISI CANCELLATION (CV-NN 1)
In the first step, CV-NN 1 is trained according to (12) in
order to mitigate ISI. CBP was investigated for the training
process and we consider the stochastic gradient descent
(SGD) algorithm to update the network weights, such that:

wkij(n+ 1) = wkij(n) − µ
∂JMC−MSQD−ℓ2gen

∂wkij(n)
. (14)

In the following, we will concentrate on the gradient
of (12). To do so, we use the gradient of (7), since the gradient
of (12) is a sum of the (7) gradient one for each constellation
order.

The weights of the output layer are updated as:

woj (n+ 1) = woj (n) − µ

C∑
m=1

αmδopm I
∗
pj, (15)

where Ipj is the output of the hidden layer and δopm is calculated
as the same in subsection III-A for each mth constellation
order.

Similarly, the weights of the hidden layer are updated as:

whij(n+ 1) = whij(n) − µ

C∑
m=1

αmδhpjmy
∗
pi, (16)

where ypi is the input vector of the CV-NN and δhpjm is
calculated as the same in subsection III-A for each mth

constellation order at the jth neuron.
In order to update the cost function, each equalized symbol

is classified using the KNN algorithm with fourth-order
cumulant [34], [35] as features. So that we execute jointly the
equalization and the AMC. The expressions of the pth order
cumulant and moment are given by:

Cpq = cum(xp−q(x∗)q)

and

Mpq = E[xp−q(x∗)q],

where E[·] is the expectation operator.
In particular, we will consider:

C40 = M40 − 3M2
20

C42 = M42 − |M20|
2
− 2M2

21,

as they are more suitable for M-QAM modulations [35].
A baseline containing C40 and C42 values for noisy symbols
according to various values of signal-to-noise ratio (SNR)
and belonging to {16, 32, 64, 128, 256}-QAMmodulations is
prepared.

The classifier follows the following steps:
• Calculate S1 = C40 + C42 the sum of the last 1000
equalized symbols.

• Calculate the Euclidean distances between S1 and each
sum in the reference base.

• A set of the k nearest neighbors from the baseline is
created.
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• Select the mostly repeated order in the previous, as each
neighbor matches a specific constellation order.

Finally, according to the AMC, we update the penalty factors
following (13) and update (12).

B. PANL COMPENSATION (CV-NN 2)
Once CV-NN 1 is trained and converging, we continue
training CV-NN 2 with the resulting cost function from CV-
NN 1. The output of CV-NN 1 with a polynomial form is the
CV-NN 2 input as described in equation (2) and we use the
same training process (CBP, SGD).

As in the blind approach, once the learning and classifi-
cation phases are done for both networks and the optimal
parameters are obtained, both models are performed online
to mitigate ISI and classify the used constellation in the first
step, and compensate PANL in the second step.

V. SIMULATIONS RESULTS
The blind DL-based signal receiver and the generic blind
DL-based signal receiver are conceived with two sequential
three layers CVNNs: The first CV-NN neuron number is
Li = 30 for the input layer, Lh = 16 for the hidden layer, and
Lo = 1 for the output layer, for the second CV-NN Li = 5,
Lh = 9, and Lo = 1. We assume the following activation
function:

f (x) = x + β ∗ tanh(x),

where β ∈ [0, 1], we choose in the simulations β = 0.1,
and tanh is the trigonometric function. In addition, we tested
the performance of the proposed post-processing structures
two channels models. The first model is a stationary one
corresponding to a typical multi-path radio channel [14]:
hr (z) = (0.0410 + j0.0109) + (0.0495 + j0.0123)z−1

+

(0.0672 + j0.0170)z−2
+ (0.0919 + j0.0235)z−3

+

(0.7920 + j0.1281)z−4
+ (0.3960 + j0.0871)z−5

+

(0.2715+ j0.0498)z−6
+ (0.2291+ j0.0414)z−7

+ (0.1287+

j0.0154)z−8
+ (0.1032 + j0.0119)z−9.

The second channel model hv, is a time-varying multi-path
fading channel simulated using the Rayleigh distribution with
the parameters described in Table 1:

TABLE 1. Parameters of time-varying multi-path fading channel.

These parameters correspond to amobile speed of 30meter
per second and a carrier frequency of 2 gigahertz.

We have initialized the two matrices of synaptic weights
wo[Lo,Lh] and wh[Lh,Li] with small values except for
wo[(Lo + 1)/2, (Lh + 1)/2] and wh[(Lh + 1)/2, (Li + 1)/2]
that were set to 1.5.

The total number of symbols used during the training step
is 70000. An important factor for convergence during the

training phase is the learning rate µ. It is fixed to 10−3/Py,
where Py is the received signal power. All the compared
algorithms in this paper have the same convergence speed and
in all figures, we draw the BER values after the convergence.

We have taken CV-NN 1 trained in nonblind mode
followed by analytic compensation of PANL as a DL-based
signal receiver benchmark. To compute the analytical com-
pensation, we use the Newton’s approximation algorithm
such in [36] to numerically calculate the value of the inverse
of the AM/AM conversion. We then use this calculated
value to obtain the AM/PM conversion to be extracted from
the phase of the signal at the output of CV-NN 1. Thus,
we have simulated the DL-based signal receiver composed
of CV-NN 1 and CV-NN 2 using 16-QAM and 32-QAM
signal constellations in both blind and generic versions.
The different BER figures presented in this paper are
taken with respect to various signal-to-noise ratio (SNR)
values [37], [38].

For nonlinear effects, We have implemented the modified
Rapp model described in Section II-C. The polynomial
non-linearity at the input of CV-NN 2 L2 is fixed to
5 containing the even and the odd orders. The computational
complexity order for both CV-NN1 andCV-NN2 is the same.
It is a linear function of neuron number for each network
layer.

Computation carried for CV-NN 1 and CV-NN 2 are
summarized in table 2.

TABLE 2. Computational complexity.

FIGURE 5. BER versus SNR and IBO using hr in the case of a 16-QAM
signal in a blind mode.

A. BLIND DL-BASED SIGNAL RECEIVER
Fig. 5 confirms that our blind DL-based signal receiver with
a 16-QAM received signal and a radio channel, outperforms
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the blind ISI cancellation without PANL compensation,
especially for higher SNR values. The BER Performance is
also affected by the IBO. In fact, the higher the IBO is, i.e. the
PA is away from its saturation point, the more performance
increases. Thus, our blind DL-based signal receiver built by
two coupled CV-NNs solutions guarantees performance close
to the analytic one.

We have also tested our receiver with a 32-QAM received
signal and a time-varying vehicular channel. Fig.6 describes
different blind approaches in the case of the vehicular
time-varying channel hv. We can observe the robustness of
our approach even with a time-varying channel and different
constellation orders.

FIGURE 6. BER versus SNR and IBO using hv in the case of a 32-QAM
signal in a blind mode.

B. GENERIC BLIND DL-BASED SIGNAL RECEIVER
We trained CV-NN 1 with the multi-criteria cost function.
For each equalized symbol, we apply the KNN algorithm
for classification and finally, we update the cost function to
reach one that matches the classified constellation. Once the
CV-NN 1 is trained, we train CV-NN 2 with the resulting cost
function obtained after the convergence of CV-NN1 without
applying the AMC.

The sub-figures in Fig. 7 are simulated with a 16-QAM
signal and a radio channel in a generic mode. The sub-figures
in Fig. 8 are simulated with a 32-QAM signal and the
time-varying vehicular channel in a generic mode. The
obtained results confirm the performance of our contribution
in a generic mode with different constellations orders and
channels propagation.

Fig. 7(a) and Fig. 8(a) show the data source to be
transmitted, Fig.7(b) and Fig. 8(b) illustrate the data after the
application of PA, Fig. 7(c) and Fig. 8(c) draw the received
data at the channel output, these data are the receiver input
and Fig. 7 (d) and Fig. 8 (d) plot the CV-NN 1 output signal
constellation. We can see that the constellation sub-clusters
are not distributed in the right places. Also, there are overlaps
between the decision areas corresponding to the different
symbols. Indeed CV-NN 1 has mitigated only ISI and not
PANL, which will lead to higher BER values.

FIGURE 7. Different constellation for IBO = 4dB and SNR = 20dB
using hr with 16-QAM signal in generic mode.

FIGURE 8. Different constellation for IBO = 4dB and SNR = 20dB
using hv with 32-QAM signal in generic mode.

FIGURE 9. BER versus SNR and IBO using hr in the case of a 16-QAM
signal in a generic mode.

Fig. 7 (e) and Fig. 8 (e) plot CV-NN 2 output signal con-
stellation. It can be noticed that the constellation sub-clusters
are almost distributed at the proper positions. In addition,
the decision areas corresponding to the different symbols are
well separated. This is reflected in low BER values. This
performance improvement is due to the ISI mitigation and
PANL compensation byCV-NN1 andCV-NN2, respectively.
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FIGURE 10. BER versus SNR and IBO using hv in the case of a 32-QAM
signal in a generic mode.

Fig.9 describes different generic approaches simulated
with a 16-QM signal and the digital radio channel hr . We can
observe a slight performance degradation for all algorithms
compared to Fig.5. This was expected since the receiver
has no idea about the transmitted modulation and the cost
function used for this case is generic.

In Fig.10, we present the performance of the generic
DL-based signal receiver with a 32-QAM signal and the
vehicular time-varying channel hv. We noticed an interesting
BER performance and robust convergence despite channel
time variation during transmission.

VI. CONCLUSION
This paper presents two contributions. The first one jointly
and blindly corrects the effects of inter-symbol inter-
ference introduced by the propagation channel with the
non-linearities introduced by power amplifiers without mem-
ory and presenting both amplitude and phase conversions.
The second one jointly and generic corrects the same effects.
Each of the two proposed non-linear receivers is a cascade
of two neural networks, the first of which corrects the ISI
and the second compensates the non-linearities. For the
blind receiver, the two complex-valued neural networks are
trained by employing the MSQD-ℓ2 criterion, and for the
generic receiver the first CV-NN is trained using an updated
multi-criteria cost function, and the second CV-NN is trained
using the resulting cost function from the CV-NN 1. The
numerical results show a good performance in terms of
BER with a stationary channel and a time-varying vehicular
channel. The performance achieved by the DL-based signal
receiver motivates us to extend our work to multiple inputs
multiple outputs (MIMO) communication systems in the
presence of power amplifiers exhibiting memory effects.
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