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Abstract. Large language models (LLMs), as a particular instance of
generative arti�cial intelligence, have revolutionized natural language
processing. In this invited paper, we argue that LLMs are complemen-
tary to structured data repositories such as databases or knowledge bases,
which use symbolic knowledge representations. Hence, the two ways of
knowledge representation will likely continue to co-exist, at least in the
near future. We discuss ways that have been explored to make the two
approaches work together, and point out opportunities and challenges
for their symbiosis.
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1 Large Language Models

Large Language Models (LLMs) have revolutionized the �eld of natural language
processing in 2023, with the rise of models such as GPT [44], LLaMA [69], and
PaLM [11]. As instances of what is called �generative Arti�cial Intelligence (AI)�,
LLMs can chat like humans, answer questions, summarize or translate text, write
program code, and appear to be able to do just about anything a human can do
on text.

LLMs thus have the potential to deeply change our everyday life: they might
automatize the work of human professionals in areas where we thought human
intelligence was indispensable (such as the work of journalists, legal consultants,
authors, programmers, teachers, or researchers [15]). They will pose new societal
threats, as they can generate fake news, fake posts, and fake conversations at an
unprecedented rate. They might one day pursue their own agenda, threaten users
(as it has already happened [39]), or manipulate humans to grant them favors
(as hypothesized by Eliezer Yudkowsky in his AI Box thought experiment [76]3).
Already now, they pose legal and ethical challenges in areas such as the copyright
of the generated text [4], liability for generated statements [78], explainability
of decisions based on such text, the personal data stored in language models (or
submitted in prompts), the intellectual property of data used for training, and
the remuneration of those who created the training data [20].

3 https://arminbagrat.com/agi-box/
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At the same time, LLMs democratize access to the digital world: novices can
now write programs, formulate SQL queries, understand the gist of scienti�c
articles, write, translate, or summarize text, and �nd answers to just about any
question they may have. LLMs will certainly shortly pop up in mobile phones,
o�ce software, email clients, and digital assistants, and greatly simplify our life
there. In the future, generative AI systems might be granted access to com-
putational tools (so that they can execute code), gain multi-modal capabilities
(so that they can see, listen, and speak), become embodied (so that they can
physically act), and become ingrained in our life in ways that would be naive to
anticipate now [6].

These considerations raise the question whether LLMs will be, or possibly
even are, intelligent or even conscious [6]. From a materialistic point of view, one
can imagine that a system that is su�ciently complex can indeed show similar
emergent properties as the brain, including intelligence and consciousness [58].
However, this is a debate that will have to be pursued not just with computer
scientists, but also with philosophers, neuro-scientists, and psychologists. Quite
possibly, we might have to come up with new notions of consciousness and intel-
ligence that are suitable for AI. In analogy to Neil deGrasse Tyson's adage, the
universe is under no obligation to conform to the words that we humans have
invented. It is rather up to us to make our words �t an ever-changing reality
� potentially by inventing new ones. For example, when the electric scooter
was invented, people did not insist on categorizing it as a kick scooter or as a
motorbike. Rather, they invented a new word to describe it, and introduced the
legislation to regulate it. We might have to do the same in the case of AI.

2 Structured Data

Despite the successes of LLMs, most knowledge in organizations or companies
is stored not in LLMs, but in structured data repositories that use symbolic
knowledge representations � such as databases, knowledge bases, XML �les, or
JSON datasets. Now suppose that we are working at a company that builds an
airplane, and that we have a database of all the parts of that airplane. Should
we train an LLM to learn the content of that database, and replace the database
by the LLM? At the current state of a�airs, that would be a terrible idea, for
several reasons:

LLMs are probabilistic by nature. While this is convenient for language [77],
it is inadmissible for a de�nite list of items, such as airplane parts. A screw
is either part of the airplane or it is not, it should not be there with a cer-
tain probability. Even if the LLM tells us that each part is present with a
probability of 99%, this would still mean that thousands of parts could be
missing, as modern airplanes consist of millions of parts.

LLMs cannot memorize well. Even if we train the models on selected cor-
pora only [26, 13], there is no guarantee that the model will remember what
it was trained on without forgetting some facts or inventing others [48, 63,
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5, 64]. This is to be expected: language models are machine learning models,
i.e., they are designed to generalize, not to memorize.

LLMs may give di�erent answers depending on how we ask. When the
same question is asked in di�erent ways or di�erent languages, the answers
can be di�erent [71]. This is the reason for the rise of the new discipline
called prompt engineering [75].

LLMs may mislead. LLMs will always wrap their wrong answers into a de-
ceptively convincing language: They know how to talk even when they don't
know what to say.

Weaknesses accumulate when the query needs reasoning. Many queries
on structured data require joins (such as �nding the airplane parts that are
part of other airplane parts), aggregation (computing the total weight of the
airplane), or even reasoning (proving that the total weight of the airplane
plus its cargo can be carried by the lift). In such cases, the above weaknesses
may accumulate [19].

LLMs are black boxes. We cannot get a list of all facts that a LLM knows.
Thus, we cannot audit LLMs, i.e., we cannot check what they contain and
how they will reply to queries [71]. They remain black boxes that act at their
own discretion.

LLMs cannot be �xed or updated in a straightforward way. LLMs are
great only when they work. However, when the model gives an incorrect
answer, or when a data point changes, we cannot easily ��x� the model.
There are various ways in which the model can be retrained, supplemented
by an external memory, or undergo modi�cation of its parameters � but all
of these are more complex, more costly, and less reliable than issuing an
UPDATE statement on a database.

LLMs are costly to train. Databases are more sustainable [1, 55], and faster
than LLMs when it comes to retrieving simple facts: it does not make sense
to train and run a model with hundreds of billions of parameters to retrieve
data that can also be retrieved by a query on a database that runs in a few
nanoseconds on a household computer [71].

LLMs can be tricked. Through clever prompt engineering (called jailbreak-
ing [32]), LLMs can be made to reveal internal mechanisms, share private
data, produce o�ensive speech, or perform unintended workloads. LLMs thus
pose a security risk456.

While some of these weaknesses will go away with more (or better) training data,
others appear to be here to stay. Thus, at least for now, it seems that structured
data repositories have their raison-d'être. Whenever we want to store crisp lists
of items, such as commercial products, employees, proteins, or indeed airplane
parts, structured data repositories are still the way to go. They are e�cient to
query, easy to update, amenable to auditing, and 100% deterministic in their

4 https://simonwillison.net/2023/May/2/prompt-injection-explained/
5 https://www.jailbreakchat.com/
6 https://owasp.org/www-project-top-10-for-large-language-model-
applications/descriptions/



4 Suchanek and Luu

answers. In simple application cases, a JSON document will work. If we want a
�xed schema, large-scale e�ciency, and ample software support, a database will
be the method of choice. If we need a taxonomy, semantic axioms, reasoning
capabilities, and interoperability, a knowledge base lends itself.

By way of introduction, a knowledge base (also known as a KB or knowledge
graph) is a labeled directed graph, where the nodes are entities (such as airplane
parts, people, organizations, or locations), and the edges are relations between
these entities (such as which part belongs to which other part, who works where,
or which organization is located in which place) [61]. Similar entities are grouped
together into classes (all airplane engineers are in a class �airplane engineers�),
and these classes form a taxonomy, where more special classes (such as �airplane
engineers�) are included in more general classes (such as �people�). In addition, a
KB can specify axioms that say, e.g., that every person must have a birth date,
that the weight of an airplane part must be a positive numerical value, that
the part-of relation is transitive, that people and airplane parts are disjoint, or
that a person cannot have more than two parents. KBs can refer to entities of
other KBs, and thus reuse what has been de�ned elsewhere. There are today
thousands of publicly available KBs, and these are interlinked in the Semantic
Web. KBs can be queried in a formal language called SPARQL, and the responses
are e�cient, deterministic, and easy to update.

3 LLMs and Structured Data: Complementary Forces

LLMs and structured data repositories store information in fundamentally di�er-
ent ways: in the latter, the information is stored in a symbolic, crisp, accessible
way. In a (deep-learning based) LLM, the information is stored in a probabilistic,
distributed, opaque, and sub-symbolic way. Each approach has its advantages.
Structured data repositories provide a cheaper and more reliable performance
than LLMs for simple factoid data and queries. However, they are way less ac-
cessible to the user than LLMs, because they require complex query languages.
LLMs, in contrast, provide an unparalleled ease of interaction � in a way that is
literally very natural (natural language). Furthermore, LLMs store a wealth of
informal information that would be cumbersome or outright impossible to store
in structured data: commonsense knowledge about objects of everyday life [43],
probabilistic knowledge about how things usually are [42], knowledge about pro-
cesses or hypotheses [56], and the ability to perform casual reasoning.

It thus appears that language models and structured data repositories are
complementary: language models excel at general knowledge, and at analyzing
and generating natural language text. Structured data, in contrast, is the tool of
choice when it comes to storing exact items, and reasoning on them. Again, an
analogy with the human brain can be instructive: The human brain is a fantas-
tically powerful and versatile tool. And yet, for some intellectual tasks, humans
resort to �external tools�, such as paper and pen, or a written list of items. For
example, we do not learn the phone numbers of all our friends by heart. We put
them in an address book. We do not conduct a proof of a theorem entirely in
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our heads. We write it down. In the same way, a LLM might make use of exter-
nal tools when it comes to storing data or to formal reasoning. These external
tools can be structured data repositories such as databases and knowledge bases,
combined with other symbolic tools such as automated reasoners.

4 Combining LLMs and Structured Data

The question is now how a LLM can interact with symbolic knowledge, so that a
user can get the ease of interaction of a LLM combined with the factual accuracy
of structured data. There are indeed numerous ways in which LLMs have been
combined with symbolic knowledge7. One way is to fuse the structured data into
the model itself [80, 41]. This, however, requires intimate access to the model ar-
chitecture, while most LLMs are black boxes. Therefore, most approaches resort
to natural language as the vehicle to teach language models.

Among these, some approaches [80, 41] try to instill the knowledge at training
or �ne-tuning time. However, as we have discussed above, there is no guarantee
that the model retains what it has been trained on. Other approaches [12, 14]
cross-examine the language model to force it to rethink its answers. Again, there
is no guarantee that the reply is correct.

Then there is the philosophy that LLMs should not store factual information
at all [71]. There is no need for a LLM to learn �by heart� the coordinates of
every city on the planet (as GPT currently does), or the weights of all known
molecules. Better outsource that knowledge to a knowledge base. The rationale is
that if we remove the factoid information from the LLM, this might considerably
reduce the size of the model, while allowing it at the same time to concentrate on
what it does best: dealing with language. Indeed, there are tasks where a smaller
LLM performs better than a large one [72]. This philosophy would call for LLMs
to be trained on carefully selected, but much smaller corpora � although still
large enough for the LLM to gain general knowledge about the world.

Among the approaches that follow this philosophy, one of the most intuitive
ones is to �nd the relevant information, and add it as a hidden prompt. This
is what LangChain proposes8, and it appears to be what the Bing AI does9.
This approach can deal with both textual information and structured data [31].
Other approaches equip language models with the ability to use tools � among
others, knowledge graphs. This can be achieved via plugins [40], via Augmented
Language Models [38], or via an LLM-SQL bridge [25].

5 Challenges in Combining LLMs and Structured Data

The crux of all approaches that aim to combine LLMs with structured data
is that they have to bridge the gap between natural language and symbolic

7 https://github.com/RManLuo/Awesome-LLM-KG
8 https://docs.langchain.com/docs/use-cases/qa-docs
9 https://bing.com
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knowledge representations [41]. In some cases this is trivial: If a user asks for
the coordinates of the city of Paris, a simple database lookup will do the job.
However, most cases are not of that easy form. Let us brie�y present the main
challenges in bridging the gap between a natural language text and a symbolic
knowledge representation of its meaning.

For a start, many named entities do not consist of a single capitalized word
(such as �Paris�). Then, it is di�cult to distinguish the named entities from
the surrounding text. This applies in particular to movie titles (�Have you seen
the life of Brian yesterday?�), medical terms (�His Diabetes Mellitus, Type 2
was treated with insulin�), and terms that do not (yet) appear in a dictionary
(�The Institut polytechnique de Paris was founded in 2019�). The problem of
identifying the items of interest in natural language text is known as Named
Entity Recognition (NER).

A user who asks for Paris is most likely interested in the capital of France.
However, when the user is interested in the books of an author named John
Smith, then there are literally hundreds of authors of that name. The same is
true if the user asks for employees of a certain name, or proteins with a certain
name component. Depending on which meaning we choose, the answer we give
from the knowledge base will be di�erent. Thus, we have to �nd the entity that
the user is referring to. This is known as the problem of Disambiguation.

The next step is the understanding of the sentence itself: is the user interested
in the date that the movie was released, or the date that the movie shows in a
local cinema? This is the problem of Relation Extraction. Finally, determining
the user intent and formulating a query on the database falls in the domain of
Question Answering [27]. Again, this is usually not as trivial as looking up the
coordinates of Paris. Rather, we may have to formulate queries that aggregate,
join, or negate (�Which proportion of people in France do not live in its 10
biggest cities?�).

In some cases, we might have to go further: we might have to build a sym-
bolic knowledge representation of what is said in an entire text � either to un-
derstand the context of the question, or to feed the knowledge contained in the
text into the knowledge base. The process of distilling symbolic knowledge from
natural language text is known as Information Extraction (IE) [73]. It faces
formidable challenges beyond those already mentioned: First, not all information
in text can be conveniently represented in current symbolic knowledge represen-
tations. Non-named entities [43], subjective information [42], and complex infor-
mation about sequential processes, causality, or hypothetical statements [56], for
example, bring us to the edge of what is currently possible. Second, the extracted
information has to be in itself coherent, and then logically consistent with the
data that has already been stored [62]. Furthermore, errors accumulate: While it
is nowadays trivial to map a simple subject-verb-object sentence to a symbolic
representation, the de�ciencies of NER, disambiguation, relation extraction, in-
formation extraction, and symbolic knowledge representation add up, and it is
currently beyond reach to build a symbolic representation of a full text at the
push of a button.
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Finally, the KBs themselves may contain errors or be outdated. They thus
require constant data curation.

6 Our Work

As we have seen, there is a gap to be bridged between natural language text and
symbolic knowledge representations. While the gap is still large, the domain of
information extraction has been around for decades and has made that gap at
least signi�cantly smaller than it used to be (see [73, 74] for surveys).

We have also contributed our bit to this endeavor [57]. A �rst step to bridge
the gap between LLMs and symbolic representations is to ensure that the lan-
guage model can represent the input text at all. This requires the embedding
of the words of the text. We have shown that words that currently have no
embedding (so-called out-of-vocabulary words) can be embedded e�ciently by
making their representations similar to the representations of similar words [8].
This approach is called LOVE (for Learning Out-of Vocabulary Embeddings).
The next step is to disambiguate these words, i.e., to map them to the entities
in a knowledge base. We have shown that this can be done with a relatively
light-weight model [7], even in the case of non-trivial medical terms. We have
also proposed a large benchmark for the disambiguation of acronyms (GLADIS,
the General Large Acronym Disambiguation benchmark [9]).

To build knowledge graphs from natural language texts, we need the com-
bination of di�erent IE subtasks such as NER, relation extraction, and
co-reference resolution. It is well-known that these tasks are correlated and ben-
e�cial to each other. However, most of the current studies about knowledge graph
construction tend to treat each subtask as a separate task or to apply a sequential
pipeline approach, which can lead to cascading errors and obfuscation of the in-
herent relationship between tasks. To overcome this limitation, we have propose
UGFIE [82], a dynamic, graph-based general framework for coupling multiple IE
tasks through shared span representations that are re�ned with context derived
from entities, relations, and co-references.

To deal with a lack of training data in knowledge graph construction,
we have proposed Jointprop [81], a Heterogeneous Graph-based Propagation
framework for joint semi-supervised entity and relation extraction. This frame-
work captures the global structured information between individual tasks and
exploits interactions within unlabeled data. Speci�cally, we construct a uni�ed
span-based heterogeneous graph from entity and relation candidates and prop-
agate class labels based on con�dence scores. We then employ a propagation
learning scheme to leverage the a�nities between labeled and unlabeled sam-
ples.

Another avenue of our research has focused on the reasoning capabilities
of language models. We have �rst analyzed the reasoning capabilities of existing
(smaller) language models, and catalogued their strengths and weaknesses [21].
We have then addressed one of the weaknesses: textual inference in the pres-
ence of negation. We have proposed a probabilistic de�nition of textual inference,
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and we have then shown that this de�nition can be used to generate negated
training examples from positive training examples. This approach (TINA, for
Textual Inference with Negation Augmentation) increases the reasoning perfor-
mance of these models by up to 20% [23]. A software library for reasoning on
text with language models, LogiTorch, complements this work [22].

We have also looked into the evaluation of language models, in particular
when it comes to the quality of the stories that LLMs can generate. We
have �rst collected quality criteria for stories from the scienti�c literature in the
humanities. We have then generated a large corpus of generated stories with
human annotations for these criteria. The resulting benchmark (HANNA, for
Human-Annotated Narratives) shows that automated metrics are currently not
su�cient to measure the quality of stories [10]. We have also looked into the
evaluation of machine learning models in general. Nowadays, such models are
no longer evaluated just by their prediction accuracy, but also by their trans-
parency. We have developed an approach that can explain the decision of

a machine-learning model post-hoc. The central idea is to build not one,
but several surrogate models that mimic the behavior of the original model in
a human-understandable way (which is why the approach is called STACI, for
Surrogate Trees for A posteriori Con�dent Interpretations) [46]. This work is
complemented by an approach for explaining regression models, BELLA (for
black-box explanations by local linear models [45]).

The �agship of our work is a knowledge base called YAGO (Yet Another
Great Ontology) [60, 49, 24, 2, 37, 68]. This KB contains 50 million entities of
general interest (such as people, organizations, or locations) and hundreds of
millions of facts about them. While earlier versions of YAGO were extracted from
Wikipedia, newer versions build on Wikidata. The main distinguishing feature
of YAGO is its data quality: it provides a clean taxonomy, human-readable
entity names, a manually designed schema, and enforced semantic constraints.
The work on YAGO has been complemented by work that extracts commercial
products from Web pages by making use of UPC/GTIN codes [65]. Other work
constructs a taxonomy for a given set of entities using the information from
the Web [33�35, 70] .

A KB has to be constantly curated. We have developed several approaches to
this end. Some of them [67, 66] can automatically spot errors in a KB based

on the edit history. Others allow the alignment of entities in one KB
with the entities in another KB (see [79] for a survey). Our main project here
is PARIS (Probabilistic Alignment of Relations, Instances, and Schema) [59],
which, despite its age of more than 10 years, remains the state of the art in
entity alignment even in the face of neural approaches [30].

A large part of our work has focused on the incompleteness of KBs (see
[47] for a general introduction): We have shown how to compute a lower bound
for the number of missing entities in a KB, based purely on the properties of the
entities that exist in the KB [53]. We have also developed a method that can
estimate, again only from the existing entities in the KB, whether a property
(such as birth-place) is present in all entities of a given class in the real world [29].
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Another method can estimate whether an entity is missing a property in the KB
that it has in the real world [16]. One way to �ght this incompleteness is to use
rules: If we know that people who are married generally live in the place where
their spouse lives, we can use that rule to deduce missing places of residence.
With AMIE (for Association rule Mining under Incomplete Evidence) [17, 18,
28], we can mine such rules automatically from the KB. These rules have
recently been combined with neural methods for link prediction [3].

Finally, we have worked on the querying of KBs. We have focused on
dynamic KBs, which can be accessed only via functions [52, 51]. We have also
shown, rather unconventionally, that in some cases it is more e�cient to query
a KB via Bash commands rather than loading it into a database system [50].
To query several KBs with aggregation queries, we have developed an algorithm
that can approximate the answers for such queries [54].

7 Conclusion

Large language models (LLMs), and generative AI in general, o�er fascinating
opportunities to simplify our lives and to allow for a more equitable access to
the digital world. At the same time, they often have to be complemented by
structured data in order to ground their output in reality � at least for now.
To allow for such a grounding, we have to bridge the gap between the natural
language that is the vehicle of communication with LLMs, and the symbolic rep-
resentations that are used by structured data repositories such as databases and
knowledge bases. This is the challenge of information extraction (IE). While this
challenge is decades old, newer IE methods make use of LLMs to analyze natural
language text, and to help producing symbolic representations from it [83, 36]. In
this way, LLMs themselves may provide the key to overcoming their weaknesses.

Acknowledgement. This work was partially funded by the grant ANR-20-
CHIA-0012-01 (�NoRDF�).
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