Knowledge Bases and Language Models: Complementing Forces - IMT - Institut Mines-Télécom
Communication Dans Un Congrès Année : 2023

Knowledge Bases and Language Models: Complementing Forces

Résumé

Large language models (LLMs), as a particular instance of generative articial intelligence, have revolutionized natural language processing. In this invited paper, we argue that LLMs are complementary to structured data repositories such as databases or knowledge bases, which use symbolic knowledge representations. Hence, the two ways of knowledge representation will likely continue to co-exist, at least in the near future. We discuss ways that have been explored to make the two approaches work together, and point out opportunities and challenges for their symbiosis.
Fichier principal
Vignette du fichier
ruleml-2023.pdf (185.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04189768 , version 1 (29-08-2023)

Licence

Identifiants

  • HAL Id : hal-04189768 , version 1

Citer

Fabian M. Suchanek, Anh Tuan Luu. Knowledge Bases and Language Models: Complementing Forces. RuleML (invited paper), 2023, Oslo, Norway. ⟨hal-04189768⟩
228 Consultations
730 Téléchargements

Partager

More