Iterative Descent Group Hard Thresholding Algorithms for Block Sparsity - IMT - Institut Mines-Télécom
Article Dans Une Revue Signal Processing Année : 2023

Iterative Descent Group Hard Thresholding Algorithms for Block Sparsity

Résumé

In this paper we consider the problem of recovering block-sparse structures in a linear regression context. Penalized mean squared criteria are generally considered in such contexts where l_2,1 mixed norm penalty terms is often used as a convex alternative to the l_2,0 penalty. Here, we propose an iterative block cyclic descent algorithm approach to address the case of an l_2,0 penalty. We prove its convergence and illustrate its potential benefit compared to l_2,1 or l_2,q (0 < q ≤ 1) penalization. We also propose a momentum approach for accelerated convergence and an application to sensor positioning for array processing.
Keywords: group sparsity, block coordinate relaxation, l_2,0 regularization, sensor selection, beamforming.
Fichier sous embargo
Fichier sous embargo
0 6 5
Année Mois Jours
Avant la publication
samedi 5 juillet 2025
Fichier sous embargo
samedi 5 juillet 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04156466 , version 1 (05-07-2023)
hal-04156466 , version 2 (18-07-2023)

Identifiants

Citer

Thierry Chonavel, Abdeldjalil Aissa El Bey, Zahran Hajji. Iterative Descent Group Hard Thresholding Algorithms for Block Sparsity. Signal Processing, 2023, 212 (November), pp.109182. ⟨10.1016/j.sigpro.2023.109182⟩. ⟨hal-04156466v1⟩
89 Consultations
177 Téléchargements

Altmetric

Partager

More