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Abstract

In this paper we consider the problem of recovering block-sparse structures

in a linear regression context. Penalized mean squared criteria are generally

considered in such contexts where `2,1 mixed norm penalty terms is often used

as a convex alternative to the `2,0 penalty. Here, we propose an iterative block

cyclic descent algorithm approach to address the case of an `2,0 penalty. We

prove its convergence and illustrate its potential benefit compared to `2,1 or

`2,q (0 < q  1) penalization. We also propose a momentum approach for

accelerated convergence and an application to sensor positioning for array

processing.
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1. Introduction

During the last decade, compressed sensing (CS) [1] has become a very

popular topic for which a large set of techniques [2] has been proposed. These

techniques have spread among various disciplines such as machine learning,

wireless communication, medical imaging... The many algorithms that have

been proposed to recover sparse signals can be classified into several classes.

One of the most popular is dedicated to convex relaxation of minimization cri-

teria involving `0-norm penalty terms. Well known algorithms of this family

are Basis pursuit (BP) method [3] as an `1-relaxation and Focal Underde-

termined System Solver (FOCUSS) algorithm [4] that replaces the `0-norm

by an almost everywhere di↵erentiable `p norm, with p 2 (0, 1]. In par-

ticular, the choice of the `1 norm is very popular as it preserves convexity.

Unfortunately the `1-norm penalty term can induce high bias. To overcome

this issue, iteratively reweighted algorithms, such as iteratively reweighted

`1-minimization [5] have been proposed. A second class involves greedy algo-

rithms such as Matching Pursuit (MP) [6] or Orthogonal Matching Pursuit

(OMP) [7]. They are relatively fast iterative procedures that have been used

extensively in applications. However, they don’t guarantee the convergence

of the cost function to a global minimum, contrary to the first family which

potentially o↵ers better performance but requires higher computational ef-

fort. A third class consists of iterative thresholding algorithms such as it-

erative soft thresholding algorithms as a solution of a problem with convex

regularization or the iterative hard thresholding in the case of a solution of `0-

norm regularization. They can be seen as a projection, operated by a certain

thresholding operator. They can be easily implemented and have relatively
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low computational complexity even for large-scale problems. Another family

involves cyclic coordinate descent algorithms that can be used in both con-

vex and non-convex penalized least squares problems [8],[9]. Surveys about

sparse recovery can be found for instance in [10], [11].

In many applications such as array processing, face recognition [12], or

data clustering [13], data are block-sparse i.e zero and non zero elements are

grouped into blocks. Then, the algorithms discussed above can be extended

to this case. In particular, mixed norms such as `2,1-norm can be considered

leading to algorithms like Group Lasso [14] or Group OMP (GOMP) [15] for

greedy algorithms. The major idea of extension to block-sparse signals is to

use block-wise formulation of the problem instead of the coordinate-wise one.

In [14], a group Lasso algorithm is proposed as a cyclic coordinate descent for

`2,1-norm regularized minimization. It ensures sparsity of the solution, but

the group sparsity may not occur in all situations. More generally, several

criteria and applications have been considered in the literature to take block

sparsity into account (see for instance [16, 17, 18] for some recent references).

Image processing in particular, and specifically in the context of rPCA

(robust Principal Components Analysis), is a field where block sparsity has

been particularly considered. In rPCA, the block sparse problem is addressed

with an observation matrix modeled as the sum of a low rank matrix plus

a sparse matrix. In early works [19, 20], sparsity was addressed via an `1

norm penalty term applied to the sparse matrix. Since then, the case of

structured sparsity has been addressed in several works [21, 22, 23] where

only a few columns of the sparse matrix are nonzero vectors. Although in

these references authors generally start describing the problem introducing
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the `2,0 norm of the sparse matrix, they finally relax the problem to get a

convex optimization criterion that involves `2,1 norm. In [24], an alternating

projection method is considered where hard thresholding is used for projec-

tion of the sparse matrix on the set of sparse matrices. In [25], the `0 sparsity

penalty has been addressed for rPCA and an ADMM approach with proved

convergence has been supplied. But in the many works devoted to it, to our

best knowledge works in rPCA do not address the `2,0 penalty approach.

Among other `2,0 penalty approaches, in [26] the authors propose and

iterative gradient descent algorithm where, at each step, the update is pro-

jected on a k-blocks subspace, where k is a desired sparsity degree. A greedy

approach provides approximate optimal selection of blocks used to design the

projections. In [27], the authors consider the problem of quaternion block

sparse recovery and classification using an ADMM approach.

To bridge the gap between `2,0 and `2,1 penalties, it is possible to consider

`2,q penalties, with 0 < q  1. In [28] the authors proposed an iterative

reweighted least squares (IRLS) algorithm to optimize the corresponding

criteria.

In this paper, we consider an `2,0-norm regularized minimization criterion.

We propose a cyclic block descent algorithm for solving group hard thresh-

olding algorithm that can impose block sparsity better than group Lasso.

First, we consider the case where the mixing matrix is block orthonormal

and we propose a group hard thresholding algorithm. Then, we justify its

convergence to a stationary point and show that convergence is linear. More-

over, we extend the algorithm to the non-orthonormal case and we propose

a momentum approach for convergence acceleration.
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We show the benefits of our proposal compared to group Lasso [14] or

`2,q approach [28]. However, there are computationally less demanding ap-

proaches than block coordinate or ADMM descent strategies for the selec-

tion of sparse blocks. In particular, the Group Orthogonal Matching Pursuit

(GOMP) algorithm that has been introduced in [15] proposes direct extension

of the Orthogonal Matching Pursuit (OMP) to the case where block sparse

solutions are searched for. GOMP is a straightforward greedy approach that

extracts blocks with most energy iteratively from the residual signal. We

will show that GOMP is often a powerful with accuracy comparable to that

of previously mentioned `2,0 approaches but that runs much faster because

it avoids iterating recursively over the vector of blocks and simply converges

after a number of iterations equal to the number of desired nonzero blocks.

However, we will show on an example that for some problems GOMP may

not be satisfactory. More specifically, we will address the problem of sensor

selection for array processing from a set of regularly sampled positions. We

show how this problem can be formulated as a block sparse linear model with

possibly high dimensions and propose an e↵ective approach to solve it for the

proposed algorithm and GOMP. While GOMP su↵ers from widening of the

main lobe of the array diagram as the number of selected sensors decreases,

due to convergence to a compact array, the proposed solution retains the

beamformer resolution of an array covering all positions.

Our contributions are: (i) the proposition of a new algorithm, named

Group Hard Thresholding Algorithm (GHTA) for linear models where the

signal of interest exhibits group sparsity and the mixing matrix is block

orthonormal (ii) a theoretical study of the convergence of this algorithm,
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(iii) extension to the case where the blocks of the mixing matrix are not

orthogonal and an implementation of the algorithm with backtracking line

search and higher order momentum to accelerate convergence are proposed,

and (iv) a linear model for the selection of sensor positions for beamformers

design in array processing applications and related optimization with GHTA.

The paper is organized as follows. Section 2 describes the large-scale block

sparse model and block coordinate relaxation algorithms. Section 3 presents

a review of block-wise optimality for `2,0 penalized least squares problems.

Section 4 focuses on the presentation of the Group Hard Thresholding Al-

gorithm (GHTA) and its convergence analysis. In this section we will also

briefly discuss an `2,0 penalty approach via ADMM for rPCA and its con-

nection with our group hard thresholding approach. Section 5 describes the

extension of the algorithm to the case of non orthogonal blocks and proposes

an improved version of the algorithm. Section 6 presents simulation results.

In particular, we illustrate the benefits of GHTA in terms of robustness and

performance against `2,1 or more recent `2,q (0 < q  1) approaches and we

propose an application to sensor positioning for array processing and show

that the GOMP algorithm that outperforms iterative approaches in terms

of convergence speed while often leading to good error performance fails for

this application while GHTA appears useful. Finally, Section 7 concludes the

paper.

Notations Now, let us introduce some notations. Boldface upper case let-

ters and boldface lower case letters denote matrices and vectors, respectively.

Transpose, transpose conjugate and conjugate operations are denoted by

(.)T , (.)H and (.)⇤, respectively. (.)# denotes the pseudo-inverse. ⌦ is the
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Kronecker product. Ik is the k ⇥ k identity matrix and 1k is the all-one

vector of Rk. Letting z 2 Ck be a complex-valued vector, we denote by

z =
h
Re (z)T Im (z)T

iT
its representation in R2k. Let us consider a matrix

A 2 Cm⇥n. Then, A =

2

4Re (A) � Im (A)

Im (A) Re (A)

3

5 will represent its real-valued

matrix version in R2m⇥2n.

2. Problem formulation

Let us consider a large-scale block sparse model, which can be described

as a linear connection between a group sparse vector w 2 CM and its obser-

vations y 2 CK by

y = Aw + ⇣, (1)

where ⇣ 2 CK denotes a zero mean complex circular Gaussian noise vector

with covariance matrix �
2I and A 2 CK⇥M is a complex-valued mixing ma-

trix. Let us suppose that the entries of the vector w are grouped into N non

overlapping blocks. The size of n-th block is denoted by mn. Sparsity lies

in the fact that most blocks have all their entries equal to zero. The block

representation of w writes w = [wT

1 ,w
T

2 , ...,w
T

N
]
T
.

In the same way, letting A = [A1,A2, ...,AN
] where A

n
2 CK⇥mn the com-

plex system (1) can be rewritten as follows:

y =
NX

n=1

A
n
w

n
+ ⇣. (2)
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We can apply the complex to real transformation to equation (2) to get the

following equivalent real system

y =
NX

n=1

Anwn + ⇣, (3)

where y, ⇣ 2 R2K , An 2 R2K⇥2mn and wn 2 R2mn .

To address situations where w is block sparse, we propose to minimize a

sparsity criterion. In order to recover w in such situations, we can look for

the solution of constrained minimization of its `0-norm:

min
w

||w||0 s.t ||y �Aw||
2
2 ✏. (4)

Optimization problem (4) is an NP-hard combinatorial problem and its direct

minimization is computationally very demanding. An alternative is to use

hard thresholding [29]. However, our problem is more complicated due to

the block-sparsity constraint. To handle this structured sparsity we propose

to consider a constrained `2,0-norm minimization. The `2,0-norm of the N -

grouped vector w is defined as follows:

||w||2,0=
NX

n=1

1IR⇤
+
(||wn||2), (5)

where 1ID(.) is the indicator function of subset D: 1ID(x) = 1 if x 2 D and

0 otherwise. In other terms, ||w||2,0 is the number of non zero groups in

w. Based on the above definition and accounting for structured sparsity in

model (3) yields

min
w1:N

||w||2,0 s.t. ||y �

NX

n=1

Anwn||
2
2 ✏,
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where the choice of the parameter ✏ influences the degree of sparsity of the

solution. Considering the Lagrangian of this problem, it can be transformed

into a problem in the form

min
w1:N

1

2
||y �

NX

n=1

Anwn||
2
2 + ↵||w||2,0, (6)

where the regularization parameter ↵ is related to the choice of ✏. Before solv-

ing (6), we shall consider first the following mean squared error minimization

problem:

arg min
w1:N

F (w1:N) = arg min
w1:N

1

2
||y �

NX

n=1

Anwn||
2
2. (7)

For large-scale problems, the minimum of F can be di�cult to compute via

direct gradient descent. To overcome this problem, the block coordinate

relaxation method can be considered. It is described in the next section.

2.1. Review of block coordinate relaxation

In this section, we briefly recall the Block Coordinate Relaxation (BCR)

algorithm [30]. Let us consider the optimization problem (7), where

(w1,w2, ...,wN) 2 X and X is a Cartesian product of convex sets: X =

X1 ⇥ X2 ⇥ ... ⇥ XN , that is, wk
2 Xk. Let us assume that for every

n 2 {1, ..., N}, the following optimization problem

min
v2Xn

F (w1, ...,wn�1,v,wn+1...,wN) (8)

has at least one solution. The BCR algorithm, also known as non-

linear Gauss-Seidel algorithm, generates the next sequence of blocks

(wk+1
1 ,wk+1

2 , ...,wk+1
N

) from the current one (wk

1 ,w
k

2 , ...,w
k

N
), by iteratively
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computing

wk+1
n

= arg min
v2Xn

F (wk+1
1 , ...,wk+1

n�1,v,w
k

n+1...,w
k

N
), n = 1 : N. (9)

Thus, at each iteration, the cost is minimized with respect to each of the

block coordinate vectors wk

n
, taken in cyclic order. Then, applied to the

minimization of F defined in Eq. (7), the BCR updates write

wk+1
n

= arg min
wn

||rk

�n
�Anwn||

2
2, (10)

where rk

�n
= y �

P
p<n

Apwk

p
�

P
p>n

Apwk�1
p

. Let us note w⇤ =

[w⇤
1,w

⇤
2, ...,w

⇤
N
] the solution of this unconstrained algorithm.

It has been shown that block Gauss-Seidel procedure converges for problem

(8) when F is strictly convex and coercive and the Xns are closed convex

nonempty subsets of Rkn (kn 2 N⇤) [31].

2.2. `2,0 penalized least squares problem

Let us remember that our goal is to solve the structured sparsity problem

by selecting most significant blocks. As the BCR applied to problem (7) does

not achieve nonzero blocks selection, one can add an `2,0 regularization term

which leads to minimize the non-convex objective function introduced in (6):

L(w) := ||y �

NX

n=1

Anwn||
2
2 + ↵||w||2,0, (11)

where ↵ > 0. We note that due to non-convexity of the `2,0 regularization

term, L(.) can have several local minimizers. In the following, we consider

that AT

n
An = I2mn for n = 1 : N . The case where we possibly have AT

n
An 6=

I2mn will be considered in Section 5.1.
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3. Block-wise optimality conditions for `2,0 penalized least squares

problem

Paralleling the discussion in [29], in this section we adapt results on the

hard thresholding procedure to the case of block sparsity. The proofs in this

section are quite similar to those in [29] and we supply them here for com-

pleteness. We first introduce the proximal block hard thresholding operator

and then discuss optimality conditions for `2,0 penalized mean squared error

objective.

Theorem 1 Consider the vector optimization problem minv Lz(v) with

Lz(v) = ||z � v||22 + ↵||v||02, (12)

where ||v||02= 0 if v = 0 and ||v||02= 1 otherwise. Then, the minimum is

reached for:

arg min
v

Lz(v) =

8
<

:
0 if ||z||22 ↵

z if ||z||22> ↵

(13)

Proof Lz(v) can be rewritten as:

Lz(v) := zTz � 2zTv + vTv + ↵||v||02 (14)

To derive the minimum of Lz(v), we distinguish cases v = 0 and v 6= 0. If

v = 0, then `z(v) = ||z||2. If v 6= 0, Lz(v) = ||z||22�2zTv + ||v||22+↵ and

the minimum is achieved at v = z leading to Lz(v) = ↵. Thus if ||z||22 ↵,

the minimum is reached for v = 0 and if ||z||22> ↵ it is reached for v = z.

Based on the above theorem, we define the block hard thresholding operator

by

H↵(z) =

8
<

:
0 if ||z||22 ↵

z if ||z||22> ↵.

(15)
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Performing the minimization of L(w) along the n-th block coordinate,

amounts to minimize ||r�n � Anwn||
2
2 + ↵||wn||

0
2. The following theorem

connects the operator H↵ and the set of global minimizers of (12).

Theorem 2 Let zn = AT

n
r�n, with r�n = y�

P
p 6=n

Apwp and F = \
N

n=1Fn

where Fn = {w : wn = H↵(zn)}. Then, letting G denote the set of the global

optimizers of (11), we have G ⇢ F .

Proof Let us introduce the following notations: w�n(u) will denote the

vector w where block wn has been replaced by u. Then, we have

L(w) = ||y �
P

N

n=1 Anwn||
2
2 + ↵||w||2,0

= ||r�n �Anwn||
2
2 + ↵||w�n(0)||2,0 + ↵||wn||

0
2

= L(w�n(0))� 2(Anwn)Tr�n + (Anwn)T (Anwn) + ↵||wn||
0
2

= L(w�n(0))� ||zn||
2
2+||zn||

2
2�2wT

n
zn + ||wn||

2
2 + ↵||wn||

0
2

= L(w�n(0))� ||zn||
2
2 + Lzn(wn)

� L(w�n(0))� ||zn||
2
2 + minwn Lzn(wn)

� L(w�n(H↵(zn)))

(16)

The fourth equation holds because AT

n
An = I. To justify the last inequality,

one can consider both cases described in the proof of Theorem 1. For w =

w⇤
2 G, we have z⇤

n
= AT

n
r⇤
�n

where r⇤
�n

= y�
P

p 6=n
Apw⇤

p
. At local minima

of L(.), inequalities in (16) should become equalities for any n 2 1 : N . Thus,

we get G ⇢ F .

As in [29], let us define the sets �0 = { n : wn = 0} and �1 = { n : ||wn||
2
2>

↵}. Let w⇤
2 F denote a fixed point of the BCR algorithm applied to L(w).
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Then, the next theorem supplies necessary conditions that must satisfy any

global minimizer of L(.).

Theorem 3 Optimality conditions Let w⇤ denote a global minimizer of

L(.). Then, 8
>>><

>>>:

||AT

n
r⇤
�n

||
2
2 ↵ if n 2 �0

||w⇤
n
||
2
2> ↵ if n 2 �1

AT

n
(r⇤

�n
�Anw⇤

n
) = 0 if n 2 �1

(17)

Proof From Theorem 2, w⇤
n
= H↵(AT

n
r⇤
�n

). Thus, from the definition of

H↵, if n 2 �0, we have w⇤
n
= AT

n
r⇤
�n

= 0, while if n 2 �1 we must have

||H↵(AT

n
r⇤
�n

)||22= ||AT

n
r⇤
�n

||
2
2= ||w⇤

n
||
2
2< ↵. Now, for n 2 �1,

w⇤
n

= AT

n
r⇤
�n

= AT

n
(r⇤

�n
�Anw⇤

n
) +w⇤

n
for n = 1 : N

(18)

and we get AT

n
(r⇤

�n
�Anw⇤

n
) = 0.

4. Group Hard Thresholding Algorithm (GHTA)

We propose a novel algorithm, inspired from Block Coordinate Relaxation

(BCR), that iteratively performs hard thresholding of blocks wn. The algo-

rithm, named GHTA (Group Hard Thresholding Algorithm) is summarized

in the following Algorithm 1:
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Algorithm 1 Group Hard Thresholding Algorithm (GHTA) for isometric

blocks
1: Input: A,y, ↵, sizes {mn}n=1:N of the blocks in w.

2: Initialization: w1 = [w1
1,w

1
2, ...,w

1
N
], r = y �Aw.

3: for k = 1, 2, . . . do

4: Let (n1, . . . , nN) a random permutation of (1, . . . , N)

5: for n 2 (n1, . . . , nN) do

6: zk

n = AT

n(r +Anwk

n)

7: wk+1
n = H↵(zk

n) (see Eq. (15) )

8: r = r �An(wk+1
n �wk

n).

9: end for

10: end for

11: Return: w⇤ = [w⇤
1,w

⇤
2, ...,w

⇤
N
].

4.1. Convergence Analysis

We now prove the convergence of the proposed GHTA algorithm. The

following result extends the work in [8] and [9] to the block sparse problems

with `2,0 regularization.

Theorem 4 The GTHA algorithm converges to a fixed point of L(w).

Proof The proof involves several steps.

1. First, let us note that GHTA produces a non increasing sequence

14



{wk
}k. Indeed, if (n1, . . . , nN) = (1, . . . , N)

L(wk

1 ,w
k

2 , ...,w
k

n
, ...,wk

N
) � L(wk+1

1 ,wk

2 , ...,w
k

n
, ...,wk

N
) (19)

� L(wk+1
1 ,wk+1

2 , ...,wk

n
, ...,wk

N
)

...

� L(wk+1
1 ,wk+1

2 , ...,wk+1
n

, ...,wk+1
N

).

Thus, L(wk) � L(wk+1). For di↵erent ordering of block updates the

same conclusion applies as L(.) is non increasing between successive

block updates.

2. The sequence {wk
}k is bounded. Indeed, note that, for k � 1,

0  L(wk)  L(w0) and {L(wk)} is decreasing, lower bounded and

thus it converges. But, on another hand limkwk!1 L(w) = +1 since

0  ||y �Aw||
2
2 L(w). Thus {wk

}k is bounded too.

3. Definitions. Let Eij denote the j
th subspace of RM with at most i

nonzero blocks: i = 0 : N and j = 1 : ni , with ni = (K
i
). Let

w̃ij = arg minw2Eij ||y � Aw||
2
2. If w̃ij 2 Eij and if it does not lie in

any set E
i
0
j
0 with i

0
< i, we denote it by w⇤

ij
, otherwise we denote it

by w⇤
i
0
j
0 where i

0
is the smallest possible index such that w̃ij = w̃i0j0(2

E
i
0
j
0 ⇢ Eij).

4. The local minima of L(.) are the w⇤
ij
s. First, note that a local

minimum w⇤ belongs to some set Eij, where i is chosen with minimum

possible index among such sets. w⇤ also represents a local minimum

of the restriction of L(.) to this set Eij where the penalty term of L(.)

remains constant (equal to ↵i). Thus w⇤ must be of the form w⇤
ij
.

Conversely, by construction, for any w⇤
ij
, w⇤

ij
/2 E

i
0
j
0 for i

0
< i and
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j = 1 : n
i
0 . Thus, from continuity of w ! ||y �Aw||

2
2, there exists a

neighbourhood Bij of w⇤
ij
such that for w 2 Bij, we have

��||y �Aw||
2
2�||y �Aw⇤

ij
||
2
2

��  ↵

2
(20)

and Bij \ E
i
0
j
0 = ; for i

0
< i and j = 1 : ni0. As k w k2,0 is constant

on Bij \ Eij, it is clear that for w 2 Bij \ Eij � {w⇤
ij
} and we have

L(w) > L(w⇤
ij
) In addition, for w 2 Bij � Eij,

L(w) � ||y �Aw||
2
2+(i+ 1)↵

� ||y �Aw⇤
ij
||
2
2�

↵

2 + (i+ 1)↵

� L(w⇤
ij
) + ↵

2

> L(w⇤
ij
),

(21)

where the second inequality hods from (20). Thus, local minima of L(.)

belong to the set S = {w⇤
ij
}i,j.

5. As it is bounded in RM , the sequence {wk
}k admits at least one

accumulation point. As the sequence {L(wk)}k decreases, it is clear

that for any two accumulation points w⇤
1 and w⇤

2 of {wk
}k we

have L(w⇤
1) = L(w⇤

2).

6. An accumulation point of the algorithm must belong to the

set S = {w⇤
ij
}i,j. If this was not true, there would exist an accumula-

tion point of {wk
}k, say w⇤, with w⇤

/2 S. Let Eij the set with smallest

index i (i > 0) such that w⇤
2 Eij. Paralleling the discussion in step 4

we define a neighborhood B
⇤ of w⇤ such that B⇤

\ E
i
0
j
0 = ;, for i

0
< i,

and | ||y �Aw||
2
2�||y �Aw⇤

||
2
2 | <

↵

2 , 8w 2 B
⇤.

Let {wk
}k a subsequence of {wk

}k in B
⇤. Clearly, 8w 2 B

⇤
� Eij,

L(w) � ||y�Aw||
2
2+(i+1)↵ � ||y�Aw⇤

||
2
2�

↵

2
+(i+1)↵ � L(w⇤)+

↵

2
,
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showing thus that the sequence {wk
}k must lie inside B

⇤
\ Eij. Let

k
ij

1 , . . . , k
ij

i
the indices of nonzero blocks that define Eij. In GHTA,

due to random index permutation inside the main loop, infinitely many

permutations n1, . . . , nN are such that (n1, . . . , ni) is a random per-

mutation of kij

1 , . . . , k
ij

i
among the loops starting from w1, w2, . . . and

{wk
}k will be chosen as such a subsequence of elements of {wk

}k.

Let Aij denote the matrix defined by the blocks of A corresponding to

non zero blocks of Eij and Aij = [A
k
ij
1
, . . . ,A

k
ij
i
] the corresponding block

decomposition. Then, starting from wk
2 Eij one can see that the first

i inner loops of GHTA amount to a loop of a block Gauss-Seidel algo-

rithm for the linear system [(Aij)TAij]x = (Aij)Ty, or equivalently the

quadratic problem minx k Aijx�y k
2
2. Let w̃

k
2 Eij the vector obtained

after these i inner loops. Note that the solution [(Aij)TAij]�1AijTy of

minx k Aijx� y k
2
2 is defined by nonzero block entries of w⇤

ij
:

argmin
x

k Aijx� y k
2
2=

2

6664

[w⇤
ij
]
k
ij
1

...

[w⇤
ij
]
k
ij
i

3

7775
. (22)

As the matrix (Aij)TAij is symmetric positive,it is known that the ran-

domized block Gauss-Seidel shows linear convergence ([32], Theorem

2) and there exists a fixed � 2 (0, 1) such that k w̃k
� w⇤

ij
k � k

wk
�w⇤

ij
k.

The sequence {wk
}k of Eij converges to w⇤. In the same way, due

to continuity of the block Gauss-Seidel transform restricted to Eij, the

sequence {w̃k
}k of Eij converges to some point w̃⇤ in Eij. As L(w̃k) 

L(wk), we also have L(w̃⇤)  L(w⇤). But, we also have L(w̃k) 

17



L(wk+1), leading to L(w̃⇤) � L(w⇤). Thus L(w̃⇤) = L(w⇤). This

shows that a loop of block Gauss-Seidel procedure transforms w⇤ into

w̃⇤, without decreasing the corresponding value of L(.), what cannot

occur but if the minimum of ||y � Aw||
2
2 over Eij is reached, that is

w⇤ = w⇤
ij
, what contradicts the initial hypothesis. Thus, we have shown

that accumulation points of GHTA belong to S.

7. GHTA converges to a point of S = {w⇤
ij
}i,j. Due to randomness

of y, for distinct elements w⇤
ij
of S the corresponding values L(w⇤

ij
) =

minw2Eij ||y�Aw||
2
2+i↵ are distinct almost surely. We also know from

step 1 that {L(wk)}k decreases to some limit ` Then, from steps 5

and 6, there is a single accumulation point {wk
}k, say w⇤, with w⇤

2

S, such that L(w⇤) = `. But as the {L(w⇤
ij
)}w⇤

ij2S are all distinct,

{wk
}k admits a single accumulation point. In addition, from step 2 the

sequence {wk
}k is bounded. Hence it converges to a point of S, what

concludes the proof.

Then, we can prove the following result about the convergence speed of

GHTA:

Theorem 5 The GTHA algorithm converges to its limit w⇤ at linear speed:

9� 2 (0, 1), 9k0 > 0, k > k0 ) ||wk+1
�w⇤

|| �||wk
�w⇤

||

Proof As discussed in Theorem 4, from [32], Theorem 2, the randomized

block for least squares problems Gauss-Seidel algorithm converges at linear

speed. In addition, from the proof of Theorem 4 the sequence {wk
}k generated

by GHTA converges to some point w⇤
ij
and for k large enough, say k > k0,
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we have seen that the sequence must lie in a neighborhood B
⇤ of w⇤

ij
with,

in addition, wk
2 Eij. This shows that for k > k0 the blocks that do not

contribute to Eij remain equal to 0 and GHTA boils down to the randomized

block Gauss-Seidel algorithm in Eij for the problem (22): argminx k Aijx�

y k
2
2. Then the conclusion holds from linear convergence of randomized block

Gauss-Seidel algorithm.

4.2. Connection with ADMM block sparse approaches

As discussed in Section 1 our approach as connections with earlier works

and in particular with rPCA (robust PCA). Thus, we are going to discuss

our approach in this context. For rPCA we search for a decomposition of a

matrix M in the form M ⇡ L+S where L is low rank and S is sparse. In

the case where structured column sparsity is searched, this can lead to the

following optimization problem

min
L,S

k M �L� S k
2
F
+↵ k S k2,0 +� k L k?, (23)

where the nuclear norm k . k? is a tractable approximation of the matrix

rank operator. To this end, we could use an ADMM approach where the

proximal gradient step with respect to the proximal norm of L is standard

and the minimization step wrt S is obtained via an iteration of GHTA. In

fact, GHTA loop appears to be quite close to the proximal gradient of k . k2,0.

In [22] the ADMM version of rPCA applies to the following augmented

Lagrangian (ALM)

L(L,S,Y ) =k L k? + k S k2,1 +Tr(Y T (M �L� S) +
⇢

2
k M �L� S k

2
F

=k L k? + k S k2,1 +
⇢

2
k M �L� S + 1

⇢
Y k

2
F
+Ct

(24)
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Then, letting B = [b1, . . . , bM ] a matrix with SVD B = U⌃V T , recall the

form of proximal operators for k . k⇤ and k . k2,1 are given by

argminX � k X k? +
1
2 k B �X k

2
F

= U S.(⌃,�)V T

= S?(B,�)

argminX � k X k2,1 + k B �X k
2
F

= B diag{S(kb1k2,�), . . . ,S(kbMk2,�)}

= S2,1(B,�)

(25)

where S(x,�) = sign(x)max(|x|��, 0) is the soft thresholding operator and

op.(C) indicates entrywise application of operator op to matrix C. Then,

alternate proximal gradient update applied to L and S alternatively yields

the rPCA-ADMM algorithm:

• Iterate

– Lk+1 = S⇤(M � Sk +
1
⇢k
Yk,

1
⇢k
)

– Sk+1 = S2,1(M �Lk+1 +
1
⇢k
Yk,

1
⇢k
)

– Yk+1 = Yk + ⇢k(Lk+1 + Sk+1 �M )

– increase ⇢k,

with convergence condition
P

k
⇢
�1
k

= +1 [33]. Now, replacing k S k2,1 by

k S k2,0 in the Lagrangian leads to replace the update of Sk by one loop of

GHTA algorithm. With the notations of GHTA, we have w
(k) = vec(Sk),

A = IK and y = vec(M � Lk+1 +
1
⇢k
Yk). Note that this looks quite similar
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to applying directly proximal gradient to k · k2,0:

argminX � k X k2,0 +
1
2 k B �X k

2
F

= argminX �
P

n=1:N 1IkXnk>0 +
1
2 k B �X k

2
F

=
h
X̂1, . . . , X̂N

i
,

(26)

with X̂n = Bn ⇥ 1IkBnk>� . But instead of updating columns of X indepen-

dently, in GHTA we consider a Gauss-Seidel like approach and each column

update benefits from possible earlier update of other columns. Alternatively,

the GHTA-GM approach discussed in the next section where exact block

minimization is replaced by gradient descent can also be considered.

5. Extensions

5.1. Extension to non-isometric block matrices

Extension of GHTA to the case of full rank block matrices that are not

isometric, that is, AT

n
An 6= I2mn is rather straightforward. Indeed, letting

An = QnRn denote the QR decomposition of An and vn = Rnwn, where

wn is the n-th block of vector variable w, the objective (11) rewrites

LQR(v) = ||y �

NX

n=1

Qnvn||
2
2 + ↵||v||2,0. (27)

Note that LQR(v) can be minimized applying GHTA as described in algo-

rithm (1) and that

LQR([v1, . . . ,vN ]) = L([R1wn, . . . ,RNwN ]) (28)

since ||vn||2= ||Rnwn||2 and, as Rn is invertible, the block vn is nonzero

if and only if the block wn is nonzero too. Then we derive algorithm QR-

GHTA described in Algorithm 2. It is clear that QR-GHTA shares the same

convergence guarantee as GHTA.
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Algorithm 2 Generalized GHTA for non isometric blocks: QR-GHTA
1: Input: A,y, ↵, sizes {mn}n=1:N of the blocks in v and w.

2: Initialization: v1 = [v1
1,v

1
2, . . . ,v

1
N
]

3: Compute QR decompositions An = QnRn, 1 : N

4: Apply GHTA (or GHTA-GM described below) to

LQR(v) = ||y �

NX

n=1

Qnvn||
2
2 + ↵||v||2,0

! [v⇤
1,v

⇤
2, . . . ,v

⇤
N
]

5: Return: w⇤ =
⇥
R�1

1 v⇤
1,R

�1
2 v⇤

2, ...,R
�1
N
v⇤
N

⇤
.

5.2. Acceleration via gradient and momentum

It has been shown in the literature that majorization-minimization ap-

proaches combined with Nesterov momentum is an e�cient approach for gra-

dient based optimization. In particular, as discussed in [14], applying such

approach as an alternative to exact iterative block optimization can prove

more e�cient, in terms of convergence speed. In [14], the authors consider

a criterion intended to ensure both block sparsity and intra-block sparsity,

leading to block update criterion in the form

1

2n
k r�n �Anwn k

2
2 +(1� µ)↵ k wn k2 +µ↵ k wn k1 (29)

In this work, we are not considering sparsity inside blocks but only among

blocks. Thus, we assume that µ = 0. Then, adapting the minimization of

(29) proposed in [14] to the case where k wn k2 is replaced by k wn k
0
2 yields

algorithm GHTA-GM (GHTA with gradient and momentum) described in

Algorithm 3. The description is given for isometric block matrices An, but
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of course it can be used with QR-GHTA where this assumption is relaxed.

In the algorithm, � 2 (0, 1) is a parameter for backtracking iterations [34],

and K is the dimension of y (as specified in section 2).

Algorithm 3 GHTA with gradient and momentum (GHTA-GM) for iso-

metric blocks
1: Input: A,y,↵, �, sizes {mn}n=1:N of the blocks in w.

2: Initialization: w1 = [w1
1,w

1
2, ...,w

1
N
], r = y �Aw1.

3: for k = 1, 2, . . . do

4: Let (n1, . . . , nN) a random permutation of (1, . . . , N)

5: for n 2 (n1, . . . , nN) do

6: for l = 1, 2, . . . do

7: t = 1

8: do

9: t = �t

10: w̃k+1
n = H↵t

�
wk

n � t
⇥�1
2KAn(r +AT

nw
k

n)
⇤�

11: r̃ = r �An(w̃k+1
n �wk

n)

12: while
1
2 k r̃ k

2> 1
2 k r k

2
�rTAn(w̃k+1

n �wk
n)+

K

t
k w̃k+1

n �wk
n k

2
2

13: wk+1
n = wk

n + l

l+3(w̃n
k+1

�wk
n)

14: r = r̃ +An(w̃k+1
n �wk+1

n )

15: end for

16: end for

17: end for

18: Return: w⇤ = [w⇤
1,w

⇤
2, ...,w

⇤
N
].
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6. Simulation results

With a view to assess performance of the proposed method, we compare

performance obtained when minimizing

Fq2(w) =
1

2
||y �

NX

n=1

Anwn||
2
2 + ↵||w||2,q , (30)

using di↵erent approaches. For q = 0, we used our proposed GHTA or

GHTA-GM algorithms. For q = 1, we considered group Lasso algorithm. We

also considered the IRLS approach in [28]. In [28], q = 0.1 is the minimum

tested value and we consider it for comparison with GHTA.

Then we discuss the benefits of GOMP against such iterative strategies

and show that despite its benefits it can fail in some situations such as for

the array processing problem that we address next.

6.1. Comparison with group Lasso and IRLS

For the simulation, we considered a case where data have length K = 400

and w has length 180 and contains 18 blocks of length 10. Among the blocks

6 of them are nonzero. These parameters are similar to those chosen in [14].

The matrix A is a random isometric matrix. Simulation results have been

obtained from 100 Monte Carlo simulations.

Figure 1 presents the evolution of NMSE (Normalized Mean Squared Error)

at convergence, where NMSE is defined by

NMSE =
k wtrue �westimated k

2
2

k wtrue k
2
2

(31)

as a function of the regularization parameter ↵, as it increases from 0, that

is, from the MMSE solution (MMSE = minw
1
2 ||y �Aw||

2
2)).
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Figure 1: Normalized mean squared error versus regularization parameter ↵ for

SNR=40dB

Figure 2 presents the detection performance both in terms of number of

detected blocks and in terms of simultaneous correct detection of zero and

nonzero blocks for all blocks in w.

From these figures it clearly appears that GHTA does not seem to su↵er

from possible convergence to local minima. It is also interesting to notice

that GHTA achieves lower NMSE and shows better robustness against the

choice of ↵ than group Lasso or IRLS. In particular, Figure 2 shows that zero

and nonzero blocks are well detected in range about [10�3
, 1] with GHTA

but only about [10�4
, 10�2] with group Lasso and [10�3

, 10�1] with IRLS.

In addition, over these respective intervals the NMSE remains small and

constant for GHTA while it increases with ↵ in group Lasso or IRLS. This

illustrates the presence of the bias introduced by the `2,1 or even the `2,0.1
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penalization terms, that increases with ↵, while no bias is introduced with

the `2,0 penalization in respective intervals of ↵ where desired sparsity indices

are recovered by the algorithm.

Figure 2: Rate of correct detection versus regularization parameter ↵ for SNR=40dB

Figures 3 and 4 show NMSE and block detection performance at lower

SNR (SNR=10dB). The intervals where correct detection of zero and nonzero

blocks is achieved is reduced compared to the results at high SNR. However,

the same conclusions hold for comparison of the e↵ects of `2,1, `2,0.1 and `2,0

penalties.

Figure 5 shows the influence of SNR on NMSE performance. ↵ is opti-

mized for each method and each SNR. The bias introduced by `2,1 and even

`2,0.1 penalties clearly appears and limits performance of group Lasso and

IRLS while performance increases regularly with SNR for `2,0 penalty.

In our simulations, we have checked that GHTA and GHTA-GM exhibit
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Figure 3: Normalized mean squared error versus regularization parameter ↵ for

SNR=10dB

similar performance in terms of NMSE or detection rate. The di↵erence

between both algorithms lies in the di↵erent convergence speed that can be

observed. Indeed, Figures 6 and 7 show that GHTA-GM achieves faster

convergence than GHTA both at high and low SNR. Optimum values have

been chosen from parameters ↵. As expected from the discussion above

GHTA and GHTA-GM achieve same asymptotic error, while that of group

Lasso remains higher.

For a comparison with `2,0.1 approach, note that only few iterations are

involved in IRLS. However, for A 2 RK⇥L, GHTA or group Lasso involve

O(NouterKL) operations where Nouter is the number of outer loops, while

IRLS requires O(NIRLSL
3) operations where NIRLS corresponds to the num-

ber of matrix inversions in IRLS algorithm. In [28] the maximum number
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Figure 4: Rate of correct detection versus regularization parameter ↵ for SNR=10dB

Figure 5: Normalized mean squared error versus SNR
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Figure 6: Normalized mean squared error versus inner loop iterations for SNR=40dB

Figure 7: Normalized mean squared error versus inner loop iterations for SNR=10dB
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(K,L)

Algorithm GHTA (`2,0) IRLS GOMP

10dB 40dB 10dB 40dB 10dB 40dB

(200,90) 21.6 0.2 128.1 0.2 0.2 0.2

(400,180) 107.5 0.6 341.2 0.6 1.3 1.3

(800,360) 306.7 2.3 1276.0 2.3 11.3 11.1

Table 1: Execution time in (ms), for 10dB and 40dB respectively, to achieve NMSE=0.1

for GHTA, IRLS and GOMP algorithms, and several values for (K,L).

of iterations is set to N
max

IRLS
= 500 (so that NIRLS  N

max

IRLS
), and we set

the maximum number of iterations for GHTA and group Lasso so that the

total maximum number of operations is about the same: Nouter  N
max

outer
=

N
max

IRLS
L
2
/K. In practice, for optimized ↵, in our example we observed rather

similar complexity for all algorithms.

As far as speed of execution is concerned we give elapsed times in Table

1 for a few values of (K,L) where the time needed to achieve NMSE equal

to 0.1 is presented. Results are given for SNR=10dB and SNR=40dB. As

Lasso is not able to reach this precision due to bias introduced by the `2,1

penalty term we considered only GHTA and IRLS. It appears that GHTA is

faster than IRLS, and depending on configurations it can be up to six times

faster. To complete comparison, we added the GOMP algorithm [15], the

group extension of OMP (Orthogonal Matching Pursuit) [7]. This is a very

fast greedy algorithm and for some configurations it can achieve targeted

NMSE about 100 faster than GHTA.

If we apply GOMP with the examples presented in this subsection we

find similar performance in terms of block detection and normalized mean
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squared error as those obtained by GHTA on Figures 1 to 4 and we did not

presented these curves on the figures for clarity.

Thus, GHTA or IRLS may appear useless since they are computationally

demanding because they often require many iterations. However, we are

going to show that there are situations were the GOMP always converges

to particular local optima that are not of interest for the problem at hand

unlike GHTA.

6.2. Comparison with Group Orthogonal Matching Pursuit (GOMP)

In this section we compare GHTA with GOMP algorithm [15] on a partic-

ular problem related to sensor selection for array processing. First, we show

how it can be described by a linear model where block sparsity is searched

for.

For the sake of simplicity, we consider a standard configuration where we

assume a linear array of sensors. We assume that signals of interest have

wavelength � and that K sensors are positioned on a grid of N regularly

spaced virtual positions, with spacing �/2. To select the positions of sensors

on the grid, we look for optimal beamformers in a range of regularly spaced

directions ✓i 2 {�✓max, . . . , ✓max} for i = 1 : M . The beamformers are

designed so that for the i-th beamformer we want to observe unit gain in some

direction ✓i and zero gain in other directions. Letting �i = ⇡ sin(✓i) denote

the spatial pulsation associated with direction ✓i (directions are measured

from the normal to the array direction), we define the matrixD 2 CM⇥N with

entries Dab = e
i(b�1)�a . Letting Da denote column a of D and y = vec(IM),

where vec(.) is the vectorization operator, the linear model associated with
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the problem writes

y = [IM ⌦D1, . . . , IM ⌦DN ]w. (32)

where ⌦ is the Kronecker product and w 2 CNM consists of N blocks, each

representing a virtual sensor and the m-th entry of block n represents the

beamformer coe�cient on sensor n when scanning angle ✓m. Note that we

could refine this model and consider in particular a set of tested directions

for each beamformer that di↵ers from the set of directions of interest for

the di↵erent beamformers but this is beyond the scope of the paper and the

proposed approach avoids introducing many notations.

Note also that the matrix A = [IM ⌦D1, . . . , IM ⌦DN ] can be very big:

for instance considering 100 directions and 100 possible sensor positions yields

a matrix A with 108 coe�cients. Fortunately the matrix is sparse and matrix

operations involved in GHTA or GOMP boil down to simpler operations

involving dense matrices and vectors thanks to the properties of composition

among Kronecker products and matrix/vector multiplications. For instance,

at the end of its k-th iteration GOMP involves computation of the k currently

active blocks of w: wGk
= (AH

Gk
AGk

)�1AH

Gk
y, where Gk = {g1, . . . , gk}

is the group of selected indices and AGk
= [IM ⌦ Dg1 , . . . , IM ⌦ Dgk

] is

the corresponding block sub-matrix of A. Then, for y = vec(IM), wGk

rewrites in a simple compact form: wGk
= vec

�
(DH

Gk
(DH

Gk
DGk

)�1
�⇤
, with

DGk
= [Dg1 , . . . ,Dgk

].

As an example we consider an array with sensors that have aperture

[�45�, 45�]. For each angle ✓i = �45� + i, with i = 0� : 90�, we consider

a beamformer for this direction. We assume 64 regularly sampled positions

where we want to put 32 sensors. Figure 8 shows the locations obtained
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Figure 8: Sensor positions with GOMP and GHTA: 32 positions are selected for sensor

locations among 64 possible regularly spaced positions.

for the arrays of sensors both for GOMP and GHTA. Here we have forced

end locations to belong to the selected positions of sensors. We observe that

GOMP yields a very compact antenna with most sensors at one end of the

set of possible positions. As a result, the main lobe of the corresponding

beamformers is about the same as for a compact antenna with 32 sensors

with spacing �/2, as shown in figure 9. On the contrary, we see on figure 10

that GHTA achieves more spread sensor locations, resulting in a mainlobe

width similar to that of a full antenna with 64 sensors. Figure 11 shows

a superposition of 0� beamformers for GOMP and GHTA. Note also that

for GHTA, the norm of the error k y � Aw k2 is generally lower than for

GOMP by a factor about 20%. Of course, there is a price to pay for the high

resolution of GHTA beamformers: a higher sidelobe level. This is visible for
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Figure 9: Optimized beamformer with GOMP for direction ✓ = 0� (green). Blue and red

curves are obtained with the conventional beamformers for 64 and 32 regularly spaced

sensors.

the 0� beamformer in Figure 10 and even more on some other beamform-

ers as the one at about 20� in Figure 12 (a symetric figure is obtained for

�20�). With these beamformers applications such as source localization can

be considered, using for instance OMP based techniques (see e.g. [35]). We

do develop on this subject furher here, but we believe that extensions of the

approach proposed in this section to related subjects such as beamforming

for wideband array processing would be worth being considered.

7. Conclusion

In this work we have illustrated the possible benefits of using `2,0 penalty

terms in linear regression techniques when looking for block sparse solutions

compared to popular `2,1 penalization. We have proved the convergence of
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Figure 10: Optimized beamformer with GHTA for direction ✓ = 0� (green). Blue and

red curves are obtained with the conventional beamformers for 64 and 32 regularly spaced

sensors.

Figure 11: GOMP (red) and GHTA (blue) beamformers of Figures 9 and 10.
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Figure 12: GOMP (red) and GHTA (blue) beamformers of Figures 9 and 10 at about 20�.

the block cyclic minimization for the proposed `2,0 penalized criterion. We

also checked the good robustness of the proposed GHTA approach against the

choice of regularization parameters in terms of block detection performance

and the absence of asymptotic bias it achieves. We also have shown how

powerful and simpler can be the greedy GOMP approach that often achieves

similar results but is much faster than iterative procedures. Nevertheless, we

have illustrated the benefit of GHTA in a situation were GOMP is only able

to supply an uninteresting local minimum.
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