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Summary

This paper proposes a new pilot pattern in the Delay-Doppler (DD) domain for the
Orthogonal Time Frequency Space (OTFS) system. In contrast to the embedded-
pilot schemes, guard intervals are not used so as increase the spectral efficiency. Also,
compared to the superimposed design where data symbols and pilots are arranged
on the entire DD grid, in the proposed rearrangement, the number of pilots used is
only spread over a sub-grid of the DD grid. Hence, the interference of pilots with
data symbols is reduced. Afterwards, an algorithm for channel estimation (CE) and
symbol detection in the DD domain benefiting from the sparsity of the DD chan-
nel is designed. The sparse CE step is formulated as a specific marginalization of
the maximum a posteriori (MAP) criterion by providing a Bayesian approach via
the MF approximation that involves the VB-EM algorithm. Detection of data sym-
bols is done using a low complexity MP algorithm. We also propose an interference
cancellation (IC) scheme to mitigate contamination of data by pilots that is run after
each CE step. To achieve a high CE accuracy, based on the mean mutual incoherence
property (MIP), a pilot optimization problem for OTFS is formulated, and develop
a Simulated Annealing-based algorithm to solve it. Finally, simulation results show
that the proposed scheme achieves a good compromise between spectral efficiency,
complexity, and performance in terms of Bit Error Rate (BER) and Normalized Mean
Square Error (NMSE) when compared to literature benchmarks.
KEYWORDS:
OTFS, channel estimation, Bayesian approach, pilot sequence optimization, SA, IC scheme

1 INTRODUCTION

Future mobile communication systems generation (5G and beyond) are envisioned to support reliable and high throughput com-
munication even in high mobility scenarios such as in high-speed trains and Unmanned Aerial Vehicle (UAV) communication
systems1,2,3. However, the most popular modulation technology deployed in 5G mobile communication systems is based on
Orthogonal Frequency Division Multiplexing (OFDM) which suffers from performance deterioration in high mobility environ-
ments2. Hence, we need other modulations techniques to deal with this problem. The OTFS modulation which has been recently
proposed4,5,6 is a promising solution thanks to its robustness against channel-induced Doppler shift compared to OFDM. OTFS
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0Abbreviations: OTFS, orthogonal time frequency and space. VB-EM, variational Bayesian expectation-maximization. SA, simulated annealing. MF, mean-field
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multiplexes data symbols onto 2D orthogonal basis functions in the Delay-Doppler (DD) domain to deal with time-varying mul-
tipath channel dynamics at high speeds. OTFS modulation can be realized by adding preprocessing and post-processing blocks
to OFDM. In practice, efficient CE and data detection algorithms are crucial for the successful realization of OTFS systems7.
Several CE schemes in the DD domain have been recently developed in the OTFS literature. We present DD-CE algorithms
reported in the literature under three groups.

The first group of algorithms uses schemes that employ an entire frame for transmitting pilots. This type of scheme uses the
first OTFS frame for estimating the channel and subsequent frames for transmitting data1,8,9,10,11. In Zhang et al.,8 a 2D Turbo
compressed sensing (CS) algorithm for CE is proposed where the support matrix of the DD channel is modeled by using a
Markov random field (MRF) and the Bernoulli Gaussian (BG) distribution. In Rasheed et al.,9 an uplink DD-CE algorithm is
developed for OTFS multiple access (OTFS-MA) systems. In this last paper, the CE problem is formulated as a sparse recovery
problem that is solved using orthogonal matching pursuit (OMP) and modified subspace pursuit (MSP) algorithms. In Khan and
Mohammed,1 two low complexity algorithms for CE in OTFS with fractional delay and Doppler are proposed. The first one is
based on a Modified Maximum Likelihood CE (M-MLE) while the second one is termed the two step method (TSE), where
the joint 2D estimation of the DD shift of a path in the M-MLE method is further decoupled into two separate 1D estimation
steps. In Gómez-Cuba,10 an OMP with Binary-division Refinement (OMPBR) algorithm is suggested for CS-based OTFS-CE
with continuous parameter estimation in the DD domain. Whereas, in Murali and Chockalingam,11 a pseudo-random noise (PN)
pilot-based CE scheme in the DD domain is developed, benefiting from the sparse DD impulse response which reflects the actual
physical geometry of the wireless channel.

A second group of algorithms involves embedding both pilots and data symbols in the same OTFS frame by providing
guard intervals around pilots to avoid data interference in the CE process12,13,14,15,16,17,18,19,20. In Raviteja et al.,12 data symbols,
pilots, and guard intervals are arranged adequately in the DD grid to avoid interference at the receiver side. Also, the used
CE scheme is based on a thresholding method. In Ramachandran and Chockalingam,13 a CE scheme using pulses in the DD
domain as pilots adapted for MIMO-OTFS is proposed. The equivalent MIMO-OTFS channel matrix is obtained using a single
MIMO-OTFS frame thanks to sufficient spacing between pilots and data in the DD domain. In Shen et al.,14 a 3D-structured
OMP-based algorithm is used for downlink CE that exploits the 3D-structured channel sparsity in the Delay-Doppler-Angle
domain in Massive-MIMO-OTFS systems. In Liu et al.,15 an uplink-aided high mobility downlink CE scheme for the Massive-
MIMO-OTFS networks is suggested. MIMO-OTFS signal model along the uplink and reciprocity between the uplink and the
downlink are formulated to recover the parameters of the channel for each physical scattering path. In Zhao et al.,16 a new pilot
pattern and a sparse Bayesian learning (SBL)-based CE algorithm is developed to minimize pilot overhead and pilot power.
In this last paper, a sparse signal prior model is constructed as a hierarchical Laplace prior and the expectation-maximisation
(EM) algorithm is used to update the parameters in this prior model. In Qu et al.,17 a low-dimensional subspace estimation of
continuous Doppler-spread channel in OTFS systems is proposed, while a set of transform domain basis functions is designed
to span a low-dimensional subspace for modeling the OTFS channel. Then, the CE is performed by estimating a few projection
coefficients of ECRs in the developed subspace, with training pilots. In Zhao et al.,18 the CE problem for MIMO-OTFS is
formulated as a block sparse signal recovery problem, which is solved by the proposed block SBL with block reorganization
(BSBL-BR) method. In Guo et al.,19 a joint iterative CE and data detection algorithm for OTFS and a novel MMSE-DD domain
channel estimator is constructed. In Liu et al.,20 a prior channel statistics-based scheme is suggested to maximize the system
ergodic capacity by optimizing the CE overhead while ensuring the high-quality performance of the OTFS over DD channels.

The last group of CE strategies adopts a superimposed pilot scheme, where pilots and data symbols are spread in the DD
domain21,22,23. In Yuan et al.21, a data-aided CE algorithm for a superimposed pilot and data transmission scheme is suggested
to improve the SE. To accurately estimate the channel and detect the data symbols, the channel is coarsely estimated based on
the pilot symbol, followed by an iterative process that detects the data symbols and refines the channel estimate. In Yuan et al.23,
the pilot pattern proposed in Yuan et al.21 is adapted to uplink channel estimation for the ISAC-assisted OTFS modulation. In
Mishra et al.,22 pilots and data symbols are superimposed in the DD grid. This configuration disperses pilots energy over the
entire DD domain and achieves a higher SE compared to previous systems using GIs.

This paper is an extended version of the paper by Ouchikh R et al.24 The main difference is the adopted pilot pattern. The
pattern suggested in this manuscript belongs to the third group cited above where pilots and data symbols are arranged in the same
DD frame but share only a sub-grid of the entire DD grid. Whereas, in Ouchikh R et al.24 an algorithm for channel estimation and
symbol detection is suggested for an arrangement of pilots and data in each location of the DD grid. The proposed configuration
in this paper allows some of the data to be unaffected by pilots, thus increasing the performance of CE and data detection,
especially at high SNRs. We then investigate an iterative CE and data detection algorithm in the DD domain. The proposed
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algorithm, which benefits from channel sparsity in the DD domain, iterates between message passing-aided data detection and
data-aided CE. The CE step is based on a Bayesian approach via the VB-EM algorithm. Pilot contamination in the proposed
pilot pattern is addressed via an interference cancellation step. Finally, we address pilot design as an optimization problem and
develop a simulated annealing-based algorithm to solve it where the optimization criterion is the average MIP criteria. The main
contributions can be summarized as follows:

• We propose a novel pilot pattern in the DD domain for the OTFS system, without guard intervals between pilots and data
symbols to improve spectral efficiency (SE). In this scheme the pilots are superimposed on the data symbols in a delay-
Doppler sub-grid. The idea here is to let the pilots and data symbols interfere with each other to eliminate pilot overhead
and thus increase SE.

• To achieve high CE accuracy, we formulate the pilot design as an optimization problem based on the average MIP criterion
and develop an SA-based algorithm to solve it. This optimization problem is non-convex, which means that conventional
convex optimization algorithms are not guaranteed to reach a global minimum. This led us to take advantage of the SA
algorithm to solve this problem.

• An iterative CE and data detection algorithm in the DD domain is designed where the CE step is formulated as the
marginalization of the MAP problem by providing a Bayesian approach. The data detection step is based on a low com-
plexity MP algorithm. The detection step of this algorithm is the only common point between the current paper and the
one in Ouchikh et al.24. For the CE step, it is based on the VB-EM algorithm in both works but in the present paper is
done using only a sub-grid of the entire DD grid, contrary to Ouchikh R et al24 where the whole OTFS grid is used. Thus,
this allows us to gain in terms of complexity in the CE step.

• To address the pilot contamination issue, an IC scheme is adopted in the proposed pilot pattern. This scheme is performed
at each iteration after the channel estimation step to remove the effect of pilots on the data symbols. The iterative process
containing channel estimation, IC scheme and symbol detection results in a good channel estimation and thus a good
accuracy in data detection after a few iterations.

• Performance study is conducted, in terms of SE, BER, NMSE and complexity. The obtained results are compared to
recently proposed benchmarks in the literature. We highlight the good compromise in terms of SE, NMSE, BER, and
complexity achieved when compared to other solutions.

The remainder of the article is organized as follows. Section 2 describes the basic concepts of OTFS modulation by giving
the input/output equations of an OTFS system. The problem formulation is also introduced in this section. Section 3 presents
the SA-based pilot optimization algorithm for OTFS. In Section 4, the proposed CE and data detection algorithm is described.
The performance and complexity analysis of the proposed scheme is evaluated in Section 5 by various experiments. Finally,
conclusions are given in Section 6.

Notations: 𝑎, 𝒂 and𝑨 denote a scalar, a vector and a matrix, respectively. [.]𝑁 denotes the modulo-𝑁 operator. Symbols⊗ and
⊙ denote Kronecker and Hadamard products, respectively. Operator vec(.) represents the vectorization of a matrix with shape
(𝑚, 𝑛) into an 𝑚𝑛 vector, where the shape (𝑚, 𝑛) is given by the context. The circular symmetric complex Gaussian distribution
with mean 𝑚 and variance 𝜎2 is denoted by  (𝑚, 𝜎2). The notation diag[𝑑1, 𝑑2, ..., 𝑑𝑁 ] denotes an 𝑁×𝑁 diagonal matrix with
entry (𝑖, 𝑖) equal to 𝑑𝑖. The superscript (.)𝐻 denotes Hermitian transposition. 𝔼{.} represents the expectation operation and 𝛿(.)
is the Dirac-delta function. 𝐴 represents uniform distribution over 𝐴. Finally, 𝑰𝑁 , 𝑭𝑛, and 𝑭𝐻

𝑛 represent the 𝑁 ×𝑁 identity
matrix, the 𝑛-point DFT and IDFT matrices.

2 SYSTEM MODEL

In this section, we first review the basic concepts of OTFS. Next, we detail the input/output equations of the OTFS transmitter,
channel response in the DD domain, and OTFS receiver. Then, we illustrate the proposed pilot pattern. Finally, we formulate
the optimization of pilots, CE and data detection problems. Fig. 1 shows the block diagram of OTFS system.
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FIGURE 1 OTFS modulation block diagram: transmitter, channel and receiver.

2.1 OTFS Transmitter
Let 𝐺𝐷𝐷, 𝐺𝑇𝐹 and 𝐴𝑝𝑡𝑥,𝑝𝑟𝑥 denote the DD grid, the Time-Frequency (TF) grid and the cross-ambiguity function between transmit
pulse 𝑝𝑡𝑥(𝑡) and receive pulse 𝑝𝑟𝑥(𝑡). 1

𝑀Δ𝑓
, 1
𝑁Δ𝑡

, Δ𝑡 (𝑠), and Δ𝑓 (Hz) denote the quantization steps along the delay and Doppler
frequency axes, slot duration and subcarrier spacing, respectively.

𝐺𝐷𝐷 =
{(

𝑘
𝑁Δ𝑡

, 𝑙
𝑀Δ𝑓

)}

and 𝐺𝑇𝐹 = {(𝑛Δ𝑡, 𝑚Δ𝑓 )} , (1)
for (𝑛, 𝑘) ∈ {0, ..., 𝑁 − 1}2 and (𝑚, 𝑙) ∈ {0, ...,𝑀 − 1}2. The cross-ambiguity function between 𝑝𝑡𝑥(𝑡) and 𝑝𝑟𝑥(𝑡) is given as
follows:

𝐴𝑝𝑡𝑥,𝑝𝑟𝑥(𝑡, 𝑓 ) ≜ ∫ 𝑝∗𝑡𝑥(𝑢 − 𝑡)𝑝𝑟𝑥(𝑢)𝑒−𝑗2𝜋𝑓 (𝑢−𝑡)d𝑢. (2)
It is assumed that the bi-orthonormal property condition between 𝑝𝑡𝑥 and 𝑝𝑟𝑥 is satisfied if ∫ 𝑝∗𝑡𝑥(𝑡)𝑝𝑟𝑥(𝑡−𝑛Δ𝑡)𝑒

𝑗2𝜋𝑚Δ𝑓 (𝑡−𝑛Δ𝑡)d𝑡 =
𝛿(𝑛)𝛿(𝑚).

In OTFS modulation, the 2D information symbols 𝑥[𝑘, 𝑙], (𝑘, 𝑙) ∈ {0, 1, ..., 𝑁 −1}×{0, 1, ...,𝑀 −1} are arranged over 𝐺𝐷𝐷.
These symbols are firstly mapped onto 𝐺𝑇𝐹 via the Inverse Symplectic Fast Fourier Transform (ISFFT) pre-coding as follows1,5:

𝑋[𝑛, 𝑚] = ISFFT(𝑥[𝑘, 𝑙]) = 1
√

𝑁𝑀

𝑁−1
∑

𝑘=0

𝑀−1
∑

𝑙=0
𝑥[𝑘, 𝑙]𝑒𝑛,𝑚, (3)

where 𝑒𝑛,𝑚 = 𝑒𝑗2𝜋(
𝑛𝑘
𝑁
− 𝑚𝑙

𝑀
). Then, TF samples 𝑋[𝑛, 𝑚] are converted to waveform 𝑠(𝑡) using the Heisenberg transform as

𝑠(𝑡) =
𝑁−1
∑

𝑛=0

𝑀−1
∑

𝑚=0
𝑋[𝑛, 𝑚]Φ𝑛,𝑚(𝑡), (4)

where Φ𝑛,𝑚(𝑡) = 𝑝𝑡𝑥(𝑡 − 𝑛Δ𝑡)𝑒𝑗2𝜋𝑚Δ𝑓 (𝑡−𝑛Δ𝑡). The output of the Heisenberg transform can be written in a vector form25:

𝒔 = vec(𝑺) = (𝑭𝐻
𝑁 ⊗ 𝑷𝑡𝑥)𝒙, (5)

where 𝑺 = 𝑷𝑡𝑥𝑭𝐻
𝑀 (𝑭𝑀𝑿𝑭𝐻

𝑁 ) = 𝑷𝑡𝑥𝑿𝑭𝐻
𝑁 , 𝒙 = vec(𝑿) and 𝑷𝑡𝑥 = diag[𝑝𝑡𝑥(0), 𝑝𝑡𝑥(𝑇 ∕𝑀), ..., 𝑝𝑡𝑥(𝑀 − 1)𝑇 ∕𝑀] ∈ ℂ𝑀×𝑁 .

Specifically, for a rectangular waveform, we get 𝑷𝑡𝑥 = 𝑰𝑀 .

2.2 Channel response in DD domain
The channel in the DD domain is sparse with a few paths, each with a specifically constant delay and Doppler during one
frame26. The baseband impulse response can be represented as1,27

ℎ(𝜏, 𝜈) =
𝑃
∑

𝑖=1
ℎ𝑖𝛿(𝜏 − 𝜏𝑖)𝛿(𝜈 − 𝜈𝑖), (6)

where 𝑃 , ℎ𝑖, 𝜈𝑖, and 𝜏𝑖 are the number of channel paths, complex channel gain, Doppler, and delay shifts of the i𝑡ℎ path,
respectively. The i𝑡ℎ delay and Doppler taps (𝑙𝑖, 𝑘𝑖) can be written in the form
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𝑙𝑖 = 𝜏𝑖𝑀Δ𝑓, 𝑘𝑖 = 𝜈𝑖𝑁Δ𝑡. (7)
The output of the doubly-selective fading channel can be expressed as5

𝑟(𝑡) = ∫ ∫ ℎ(𝜏, 𝜈)𝑠(𝑡 − 𝜏)𝑒𝑗2𝜋𝜈(𝑡−𝜏)𝑑𝜏𝑑𝜈 +𝑤(𝑡), (8)
where 𝑤(𝑡) ∼  (0, 𝜎2) is the additive noise. After sampling 𝑟(𝑡) at 𝑓𝑠 = 𝑀∕Δ𝑡 = 𝑀Δ𝑓 , we form the vector 𝒓. The entries
of 𝒓, regarding Eq. 7 and Eq. 8, are the samples

𝑟(𝑛) =
𝑃
∑

𝑖=1
ℎ𝑖𝑒

𝑗2𝜋 𝑘𝑖(𝑛−𝑙𝑖)
𝑀𝑁 𝑠([𝑛 − 𝑙𝑖]𝑀𝑁 ) +𝑤(𝑛). (9)

Hence, Eq. 9 can be rewritten in a vector form:

𝒓 = 𝑯𝒔+𝒘, (10)
where 𝑯 =

∑𝑃
𝑖=1 ℎ𝑖𝚷𝑙𝑖𝚫𝑘𝑖 ∈ ℂ𝑀𝑁×𝑀𝑁 is the channel matrix with 𝚷 ∈ ℂ𝑀𝑁×𝑀𝑁 , is the permutation matrix (forward cyclic

shift) and 𝚫 = diag[𝛼(0), 𝛼(1), ..., 𝛼(𝑀𝑁−1)] ∈ ℂ𝑀𝑁×𝑀𝑁 , where 𝛼 = 𝑒
𝑗2𝜋
𝑀𝑁 .

𝚷 =

⎛

⎜

⎜

⎜

⎜

⎝

0 ⋯ 0 1
1 ⋱ 0 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 1 0

⎞

⎟

⎟

⎟

⎟

⎠

. (11)

We note that matrices 𝚷 and 𝚫 correspond to delay shift 1
𝑀Δ𝑓

and Doppler shift 1
𝑁Δ𝑡

, respectively. Then, for the 𝑖𝑡ℎ channel
path, corresponding delay and Doppler shifts are accounted via matrices 𝚷𝑙𝑖 and 𝚫𝑘𝑖 .

2.3 OTFS Receiver
At the receiver side, we first perform a multicarrier demodulation for 𝑟(𝑡) through a matched filter bank to obtain the TF domain
signal 𝑌 (𝑡, 𝑓 ). Then, the output 𝑌 (𝑡, 𝑓 ) of the matched filter is sampled, leading to 𝑌 [𝑛, 𝑚] = 𝑌 (𝑡, 𝑓 )|{𝑡 = 𝑛Δ𝑡, 𝑓 = 𝑚Δ𝑓}. This
procedure is referred to as the Wigner transform. Then, the TF signal 𝑌 [𝑛, 𝑚] is transformed to the DD domain signal 𝑦[𝑘, 𝑙]
using a Symplectic Finite Fourier Transform (SFFT) as follows5:

𝑦[𝑘, 𝑙] = 1
√

𝑁𝑀

𝑁−1
∑

𝑛=0

𝑀−1
∑

𝑚=0
𝑌 [𝑛, 𝑚]𝑒−1𝑘,𝑙 , (12)

where 𝑒𝑘,𝑙 = 𝑒𝑗2𝜋(
𝑛𝑘
𝑁
− 𝑚𝑙

𝑀
). The relationship between the received symbols 𝑦[𝑘, 𝑙] and transmitted symbols 𝑥[𝑘, 𝑙] can be expressed

as a 2D circular convolution28 as follows:

𝑦[𝑘, 𝑙] =
𝑘𝜈
∑

𝑘′=−𝑘𝜈

𝑙𝜏
∑

𝑙′=0
𝑏𝑘′,𝑙′ℎ𝑘′,𝑙′𝛽𝑘,𝑙𝑥[[𝑘 − 𝑘′]𝑁 , [𝑙 − 𝑙′]𝑀 ] + 𝑣[𝑘, 𝑙], (13)

where 𝑏𝑘′,𝑙′ ∈ {0, 1} indicates the existence of path and 𝑣[𝑘, 𝑙] ∼  (0, 𝜎2) is an additive circular white noise with variance
𝜎2. 𝛽𝑘,𝑙 is a known phase shift caused by imperfect bi-orthogonality of the rectangular waveform25, given by

𝛽𝑘,𝑙 =

{

𝑒𝑗2𝜋(
𝑙−𝑙′

𝑀
) 𝑘

′

𝑁 if 𝑙′ ≤ 𝑙 < 𝑀,

𝑒𝑗2𝜋(
𝑙−𝑙′

𝑀
) 𝑘

′

𝑁 𝑒−𝑗2𝜋
𝑘
𝑁 if 0 ≤ 𝑙 < 𝑙′.

(14)

After substituting Eq. 5 in Eq. 10, the received signal in the DD domain can be written in vectorized form as
𝒚 = (𝑭𝑁 ⊗ 𝑷𝑟𝑥)𝒓,

=𝒙 +
∼
𝒘,

(15)
where 𝑷𝑟𝑥 = diag[𝑝𝑟𝑥(0), 𝑝𝑟𝑥(𝑇 ∕𝑀), ..., 𝑝𝑟𝑥((𝑀 − 1)𝑇 ∕𝑀)] ∈ ℂ𝑀×𝑀 (for rectangular waveforms, 𝑷𝑟𝑥 = 𝑰𝑀 ) represents the
receiver filter using the pulse-shaping 𝑝𝑟𝑥(𝑡).

∼
𝒘 = (𝑭𝑁 ⊗ 𝑷𝑟𝑥)𝒘 denote the noise vector. Since (𝑭𝑁 ⊗ 𝑰𝑀 ) is a unitary matrix
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and 𝒘 ∼  (0, 𝜎2𝑰𝑀 ), ∼
𝒘 and 𝒘 share the same distributions.  = (𝑭𝑁 ⊗ 𝑷𝑟𝑥)𝑯(𝑭𝐻

𝑁 ⊗ 𝑷𝑡𝑥) is the effective channel matrix
for rectangular pulses which is written as

 =
𝑃
∑

𝑖=1
ℎ𝑖[(𝑭𝑀 ⊗ 𝑰𝑀 )𝑴 𝑙𝑖(𝑭𝐻

𝑁 ⊗ 𝑰𝑀 )][(𝑭𝑀 ⊗ 𝑰𝑀 )𝚫𝑘𝑖(𝑭𝐻
𝑁 ⊗ 𝑰𝑀 )],

=
𝑃
∑

𝑖=1
ℎ(𝑖)𝑷 (𝑖)𝑸(𝑖),

=
𝑃
∑

𝑖=1
ℎ(𝑖)𝑻 (𝑖),

(16)

with 𝑷 (𝑖) = (𝑭𝑀⊗𝑰𝑀 )𝑴 𝑙𝑖(𝑭𝐻
𝑁 ⊗𝑰𝑀 ), 𝑸(𝑖) = (𝑭𝑀⊗𝑰𝑀 )𝚫𝑘𝑖(𝑭𝐻

𝑁 ⊗𝑰𝑀 ) and 𝑻 (𝑖) = 𝑷 (𝑖)𝑸(𝑖). 𝑻 (𝑖) has only one non-zero element
in each row. The position and value of this non-zero element depends on the Doppler and delay values. Entries of 𝑻 (𝑖) write

𝑻 (𝑖)(𝑝, 𝑞) =

⎧

⎪

⎨

⎪

⎩

𝑒−𝑗2𝜋
𝑛
𝑁 𝑒𝑗2𝜋

𝑘𝑖([𝑚−𝑙𝑖]𝑀 )
𝑀𝑁 , if 𝑞 = [𝑀 − 𝑙𝑖]𝑀 +𝑀[𝑛 − 𝑘𝑖]𝑁 𝑎𝑛𝑑 𝑚 < 𝑙𝑖

𝑒𝑗2𝜋
𝑘𝑖([𝑚−𝑙𝑖]𝑀 )

𝑀𝑁 , if 𝑞 = [𝑀 − 𝑙𝑖]𝑀 +𝑀[𝑛 − 𝑘𝑖]𝑁 𝑎𝑛𝑑 𝑚 ≥ 𝑙𝑖
0, otherwise.

(17)

2.4 Proposed pilot pattern
In conventional OTFS structures, several pilot pattern schemes have been proposed to guarantee the accuracy of CE. Fig. 2a
shows the first proposed pilot pattern. This scheme has a large GI around the pilot to avoid its interference with data symbols12.
One major drawback of this scheme is the degradation of SE. This scheme also suffers from high Peak to Average Power Ratio
(PAPR) because, the single pilot must be transmitted with high power to guarantee good CE. Another scheme has been proposed
in Siqiang et al.29 to improve the SE of the system (see Fig. 2b). In this pattern, there is no GI on the right side of the pilots
(NGR). This improved configuration of pilots has been proposed considering that data symbols on the right side do not interfere
with pilots. Moreover, the use of multiple pilots in this scheme reduces the PAPR effect, since the power is spread over several
pilots, unlike the first scheme where all the power is assigned to a single pilot. In order to further improve the SE of the system,
a SP scheme has been proposed in Mishra et al.22 (see Fig. 2c). In this scheme, data symbols and pilots interfere with each other.
Consequently, a powerful CE and data detection algorithm are required. The main issue of this approach is the computational
load of the CE. The complexity increases significantly with the size of the data frame and thus does not scale for high bitrate
systems where the data-pilot pattern involves high product 𝑀𝑁 . Another pilot pattern has been proposed in Yuan et al.21, where
only one superimposed pilot is adopted (see Fig. 2d). CE in this scheme can be done by a simple threshold method by calculating
each time an adapted threshold that takes into account the interference as in Mishra et al.22. However, its great disadvantage
is that it requires a large pilot-to-data power to get an accurate channel estimation. This causes a high PAPR. To solve the
highlighted issues of the previous schemes, in this paper, we investigate a new pilot pattern, as shown in Fig. 2e. Compared to
the schemes Raviteja et al.12 and Siqiang et al.29 (Fig. 2a and 2b), the proposed solution enjoy better SE, since no GI are used
and data are mapped over the whole DD grid. Moreover, compared to scheme Mishra et al.22 (Fig. 2c), we obtain good CE at
lower computational complexity while preserving similar SE. According to Yuan et al.21, this proposed scheme achieves a good
trade-off between PAPR and computational complexity.

According to Fig. 2e, letting 𝑿𝑝 the 𝑁 × 𝑀 matrix of pilots, its entries are 0, expect for 𝑘 ∈ [𝑘𝑝 − 𝑁𝑝, 𝑘𝑝 + 𝑁𝑝] and
𝑙 ∈ [𝑙𝑝, 𝑙𝑝+𝑀𝑝−1]. Note that there are 𝐿𝑝 = (2𝑁𝑝+1)𝑀𝑝 pilots and (𝑘𝑝, 𝑙𝑝) denotes a reference position for pilots. 𝑿𝑑 denotes
the 𝑁 ×𝑀 matrix of data symbols. Letting 𝑿 = 𝑿𝑑 +𝑿𝑝, its entries write

𝑋[𝑘, 𝑙] =

⎧

⎪

⎨

⎪

⎩

𝑋𝑝[𝑘, 𝑙] +𝑋𝑑[𝑘, 𝑙], 𝑘 ∈ [𝑘𝑝 −𝑁𝑝, 𝑘𝑝 +𝑁𝑝],
and 𝑙 ∈ [𝑙𝑝, 𝑙𝑝 +𝑀𝑝 − 1],

𝑋𝑑[𝑘, 𝑙] otherwise.
(18)
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(a) EP scheme 12 (b) NGR scheme 29

(c) SP scheme 22 (d) Single pilot scheme 21

(e) Proposed scheme

FIGURE 2 Data pilot patterns in delay-Doppler domain (■: data, 𝟎: guard interval,◦: pilot).

2.5 Problem formulation
For 𝑘 ∈ [𝑘𝑝 −𝑁𝑝, 𝑘𝑝 +𝑁𝑝] and 𝑙 ∈ [𝑙𝑝, 𝑙𝑝 +𝑀𝑝 − 1], using Eq. 18, the received symbols in DD domain (Eq. 13) can be written
in a vector form as follows:

𝒚𝑝 = (𝑺𝑝 ⊙𝚿)𝒉 +𝑫�̃� + �̃�, (19)
where 𝒚𝑝 ∈ ℂ𝐿𝑝 is formed by the column wise rearrangement of 2D data 𝑦[𝑘, 𝑙] for 𝑘 ∈ [𝑘𝑝 − 𝑁𝑝, 𝑘𝑝 + 𝑁𝑝] and for 𝑙 ∈
[𝑙𝑝, 𝑙𝑝+𝑀𝑃−1]: 𝒚𝑝[𝑙−𝑙𝑝+(𝑘+𝑁𝑝)𝑀𝑝]

= 𝑦[𝑘, 𝑙].𝚿 ∈ ℂ𝐿𝑝×𝐿 is written as𝚿[𝑙−𝑙𝑝+(𝑘+𝑁𝑝)𝑀𝑝,𝑙′(2𝑘𝜈+1)+𝑘′+𝑘𝜈 ] = 𝑒−𝑗2𝜋𝑘′(𝑙−𝑙′)∕𝑁𝑀 .𝑺𝑝 ∈ ℂ𝐿𝑝×𝐿

is the pilots matrix given by 𝑺𝑝[𝑙−𝑙𝑝+(𝑘+𝑁𝑝)𝑀𝑝,𝑙′(2𝑘𝜈+1)+𝑘′+𝑘𝜈 ]
= 𝑥𝑝[𝑘 − 𝑘′, 𝑙 − 𝑙′]. Considering (18), 𝑺𝑝 is composed of pilots and

zeros. 𝒉 ∈ ℂ𝐿 is a 𝑃 -sparse channel vector and 𝐿 = (2𝑘𝜈 + 1)(𝑙𝜏 + 1). 𝑫 ∈ ℂ𝐿𝑝×𝑃 is a mini matrix of data symbols given by
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𝑫[𝑙−𝑙𝑝+(𝑘+𝑁𝑝)𝑀𝑝,𝑘′] = 𝛽𝑘′,𝑙−𝑙′𝑥𝑑[𝑘−𝑘′, 𝑙− 𝑙′] and �̃� ∈ ℂ𝑃 is the vector formed by the 𝑃 non-zero elements of 𝒉. Let 𝑨 = (𝑺𝑝⊙𝚿)

and 𝒗 = 𝑫�̃� + �̃�. Then, 𝒗 ∼  (𝟎,𝑪𝑣), 𝑪𝒗 = 𝔼{𝒗𝒗𝑯} =
((

∑𝑃
𝑖=1 𝜎

2
ℎ𝑖

)

𝜎2
𝑑 + 𝜎2

𝑤

)

𝑰𝐿𝑝
(see appendix A). Therefore, from (19),

𝒚𝑝|𝒉 ∼  (𝑨𝒉,𝑪𝑣). (20)
In what follows, to achieve accurate CE, we first address the problem of pilots design. Then, we formulate an OTFS pilot

sequence optimization problem based on the mutual incoherence property (MIP), and develop a (SA)-based algorithm for solving
it.

3 SA-BASED PILOT OPTIMIZATION FOR OTFS

3.1 Pilot values optimization problem
To achieve accurate CE it is important to account for the sparsity of 𝒉. There are two main properties to consider, the sparsity 𝑃
of a vector 𝒉 and to what degree the pilots matrix 𝑨 satisfies the restrict isometry property (RIP). This means, for an arbitrary
level 𝛿 ∈ (0, 1), and any index set  ⊂ {0, 1, ..., 𝐿} such that card() ≤ 𝑃 , and for all 𝒉 ∈ ℂcard(), the following relation holds:
(1 − 𝛿)||𝒉||2 ≤ ||𝑨𝒉||2 ≤ (1 + 𝛿)||𝒉||2. Where 𝑨 is the matrix formed by the columns of which the indices are elements of
the set  (see Zhang et al.30). However, the RIP evaluation of a matrix is an NP-hard problem31. Another more practical and
computable criterion is introduced in the optimization process of the 𝑨 matrix instead of RIP namely the mutual incoherence
property (MIP). The MIP of 𝑨 is defined as the largest absolute and normalized inner product between its different columns,
and it is given by32,33:

𝜇(𝑨) = max
1≤𝑖<𝑗≤𝐿

|𝒂𝐻
𝑖 𝒂𝑗|

||𝒂𝑖||2.||𝒂𝑗||2
, (21)

where 𝑨 = [𝒂1,𝒂2, ...,𝒂𝐿].
It is worth noting that the mutual coherence reflects the correlation between the columns of 𝑨 and higher correlation

degrades the performance. The overall coherence cannot be measured from Eq. 21 because only the maximum absolute value
is considered29. Thus, we chose pilot values so as to optimize an average MIP (A-MIP: 𝜇𝑎𝑣𝑔) of 𝑨:

𝜇𝑎𝑣𝑔(𝑨) = 2
𝐿(𝐿 − 1)

∑

1≤𝑖<𝑗≤𝐿

|𝒂𝐻
𝑖 𝒂𝑗|

||𝒂𝑖||2.||𝒂𝑗||2
. (22)

From Eq. 20 and Eq. 22, we formulate a pilot optimization problem for OTFS as in Wang et al.29 as follows:
minimize𝒙𝑝

𝜇𝑎𝑣𝑔(𝑨) subject to max(|𝒙𝑝|) ≤ 𝑃𝑝, (23)
where 𝑃𝑝 is the maximum power threshold. It is important to note that if the matrix 𝑨 is orthogonal (e.g., 𝑨 is a Fourier matrix),
𝜇𝑎𝑣𝑔 achieves lower bound which is 0. In practice, the matrix 𝑨 cannot be orthogonalized because this matrix is composed of
pilots and zeros and the position of the pilots depends on the delay and Doppler taps of the channel, hence the high complexity
of this optimization problem.

3.2 SA-based optimization algorithm
The problem (23) is non-convex, which means that conventional convex optimization algorithms are not guaranteed to reach a
global minimum. This led us to take advantage of the SA algorithm34,35,36 to solve the problem (23). We divide this algorithm
into four steps:

1. Initialization step: all the initializations are done in this step. The efficiency of the SA algorithm depends on the choice
of its control parameters, hence, a careful choice of the parameters is mandatory. We first randomly generate an initial
solution 𝒙(0)

𝑝 which satisfies the constraint in (23). Then, the fitness value of this initial solution is calculated according
to Eq. 22 as 𝐹 (𝒙(0)

𝑝 ) = 𝜇𝑎𝑣𝑔(𝑨(𝒙(0)
𝑝 )). 𝒙𝑏𝑒𝑠𝑡

𝑝 at start is set at 𝒙(0)
𝑝 . A high initial temperature 𝑇0 is chosen empirically. The

neighborhood 𝑉 of a point is determined by a distance 𝑟 which is initialized at 𝑟0. The decreasing temperature’s constant
𝛼 is initialized at 𝛼0.
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2. Inner loop step: at each iteration of the algorithm, an elementary modification of the state is carried out. This modification
consists in calculating a new solution to problem (23) as follows: 𝒙(𝑖)

𝑝 = 𝒙(𝑖−1)
𝑝 + 𝑟𝑑, where 𝑑 is a random number that

satisfies 𝑑 ∈ [−1, 1]. This modification leads to a variation Δ𝐹 of the system’s energy Δ𝐹 = 𝐹 (𝒙(𝑖)
𝑝 ) − 𝐹 (𝒙(𝑖−1)

𝑝 ), where
𝐹 (𝒙) = 𝜇𝑎𝑣𝑔(𝑨(𝒙)). 𝒙(𝑖)

𝑝 is accepted as a new configuration with probability min{1, exp(−Δ𝐹∕𝑇 )} and if 𝐹 (𝒙(𝑖)
𝑝 ) <

𝐹 (𝒙𝑏𝑒𝑠𝑡
𝑝 ), 𝒙𝑏𝑒𝑠𝑡

𝑝 is set to 𝒙(𝑖)
𝑝 . This choice of exponential for the probability is called the Metropolis rule. This process is

then repeated 𝑁𝑇 times at a fixed temperature.
3. Outer loop step: In the previous step, the algorithm iterates keeping the temperature constant. When the system has

reached a thermodynamic equilibrium (after a certain number of changes), the temperature of the system is reduced. This
is referred to as a temperature step. After the temperature has been reduced, the previous step is repeated. In both cases,
if the temperature has reached a low enough threshold set beforehand or 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is reached, the algorithm stops.

4. Temperature update: temperature plays an important role. At high temperatures, the system is free to move in the state
space (exp(−Δ𝐹∕𝑇 ) close to 1) by choosing configurations that do not necessarily minimize the energy of the system. At
low temperatures, the system is sensitive to finer energy variations and will then favours more and more the descending
movements (i.e. towards lower energy values), and will avoid those that go up. The temperature decay law we have chosen
and which is often used in the literature is 𝑇𝑗 = 𝛼𝑇𝑗−1.

The detailed SA-based pilot optimization procedure is summarized in Algorithm 1.

Algorithm 1 SA-based pilot optimization algorithm for OTFS
Input: 𝑇0, 𝒙(0)

𝑝 , 𝒙𝑏𝑒𝑠𝑡
𝑝 , 𝛼0, 𝑟0, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥, 𝑁𝑇 = 1000, 𝜖, pilot matrix 𝑨,

Initialization: 𝛼 = 𝛼0, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 106, 𝜖 = 1, 𝑖𝑡𝑒𝑟 = 1, 𝑇 = 𝑇0, 𝒙𝑏𝑒𝑠𝑡
𝑝 = 𝒙(0)

𝑝 ,
while (𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 & 𝜖 > 10−9) do

for 𝑖 = 1 ∶ 𝑁𝑇 do
generate �̃�(𝑖)

𝑝 = 𝒙(𝑖−1)
𝑝 + 𝑟𝑑 with 𝑑 ∼ [−1,1],

evaluate 𝐹 (�̃�(𝑖)
𝑝 ) = 𝜇𝑎𝑣𝑔(𝑨(�̃�(𝑖)

𝑝 )),
compute difference Δ𝐹 = 𝐹 (�̃�(𝑖)

𝑝 ) − 𝐹 (𝒙(𝑖−1)
𝑝 ),

if Δ𝐹 < 0 then
𝒙(𝑖)
𝑝 = �̃�(𝑖)

𝑝 ,
if 𝐹 (𝒙(𝑖)

𝑝 ) < 𝐹 (𝒙𝑏𝑒𝑠𝑡
𝑝 ) then

𝒙𝑏𝑒𝑠𝑡
𝑝 = 𝒙(𝑖)

𝑝 ,
end if

else
𝑝 ∼ [0,1],
𝒙(𝑖)
𝑝 = 𝒙(𝑖−1)

𝑝 + (�̃�(𝑖)
𝑝 − 𝒙(𝑖−1)

𝑝 )𝟏𝑝<exp(−Δ𝐹∕𝑇 ),
end if

end for
𝑇 = 𝛼𝑇 , 𝑟 = 𝛼𝑟, 𝜖 = 𝑇 ∕𝑇0, 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1,

end while
Output: optimized 𝒙𝑝.

4 SUGGESTED ALGORITHM FOR CE AND SYMBOL DETECTION

Here, we feature the suggested algorithm for CE and data detection with the IC scheme. This algorithm iterates between data-
aided CE and MP-assisted data detection. After each CE, the IC scheme is executed to minimize the effect of pilots on the data
to achieve good detection of data symbols.
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4.1 Initial channel estimation
An initial channel estimate is computed at this current phase of the algorithm. Denoting by 𝒂𝑖 the 𝑖𝑡ℎ column of 𝑨, we can
rewrite the model (20) in the following form:

𝒚𝑝 =
𝐿
∑

𝑖=1
𝑏𝑖𝑔𝑖𝒂𝑖 + 𝒗, (24)

where ℎ𝑖 = 𝑏𝑖𝑔𝑖, i.e., 𝒉 = 𝒃 ⊙ 𝒈, with 𝒃 = [𝑏1, 𝑏2, ..., 𝑏𝐿]𝑇 denotes the support vector of channel (𝑏𝑖 ∈ {0, 1}) and 𝒈 =
[𝑔1, 𝑔2, ..., 𝑔𝐿]𝑇 is the channel gains vector. Therefore, 𝑝(𝒚𝑝|𝒈, 𝒃) =  (𝑨𝑏𝒈𝑏, 𝐶𝒗), where 𝒈𝑏 ∈ ℂ𝑃 and 𝑨𝑏 ∈ ℂ𝐿𝑝×𝑃 are made
up from 𝒈 and 𝑨 considering indices i where 𝑏𝑖 ≠ 0.

To consider the sparsity of 𝒉, its inputs are modeled using a Bernoulli-Gaussian (BG) model for which, 𝒈 follows the
probabilistic model

𝒈|𝒃 ∼ 𝑝(𝒈|𝒃) =
𝐿
∏

𝑖=1
𝑝(𝑔𝑖|𝑏𝑖) where 𝑝(𝑔𝑖|𝑏𝑖) =  (0, 𝜎2

𝑏𝑖
), (25)

with 𝜎2
1 ≫ 𝜎2

0 . Thus, the vector 𝒚𝑝 can be seen as a noisy mixture of atoms specified by 𝒃. The weights of the mixture are
realizations of Gaussian distributions whose variances 𝜎2

𝑔𝑖
are independent of 𝒃. To detect the location of spikes, we note that

𝑏𝑖 are assumed to be independent Bernoulli random variables, such that 𝑏𝑖 = 1 if a spike is present at ℎ𝑖 and 𝑏𝑖 = 0 otherwise.
Unstructured sparsity can be modeled by a standard choice based on a product of the Bernoulli distributions, as follows:

𝒃 ∼ 𝑝(𝒃) =
𝐿
∏

𝑖=1
𝑝(𝑏𝑖) where 𝑝(𝑏𝑖) = Ber(𝑝𝑖), (26)

where 𝑝𝑖 = 𝑝(𝑏𝑖 = 1) = 1 − 𝑝(𝑏𝑖 = 0).
Besides, in recent approaches, instead of trying to approximate the means of the posterior distributions via MCMC simulation,

one tries to iteratively calculate an exact variational approximation of the target posterior distribution.
We derive an estimator based on a MAP criterion for the sparse channel parameters. It corresponds to the optimal Bayesian

estimator using a Bayesian cost37. In this context, the estimation of (𝒃, 𝒈) take the form

(�̂�, �̂�) = argmax
𝒃,𝒈

log 𝑝(𝒃, 𝒈|𝒚𝑝). (27)
We first estimate the support vector 𝒃. The decision that minimizes the probability of a wrong decision on support 𝒃 is given

as follows:

�̂� = argmax
𝒃∈{0,1}𝐿

log 𝑝(𝒃|𝒚𝑝). (28)
Solving problem (28) requires the evaluation of the function log(𝑝(𝒃|𝒚𝑝) for all sequences of 𝒃 in {0, 1}𝐿 (2𝐿 evaluation), this

makes the maximization of 𝑝(𝒃|𝒚𝑝) too complex. However, individual decisions for the entries of the support 𝒃 can be made
from a marginalized MAP, leading to

�̂�𝑖 = argmax
𝑏𝑖∈{0,1}

log 𝑝(𝑏𝑖|𝒚𝑝). (29)
Furthermore, the evaluation of 𝑝(𝑏𝑘|𝒚𝑝) is intractable due to the costly marginalization of 𝑝(𝒃|𝒚𝑝) over the 𝑏𝑙’s, for 𝑙 ≠ 𝑘. To

get around this issue, variational mean-field approximations compute a tractable surrogate 𝑞(𝑏𝑖) of 𝑞(𝑏𝑖|𝒚𝑝) (see Dremeau et al.38
and Wainwright and Jordan39). The adopted procedure is to compute an approximation 𝑞(𝑏𝑖) of the posterior probability 𝑝(𝑏𝑖|𝒚𝑝),
named the mean-field approximation, which is summarized in appendix B. In this case, problem (29) will be approximated by

�̂�𝑘 = argmax log
𝑏𝑘∈{0,1}

(𝑞(𝑏𝑘)). (30)
Problem (30) can easily be solved by a thresholding method, i.e.

�̂�𝑖 =
{

1, if 𝑞(𝑏𝑖 = 1) > 𝜌
0, otherwise,

(31)
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with 𝜌 = 0.5. This value minimizes the Bayes risk when uniform and equal costs are selected. After estimating the support
vector 𝒃, the channel gains vector 𝒈 can be estimated by MAP estimate �̂� = argmax

𝒈
log 𝑝(𝒈|�̂�, 𝒚𝑝):

�̂��̂� = (𝑨𝑇
�̂�
𝑨�̂� + 𝚫)−1𝑨𝑇

�̂�
𝒚𝑝,

and �̂�𝑘 = 0 if 𝑏𝑘 = 0,
(32)

where �̂��̂� and 𝑨�̂� are the entries of 𝒈 restricted to �̂� and the related columns of 𝑨, respectively. 𝚫 =
diag[𝜎2∕𝜎2

𝑔1
, 𝜎2∕𝜎2

𝑔2
, ..., 𝜎2∕𝜎2

𝑔𝐿
]. This solution reduces to the least-square solution when 𝜎2 ⋘ 𝜎2

𝑔𝑖
and to matched filtering

when 𝜎2 is large. The proposed algorithm for CE is summarized in Algorithm 2.

Algorithm 2 The proposed CE algorithm for OTFS
Input: measurements 𝒚𝑝 ∈ ℂ𝐿𝑝 , sensing matrix 𝑨 ∈ ℂ𝐿𝑝×𝐿,

Initialization: 𝑝(𝒃) = ∏

𝑘 𝑝(𝑏𝑘),
prior mean for 𝒈: 𝒎 = 𝟎𝐿,
probability 𝒒: 𝒒(0) ∼ ([0,1])1∶𝐿,
𝒓: 𝒓(0) = 𝒚𝑝 −𝑨(𝒃⊙𝒎),

while 𝑘 ≤ 𝐾 and ∀𝑖 ∈ {1 ∶ 𝐿}, |𝑞(𝑏(𝑘)𝑖 ) − 𝑞(𝑏(𝑘−1)𝑖 )| < 𝜖 do
for 𝑙 = 1 ∶ 𝐿 do

compute Σ(𝑏𝑘|𝒚𝑝) =
𝜎2
𝑔𝑘
𝜎2

𝜎2+𝑏𝑘𝜎2
𝑔𝑘
𝑨𝑇

𝑘𝑨𝑘
,

compute 𝑚(𝑏𝑙|𝒚𝑝)(𝑘) = 𝑏𝑙
𝜎2
𝑔𝑙

𝜎2+𝑏𝑙𝜎2
𝑔𝑙
𝑨𝑇

𝑙 𝑨𝑙
𝒓𝑇𝑙 𝑨𝑙,

compute 𝑞(𝑘)𝑙 = 𝑞(𝑏𝑙|𝒚𝑝)(𝑘) ∝
√

Σ(𝑏𝑙|𝒚𝑝)𝑒

(

1
2
𝑚(𝑏𝑙 |𝒚𝑝)2

Σ(𝑏𝑙 |𝒚𝑝)

)

𝑝(𝑏𝑙),
update 𝒓(𝑘): 𝒓(𝑘) = 𝒓(𝑘) −𝑨𝑙(𝑏

(𝑘)
𝑙 𝑚(𝑏𝑙|𝒚𝑝)(𝑘)),

end for
end while
estimate support 𝒃: �̂� = (𝒒 > 0.5),
estimate 𝒈 conditional to �̂�: �̂��̂� = (𝑨𝑇

�̂�
𝑨�̂� + 𝚫)−1𝑨𝑇

�̂�
𝒚𝑝 and �̂�𝑘 = 0 if 𝑏𝑘 = 0,

Output: �̂�, �̂�.

4.2 Interference cancellation
The absence of GI in the proposed pilot pattern improves SE, but, unfortunately the pilots will interfere with some of the data
symbols as shown in the red box in Fig. 3. This interference is due to the delay and Doppler shifts of the pilots experiencing the
channel.

The sampled signal in contaminated region in the DD grid is expressed as follows:
𝒀𝐼 = 𝑦[𝑘, 𝑙], 𝑘 ∈ [𝑘𝑝 − 𝑘𝜈 −𝑁𝑝, 𝑘𝑝 + 𝑘𝜈 +𝑁𝑝],
and 𝑙 ∈ [𝑙𝑝, 𝑙𝑝 + 𝑙𝜏 +𝑀𝑝 − 1].

(33)
We put 𝑝 = 𝑘 − 𝑘𝑝 + 𝑘𝜈 + 𝑁𝑝 and 𝑞 = 𝑙 − 𝑙𝑝. CE supplies the channel support {𝑙𝑖, �̂�𝑖} as well as the corresponding path

parameters {ℎ̂𝑖, 𝜏𝑖, �̂�𝑖}. Then, for 𝑖 = 1 ∶ 𝑃 , the interference at the (𝑝, 𝑞)𝑡ℎ element in the DD grid is expressed as

𝑰[𝑝, 𝑞] =
𝑃
∑

𝑖=1
ℎ̂𝑖𝑒

−𝑗 2𝜋
𝑀𝑁

𝛾𝑖𝑋𝑝[𝑝 + 𝑙𝑝 − 𝑘𝜈 −𝑁𝑝 − �̂�𝑖, 𝑞 + 𝑙𝑝 − 𝑙𝑖], (34)
for 𝑝 ∈ [0, 2(𝑘𝜈 +𝑁𝑝)], 𝑞 ∈ [0, 𝑙𝜏 +𝑀𝑝−1] and 𝛾𝑖 = �̂�𝑖[𝑞− 𝑙𝑖+2𝑙𝑝+𝑀𝑝+1]𝑀 . The estimated interference is removed from 𝒀𝐼 :

𝒀 =

⎧

⎪

⎨

⎪

⎩

𝒀𝐼 − 𝑰 𝑘 ∈ [𝑘𝑝 − 𝑘𝜈 −𝑁𝑝, 𝑘𝑝 + 𝑘𝜈 +𝑁𝑝],
and 𝑙 ∈ [𝑙𝑝, 𝑙𝑝 + 𝑙𝜏 +𝑀𝑝 − 1],

𝑦[𝑘, 𝑙] otherwise.
(35)
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FIGURE 3 Pilot contamination pattern (■: data symbol, ◦: pilot).

4.3 Message passing (MP) data detection
After channel estimation and pilots interference removal, the vector 𝒚𝑑 = vec(𝒀 ) will be used for data symbol detection.
According to Eq. 15, 𝒚𝑑 can be written as follows:

𝒚𝑑 = ̂𝒙𝑑 +𝒘𝑒, (36)
where 𝒘𝑒 = �̃� + 𝑩(𝒉 − �̂�) consists of noise and CE error 𝒉 − �̂�. The matrix 𝑩 ∈ ℂ𝑀𝑁×𝐿 is designed in exactly the same way
as the matrix 𝑨 in subsection (2.5), using 𝑿𝑝. 𝒘𝑒(𝑛) ∼  (0, 𝜎2

𝑤 + 𝜎2
𝑝𝐵ℎ), where 𝐵ℎ = 𝔼{||𝒉 − �̂�||2} is the MSE of channel

estimation. The aim is to determine 𝒙𝑑 from (̂, 𝒚𝑑) by using a low complexity MP algorithm28 which is suitable for uncoded
OTFS, taking advantage of channel sparsity.

4.4 Data-aided channel estimation
After estimating the vector of data symbols 𝒙𝑑 , the model (20) used for CE becomes as follows:

𝒚𝑝 = 𝑨𝒉 + 𝒗𝑒, (37)
where 𝒗𝑒 = �̂� ̂̃𝒉 + �̃� consist of noise, channel estimate vector and the mini data symbol matrix. The MP data detection step
produces independent values for the inputs of �̂�. Therefore, for CE upgrade, we recommend to use the algorithm already used
in subsection (4.1) with the following noise approximation in Eq. 19: 𝒗𝑒 ∼ 

(

𝔼{�̂� ̂̃𝒉},
((

∑𝑃
𝑖=1 𝜎

2
ℎ𝑖

)

𝜎2
𝑑 + 𝜎2

𝑤

)

𝑰𝐿𝑝

)

.
The proposed iterative algorithm for CE and data detection with the interference cancellation scheme is summarized in

Algorithm 3.

5 SIMULATIONS, DISCUSSIONS AND COMPLEXITY ASSESSMENT

Here, we first specify all the parameters used in the simulations. Then, we evaluate the performance of the proposed SA-based
pilots’ optimization algorithm and we make a comparison with several other optimization methods, mainly to a particle swarm
optimization (PSO)-based reference method proposed for OTFS systems. Next, we study the performance of the proposed itera-
tive CE and data detection algorithm that uses the previously optimized pilots along with using a pilot interference cancellation
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Algorithm 3 Proposed algorithm for CE and data detection
Input: measurements 𝒚 ∈ ℂ𝑀𝑁 , pilot matrix 𝑨 ∈ ℂ𝐿𝑝×𝐿, initial channel estimate �̂�(0).

repeat
Compute ̂(𝑖)

= (𝑭𝑛 ⊗ 𝑰𝑀 )
(

∑𝑃
𝑛=1 ℎ̂

(𝑖)
𝑛 𝚷𝑙𝑛𝚫𝑘𝑛

)

(𝑭𝐻
𝑛 ⊗ 𝑰𝑀 )

Compute 𝒚(𝑖)
𝑑 , the output of interference cancellation scheme

Compute �̂�𝑑 = MPA(̂(𝑖)
, 𝒚(𝑖)

𝑑 ) % MPA: MP Algorithm
Compute �̂�(𝑖+1) by feeding 𝒚(𝑖)

𝑒 and 𝑨 to (37):
�̂�(𝑖+1) = argmax

𝒉
 (𝒚𝑝;𝑨𝒉 + 𝔼{�̂� ̂̃𝒉},𝑨𝑹ℎℎ𝑨𝐻 +

((

∑𝑃
𝑖=1 𝜎

2
ℎ𝑖

)

𝜎2
𝑑 + 𝜎2

𝑤

)

𝑰𝐿𝑝
) %𝑹ℎℎ = diag(𝜎2

ℎ1
, 𝜎2

ℎ2
, ..., 𝜎2

ℎ𝐿
)

until stopping condition
Output: �̂�, �̂�𝑑 .

(IC) scheme. The metrics used for the performance evaluation of this algorithm are NMSE, BER, and SE. A comparison will be
made between the proposed algorithm and the techniques proposed in the literature. Finally, a complexity study is conducted.

5.1 Simulation parameters
We consider an OTFS system with the following parameters: the carrier frequency 𝑓𝑐 and the spacing between sub-carriers
Δ𝑓 are set to 4 GHz and 15 kHz, respectively. The size of one OTFS frame is 𝑀 = 𝑁 = 32. BPSK constellation is treated.
The channel delay model parameters are displayed in Table 122. We suppose that each delay tap has only one Doppler shift12.
Therefore, we generate Doppler values using the Jakes’ formula as 𝜈𝑖 = 𝜈𝑚𝑎𝑥 cos(𝜃𝑖), where 𝜃𝑖 ∼ [0,2𝜋], and 𝜈𝑚𝑎𝑥 represents the
maximum Doppler shift determined by the users’ equipment (UE) speed16. The maximum delay shift 𝜏𝑚𝑎𝑥 is 20.8 𝜇𝑠 and has
a corresponding delay tap 𝑙𝜏 = 10. The maximum Doppler shift 𝜈𝑚𝑎𝑥 is 1851 Hz and has a corresponding Doppler tap 𝑘𝜈 = 4.
These values correspond to a high-speed scenario with a maximum UE speed of 500 km/h. To achieve good CE accuracy, the
pilot size signals must cover the maximum delay and Doppler spread, i.e. 𝑀𝑝 ≥ 𝑙𝜏 and 2𝑁𝑝+1 ≥ 𝑘𝜈 29. Consequently, to achieve
a better CE accuracy and minimize the influence of pilots on the data symbols, we set 𝑀𝑝 = 13 and 𝑁𝑝 = 3. In this case, the
ratio of data symbols affected by pilots to the total data symbols is given by 𝜌 = (2(𝑘𝜈+𝑁𝑝)+1)(𝑙𝜏+𝑀𝑝)

𝑀𝑁
× 100 ≃ 34%.

For the parameters in the SA-based pilot optimization, from tryouts, it appears that setting 𝑁𝑇 = 1000, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 = 106,
𝑟0 =

√

𝑃𝑝∕10, 𝛼0 = 0.99 and 𝑇0 = 30◦𝐶 is a judicious choice.
We assume that each symbol in the DD grid has a power of 𝜎2

𝑥. The total power of each OTFS frame is𝑀𝑁𝜎2
𝑑+(2𝑁𝑝+1)𝑀𝑝𝜎2

𝑝 .
Thus, by taking 𝜎2

𝑥 = 𝜎2
𝑑 + (2𝑁𝑝+1)𝑀𝑝

𝑀𝑁
𝜎2
𝑝 , the total power for each OTFS frame is fixed to 𝑁𝑀𝜎2

𝑥. For a fair comparison with
the other schemes, this total power must remain the same for each scheme. For the superimposed scheme shown in Fig 2c, the
power per DD symbol is 𝜎2

𝑥 = 𝜎2
𝑝 + 𝜎2

𝑑 for 𝑘 ∈ [0, 𝑁 − 1] and 𝑙 ∈ [0,𝑀 − 1], where 30% of the total power is allocated to
pilots and 70% of it is allocated to data. In Mishra et al.,22 these values allow to maximize the SE and minimize the BER of the
proposed SP-aided design. For the EP scheme shown in Fig 2a, due to the insertion of GI between the pilots and data symbols,
all the power that is assigned to the GI positions must be assigned to the pilot, i.e. 𝜎2

𝑝 = ((2𝑙𝜏 + 1)(4𝑘𝜈 + 1) − 1)𝜎2
𝑥. Therefore,

we have a total power per frame of ((2𝑙𝜏 + 1)(4𝑘𝜈 + 1) − 1)𝜎2
𝑥 + (𝑁𝑀 − ((2𝑙𝜏 + 1)(4𝑘𝜈 + 1) − 1))𝜎2

𝑥 = 𝑁𝑀𝜎2
𝑥 which is the

same as the proposed scheme and the superimposed scheme. From trials, it appears that choosing |�̂�(𝑛) − �̂�(𝑛−1)
| < 10−6 or a

maximum number of iterations equal to 10 is a good stopping criterion for CE.

TABLE 1 5-tap delay-Doppler channel parameters22.
Channel tap no. 1 2 3 4 5

𝜏𝑖 (𝜇𝑠) 2.08 5.20 8.328 11.46 20.8
Power of ℎ𝑖 (dB) 1 -1.804 -3.565 -5.376 -8.860
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5.2 Performance evaluation of the proposed SA-based pilot optimization
In this subsection, we first make a comparison in terms of A-MIP (Eq. 22) between the developed SA-based pilot optimization
algorithm and the PSO-based pilot optimization algorithm suggested in Wang et al.29 Other solutions based on Genetic algo-
rithms (GA)40 and deterministic Nelder Mead (NM) algorithm41 is also tested and compared to the proposed algorithm. Then,
we compare the NMSE and BER performance of CE and data detection with the optimized pilot using NM, PSO, and GA.

5.2.1 A-MIP evaluation
Table 2 shows the obtained A-MIP of the optimized pilots using NM, PSO, GA, and SA algorithms. It can be seen that the
highest A-MIP is obtained for NM-based optimization. For the PSO-based optimization and the GA-based optimization, the
achieved A-MIPs are close. For the proposed algorithm, the A-MIP can be reduced to 0.00291 which is the minimum compared
to state-of-the-art methods, showing then the superiority of the SA approach in terms of A-MIP when compared to NM, PSO
and GA methods. Therefore, the suggested solution for pilot optimization for OTFS outperforms the benchmark proposed by
Wang et al.29

TABLE 2 Average-MIP comparison.
Method 𝜇𝑎𝑣𝑔 Method 𝜇𝑎𝑣𝑔

Optimized pilot using NM 0, 157 Optimized pilot using PSO 0.0292
Optimized pilot using GA 0, 0278 Optimized pilot using SA 0.00291

5.2.2 Normalized Mean square error (NMSE)
Fig 4 shows a comparison in terms of NMSE for CE between the proposed SA-based optimization algorithm and the other
three algorithms based on NM, PSO, and GA using highlighted iterative CE and data detection algorithm. From Fig 4, the
achieved NMSE performance of the proposed SA-based pilot optimization algorithm outclasses the other three algorithms and
particularly outperforms the PSO-based optimization algorithm by about 4 dB. This can be attributed to the significant achieved
performance of A-MIP by the proposed solution.
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FIGURE 4 NMSE comparison between proposed SA-based pilot optimization and the methods using NM, PSO and GA.
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5.2.3 Bit error rate (BER)
Fig 5 shows a comparison in terms of BER for data detection between the developed SA-based optimization algorithm and the
other three techniques. For SNR < 5 dB, similar BER performance can be achieved by the four methods. As the SNR increases,
the proposed algorithm outperforms the other three solutions. Particularly, it exceeds the PSO-based pilot optimization by about
1.2 dB at BER = 10−4.
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FIGURE 5 BER comparison between proposed SA-based pilot optimization and the methods using NM, PSO and GA.

5.2.4 Effect of the size of pilot on BER performance
We now investigate the effect of the size of the pilots on BER performance. Fig 6 shows the BER versus SNR of the proposed
scheme with optimized pilots using SA, for different pilots sizes. We observe from this figure that each time the pilot size 𝐿𝑝
increases, the performance of the system in terms of BER improves. This is justified by the fact that as 𝐿𝑝 increases, the error
recovery of the channel vector 𝒉 from problem (19) decreases, thus the NMSE of the channel estimation decreases, which leads
to an improvement of BER. It will be shown in section 5.4 that the computational complexity of the proposed channel estimation
algorithm depends on 𝐿𝑝: as 𝐿𝑝 increases the BER improves and the computational complexity increases. Therefore, a judicious
choice of 𝐿𝑝 achieves a good compromise between performance and complexity.

5.3 Performance analysis of the proposed iterative algorithm with optimized pilots
In this subsection, we first compare the average SE of the proposed scheme with the conventional pilot aided (CPA) design13,
embedded pilots (EP)12 (Fig. 2a), the scheme with none GI in the right side (NGR)29 (Fig. 2b) and the superimposed scheme
(SP-I)22 (Fig. 2c). Afterwards, we give performance comparisons in terms of NMSE and BER between the proposed algorithm
for CE and data detection against the EP-based design and the SP-I scheme.

The CPA design uses two OTFS frames. The first one is for CE and the second one for data detection. The EP-based scheme,
shown in Fig 2a, uses a single pilot in the DD domain. This pilot is separated from the data symbols through GI. The number of
zeros inserted for the guard interval depends on 𝑙𝜏 and 𝑘𝜈 . This scheme uses enough GI to avoid interference between the pilot
and the received data symbols. However, in the NGR design, unlike the EP-design, there are no guard symbols on the right side
of the pilots. This is due to the fact that the data symbols on the right side will not interfere with the pilot. Hence, the SE is
increased compared to the EP scheme. Concerning the SP-I scheme, the pilots and data symbols are arranged in a superimposed
way in the DD domain without using GI. The proposed scheme benefits from the same advantages of the previous schemes like
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FIGURE 6 BER performance of the proposed algorithm for different pilot sizes.

they are GI-free to maximize SE and the pilots are not spread over the entire DD grid in order to minimize the pilot interference
on the data symbols. The SE expression of CPA, EP, NGR, and SP designs is given as22:

𝑠 = (1 − 𝜂𝑠) log2(1 + SINR𝑠), (38)
where 𝑠 ∈ {CPA, EP, NGR, SP} and 𝜂𝑠 is the pilot overhead relative to the scheme 𝑠. The pilot overhead 𝜂𝑠 can be calculated
using the frame-structure for the scheme 𝑠 and it is given for all previous schemes as follows: 𝜂𝐶𝑃𝐴 = 𝑀𝑁

2𝑀𝑁
= 1

2
, 𝜂𝐸𝑃 =

(2𝑙𝜏+1)(4𝑘𝜈+1)
𝑀𝑁

, 𝜂𝑁𝐺𝑅 = (2(𝑘𝜈+𝑁𝑝)+1)(𝑙𝜏+𝑀𝑝)
𝑀𝑁

and 𝜂𝑆𝑃 = 0. For the CPA, EP and SP designs, the SINR is given in Mishra et al.22 as:

SINR𝑠 =
(𝜎2

ℎ − 𝐵ℎ,𝑠)𝜎2
𝑑,𝑠

𝜎2
𝑤 + 𝜎2

𝑑,𝑠𝐵ℎ,𝑠
, SINRSPI =

(𝜎2
ℎ − 𝐵ℎ,SPI)𝜎2

𝑑,opt
𝜎2
𝑤 + 𝜎2

𝑑,opt𝐵ℎ,SPI + 𝜎2
𝑝,opt𝑃𝐵ℎ,SPI

(39)
where 𝑠 ∈ {CPA, EP}, 𝐵ℎ,𝑠 and 𝐵ℎ,SPI denote the MSE of MMSE CE in the 𝑠 design and the MSE of CE in the SP-I design,
respectively. Similarly, the SINR for the NGR scheme SINRNGR is given as

SINRNGR =
(𝜎2

ℎ − 𝐵ℎ,NGR)𝜎2
𝑑,NGR

𝜎2
𝑤 + 𝜎2

𝑑,𝑁𝐺𝑅𝐵ℎ,NGR
, (40)

where 𝐵ℎ,NGR is the MSE of CE in the NGR design. For the proposed design, the SE is given as follows:

 = (1 − 𝜂) log2(1 + SINR), (41)
where 𝜂 = 0, 𝐵ℎ is the MSE of CE in the proposed algorithm and the SINR expression can be expressed in the same way as
SINRSPI as follows:

SINR =
(𝜎2

ℎ − 𝐵ℎ)𝜎2
𝑑

𝜎2
𝑤 + 𝜎2

𝑑𝐵ℎ + 𝜎2
𝑝

(

(2𝑁𝑝+1)𝑀𝑝

𝑀𝑁

)

𝑃𝐵ℎ

. (42)

The difference between this expression and that of SINRSPI in Eq. 39 is the third term of the denominator. This term is equal
to 𝐵ℎ,𝑠Tr(�̃�𝑝�̃�𝐻

𝑝 ). For the SP-I algorithm, 𝐵ℎ,𝑠Tr(�̃�𝑝�̃�𝐻
𝑝 ) = 𝐵ℎ,SPI𝑃𝜎2

𝑝 . This is because �̃�𝑝 ∈ ℂ𝑃 is a vector full of pilots and
𝔼{|�̃�𝑝(𝑖)|2} = 𝜎2

𝑝 . In our case, �̃�𝑝 is a combination between pilots and zeros. The ratio of pilots to zeros is (2𝑁𝑝+1)𝑀𝑝

𝑀𝑁
. Therefore,

𝐵ℎ,𝑠Tr(�̃�𝑝�̃�𝐻
𝑝 ) =

(

(2𝑁𝑝+1)𝑀𝑝

𝑀𝑁

)

𝜎2
𝑝𝑃𝐵ℎ.
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5.3.1 Spectral efficiency (SE)
Fig 7 shows the average SE comparison of the proposed scheme with the SP-I, EP, NGR, and CPA schemes for 𝑀 = 𝑁 = 32
and for a given {𝑙𝜏 , 𝑘𝜈}. We see that the proposed scheme and the SP-I algorithm have almost the same average SE. We also
see that the average SE of the proposed scheme is larger than those of EP-based scheme, NGR scheme and the CPA design. In
addition, note that as 𝑙𝜏 and 𝑘𝜈 increase, in contrast to the proposed scheme, the average SE of the EP design and NGR scheme
degrades and the difference with the proposed scheme becomes larger. This is because the pilot overhead for the EP-based design
and the NGR scheme increases with 𝑙𝜏 and 𝑘𝜈 .
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FIGURE 7 Average SE comparison between the proposed scheme and SP-I, EP, NGR, and CPA designs.

5.3.2 Normalized mean square error (NMSE)
Fig 8 shows an NMSE comparison for an OTFS system using the suggested scheme against the SP-I algorithm and the EP-based
scheme. According to the obtained results, the proposed scheme performs slightly better than the SP-I design. Nevertheless, as
the EP-based algorithm associates higher power for pilots, this latter performs better than the proposed algorithm.

5.3.3 Bit error rate (BER)
Fig 9 shows a BER comparison between, on one hand, an OTFS system using the proposed iterative algorithm for CE and data
detection associated with the SA-based pilot optimization scheme, and on the other hand, a known channel state information
(CSI), the SP-I algorithm, and the EP designs. We first observe that the proposed algorithm and the SP-I algorithm have almost
the same BER at low SNRs. However, when the SNR increases, the benefits of using the pilot cancellation scheme appear since
the difference in residual symbols’ contamination power becomes reduced. We also see that the EP scheme in Raviteja et al.12
has a slightly better BER compared to the proposed algorithm. This is, as highlighted before, in the EP scheme, the pilot has
higher power, unlike the other schemes where the power is equally distributed over all symbols. However, it is worth pointing
out that this high power associated with the pilot causes the PAPR problem, unlike the proposed scheme and the SP-I where this
problem does not occur. Moreover, as mentioned before, the cost to pay for this slight BER improvement is a slight decrease in
SE for EP schemes (Fig. 2a).
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FIGURE 9 BER comparison between the proposed algorithm against SP-I and EP schemes.

5.4 Complexity analysis
The SA-based pilot optimization algorithm can run offline. Therefore, its complexity will not be taken into account in practice.
The proposed algorithm for CE and data detection is divided into three steps; the initial channel estimate step, the CE step and
the data detection step. For the CE step, the computational cost per iteration is 𝜇𝑒 = (4𝑃 2+6(2𝑘𝜈+1)(𝑙𝜏+1))(2𝑁𝑝+1)𝑀𝑝+(𝑃 3+
(2𝑘𝜈+1)(𝑙𝜏+1)). For the MP detection step, the overall cost for 𝑛𝑖𝑡𝑒𝑟 iterations is 𝜇𝑑 = 𝑛𝑖𝑡𝑒𝑟𝑁𝑀𝑆𝑃 . The total operations number
required by the proposed method is 𝜇 = 𝜇𝑒 + 𝜇𝑑 + 𝜇𝑖, where 𝜇𝑖 = 𝜇𝑒 is the computational cost of the first channel estimate. The
overall complexity of the proposed method is 𝐶 = (𝑁𝑖𝑡𝑒𝑟+1)(𝜇𝑒)+𝑁𝑖𝑡𝑒𝑟(𝜇𝑑). In practice we have, 𝑙𝜏 , 𝑘𝜈 , 𝑃 ,𝑁𝑝,𝑀𝑝 ≪ 𝑀𝑁 ,
and 𝐶 = 𝑁𝑖𝑡𝑒𝑟(𝜇𝑑) = 𝑁𝑖𝑡𝑒𝑟(𝑛𝑖𝑡𝑒𝑟𝑁𝑀𝑃𝑆). Under the same conditions i.e. 𝑙𝜏 , 𝑘𝜈 , 𝑃 ,𝑁𝑝,𝑀𝑝 ≪ 𝑀𝑁 , the complexity of
SP-I scheme is (𝑁𝑆𝑃𝐼 + 1)(𝑀𝑁) + (𝑁𝑆𝑃𝐼 + 1)(𝑛𝑖𝑡𝑒𝑟𝑁𝑀𝑃𝑆) ≈ 𝑁𝑆𝑃𝐼(𝑛𝑖𝑡𝑒𝑟𝑁𝑀𝑃𝑆) and that of the EP-based design
is dominated by (𝑛𝑖𝑡𝑒𝑟(𝑀𝑁 − ((2𝑙𝜏 + 1)(4𝑘𝜈 + 1)))𝑃𝑆) ≈ (𝑛𝑖𝑡𝑒𝑟(𝑀𝑁) since 𝑙𝜏 , 𝑘𝜈 ≪ 𝑀𝑁 . It should be noted that 𝑁𝑖𝑡𝑒𝑟
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and 𝑁SPI at convergence are of the same order of magnitude for both algorithms. Thus, we observe that there is a marginal
difference between the three schemes. We note that the suggested algorithm has a lower complexity when compared to SP-I.
This difference is manifested in the CE step because both methods use the MP algorithm for data symbol detection. Finally, It
is worth noting that we manage to estimate the channel without any a priori information on the channel compared to the SP-I
algorithm in Mishra et al.22 where the channel support is supposed to be known.

6 CONCLUSION

In this manuscript, we developed a new scheme to rearrange pilots and data symbols in the DD domain for OTFS systems. To
achieve better CE accuracy in terms of MIP, we formulated a pilot optimization problem that we solved via an SA-based pilot
optimization algorithm. We have also developed an iterative channel estimation and data detection algorithm that benefits from
channel sparsity in the DD domain. Also, we formulated the sparse CE step as a specific marginalization of MAP criterion
by providing a Bayesian approach via the variational MF approximation and the VB-EM scheme. Detection of data symbols
is done using a low complexity MP algorithm. An interference cancellation scheme has also been proposed to minimize the
effect of pilots on data symbols and detect them properly. In addition, to the gain in terms of spectral efficiency that offers the
proposed scheme compared to embedded pilots-based design, it surpasses the SP-I scheme in terms of BER and NMSE. Also,
the proposed scheme outperforms the SP-I algorithm in terms of complexity and without any prior knowledge of channel taps.

How to cite this article: Ouchikh R, A. Aïssa-El-Bey, T. Chonavel, and M. Djeddou (2022), Joint channel estimation and data
detection for high rate OTFS systems, Int J Commun Syst., 2022;xx:1–23.

APPENDIX

A CALCULATING 𝜇𝑉 AND 𝐶𝑉

We have 𝒗 = 𝑫�̃� + �̃�. The elements of a random matrix 𝑫 are centred, statistically independent of each other and statistically
independent from the noise �̃� and 𝔼{|𝑫(𝑖,𝑗)|

2} = 𝜎2
𝑑 . Therefore, 𝑫 has 𝔼{𝑫} = 𝟎𝐿𝑝×𝑃 and 𝔼{𝑫𝑫𝐻} = 𝜎2

𝑑𝑃𝑰𝐿𝑝
. For �̃�,

𝔼{�̃�} = 𝟎𝐿𝑝
and 𝔼{𝒉𝒉𝐻} = diag[𝜎2

ℎ1
, 𝜎2

ℎ2
, ..., 𝜎2

ℎ𝑃
]. Since 𝔼{𝑫} = 𝟎𝐿𝑝×𝑃 and 𝔼{�̃�} = 𝟎𝐿𝑝

, the mean of 𝒗 is

𝜇𝒗 = 𝔼{𝒗} = 𝟎𝐿𝑝
, (A1)

and its covariance matrix is given by
𝐶𝒗 = 𝔼{𝒗𝒗𝐻},

= 𝔼{(𝑫�̃� + �̃�)(𝑫�̃� + �̃�)𝐻},
= 𝔼{𝑫�̃��̃�𝐻𝑫𝐻} + 𝔼{𝑫�̃��̃�𝐻} + 𝔼{�̃��̃�𝐻𝑫𝐻} + 𝔼{�̃��̃�𝐻}.

(A2)

Since 𝑫 is statistically independent of �̃�, we have 𝔼{𝑫�̃��̃�𝐻} = 𝔼{�̃��̃�𝐻𝑫𝐻} = 𝟎𝐿𝑝×𝐿𝑝
and (Eq. A2) is reduced to

𝐶𝒗 = 𝔼{𝑫�̃��̃�𝐻𝑫𝐻} + 𝔼{�̃��̃�𝐻}. (A3)
The expression 𝔼{𝑫�̃��̃�𝐻𝑫𝐻} can be evaluated based on the following property42: if𝑿 is a𝐾×𝐿 random matrix that satisfies

𝔼{𝑿𝑿𝐻} = 𝜎2
𝑥𝑰𝐾 , then for any 𝐿 × 𝐿 hermitian matrix 𝒀 , 𝔼{𝑿𝒀𝑿𝐻} = Tr(𝒀 )

𝐿
𝔼{𝑿𝑿𝐻}. Therefore,

𝔼{𝑫�̃��̃�𝐻𝑫𝐻} =
Tr(�̃��̃�𝐻 )

𝑃
𝔼{𝑫𝑫𝐻},

=

( 𝑃
∑

𝑖=1
𝜎2
ℎ𝑖

)

𝜎2
𝑑𝑰𝐿𝑝

.
(A4)

Note also that �̃�𝑛 ∼  (0, 𝜎2
𝑤𝑰𝐿𝑝

) and putting all pieces together yields

𝐶𝒗 =

(( 𝑃
∑

𝑖=1
𝜎2
ℎ𝑖

)

𝜎2
𝑑 + 𝜎2

𝑤

)

𝑰𝐿𝑝
. (A5)



20 RABAH OUCHIKH ET AL

B COMPUTATION OF THE MF APPROXIMATION

The objective is to compute an approximation 𝑞(𝑏𝑘) of the posterior probability 𝑝(𝑏𝑘|𝒚𝑝). For this purpose, a methodology called
Mean Field (MF) approximation is adopted. Letting 𝜽 = (𝒃, 𝒈) and 𝑝(𝜽|𝒚𝑝) its posterior distribution, the MF approximation38,43
of 𝑝(𝜽|𝒚𝑝) is the surrogate distribution 𝑞⋆(𝜽) which satisfies

𝑞⋆(𝜽) = argmin
𝑞(𝜽)

⎧

⎪

⎨

⎪

⎩

∫
𝜽

𝑞(𝜽) log
(

𝑞(𝜽)
𝑝(𝜽|𝒚𝑝)

)

d𝜽
⎫

⎪

⎬

⎪

⎭

, (B6)

subject to
𝑞(𝜽) =

𝐾
∏

𝑘=1
𝑞(𝜽𝑘), ∫

𝜽𝑘
𝑞(𝜽𝑘)d𝜽𝑘 = 1 ∀𝑘 ∈ [1, 𝐾] . (B7)

Successive minimizations of the Kullback-Leibler divergence44 with respect to the parameters of factors 𝑞(𝜽𝑖) can solve the
problem (B6), (B7)45. The procedure given in Dremeau et al.,38 named VB-EM algorithm46,47,48, is ensured to converge to a
saddle point or a (local or global) maximum of problem (B6), (B7) under mild conditions38. The relation between this procedure
and the algorithm EM45,49 results from imposing the constraint 𝑞(𝜽𝑖) = 𝛿(𝜽𝑖 − 𝜽𝑖) on some 𝑞(𝜽𝑖)′𝑠.

To approximate the marginals 𝑝(𝜽𝑖|𝒚𝑝), the MF approximations offer a good framework. Indeed,
𝑝(𝜽𝑖|𝒚𝑝) = ∫𝜽−𝑖 𝑝(𝜽|𝒚𝑝)d𝜽−𝑖,

≃ ∫𝜽−𝑖 𝑞(𝜽|𝒚𝑝)d𝜽−𝑖,
≃ 𝑞(𝜽𝑖|𝒚𝑝),

(B8)

where the last equality stems from (B7).
Here, we consider the particular case where the MF approximation 𝑞(𝒈, 𝒃) of 𝑝(𝒈, 𝒃|𝒚𝑝) simply writes 𝑞(𝒈, 𝒃) = ∏

𝑘 𝑞(𝑔𝑘, 𝑏𝑘).
Together with models (25), (26), the corresponding VB-EM update is given as follows:

𝑞(𝑔𝑘, 𝑏𝑘|𝒚𝑝) = 𝑞(𝑔𝑘|𝑏𝑘, 𝒚𝑝)𝑞(𝑏𝑘|𝒚𝑝), (B9)
where

𝑞(𝑔𝑘|𝑏𝑘, 𝒚𝑝) =  (𝑚(𝑏𝑘),Σ(𝑏𝑘)). (B10)

𝑞(𝑏𝑘|𝒚𝑝) ∝
√

Σ(𝑏𝑘)𝑒

(

1
2
𝑚(𝑏𝑘)

2

Σ(𝑏𝑘)

)

𝑝(𝑏𝑘). (B11)
and

Σ(𝑏𝑘|𝒚𝑝) =
𝜎2
𝑔𝑘
𝜎2

𝜎2 + 𝑏𝑘𝜎2
𝑔𝑘
𝑨𝑇

𝑘𝑨𝑘
, (B12)

𝑚(𝑏𝑘|𝒚𝑝) = 𝑏𝑘
𝜎2
𝑔𝑘

𝜎2 + 𝑏𝑘𝜎2
𝑔𝑘
𝑨𝑇

𝑘𝑨𝑘
𝒓𝑇𝑘𝑨𝑘, (B13)

𝒓𝑘 = 𝒚𝑝 −
∑

𝑙≠𝑘
𝑞(𝑏𝑙 = 1)𝑚(𝑏𝑙 = 1)𝑨𝑙. (B14)

From (Eq. B8), an approximation of 𝑝(𝑏𝑘|𝒚𝑝) therefore follows simply from the relations
𝑝(𝑏𝑘|𝒚𝑝) ≃ ∫ 𝑞(𝑔𝑘, 𝑏𝑘|𝒚𝑝)d𝑔𝑘 = 𝑞(𝑏𝑘). (B15)
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