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Régularisation entropique des vecteurs de caractéristiques d'un réseau de neurones pour une meilleur transférabilité

Cet article étudie la classification de données à partir d'un apprentissage sur une approximation de leurs étiquettes. Par exemple, un problème de régression peut être discrétisé pour obtenir un problème de classification plus simple à résoudre. Un problème rencontré avec l'utilisation de l'entropie croisée comme critère d'entraînement dans cette situation est le surapprentissage des caractéristiques focalisant trop sur l'étiquetage grossier. Pour résoudre ce problème, nous introduisons une régularisation entropique appliquée à l'espace de caractéristiques du modèle. Ces caractéristiques peuvent ensuite être utilisées pour résoudre une tâche raffinée avec une erreur moindre. La validité de notre méthode est soutenue à la fois par une analyse théorique et des expériences.

Introduction

Résoudre des problèmes de classification ou de régression peut s'effectuer en apprenant directement sur des étiquettes détaillées, appelées étiquettes raffinées dans le reste de cet article, ou sur des étiquettes grossières qui sont des approximations [START_REF] Rasmus | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF][START_REF] Xin | Agenet : Deeply learned regressor and classifier for robust apparent age estimation[END_REF]. Ce dernier cas peut être préférable lorsque les étiquettes raffinées sont difficiles à obtenir par exemple. Par ailleurs, certains problèmes de classification peuvent être considérés comme la discrétisation d'un problème de régression sous-jacent plus complexe [START_REF] Yves | Semi-supervised learning by entropy minimization[END_REF].

Dans cet article, nous cherchons à montrer qu'à partir d'un apprentissage sur des étiquettes approximatives (grossières), il est possible de retrouver partiellement de l'information sur les étiquettes raffinées. Ce phénomène met en évidence la capacité des algorithmes d'apprentissage à généraliser au-delà d'une tâche spécifique et à aborder des problèmes plus subtils. Cette capacité n'est cependant pas toujours garantie. En effet, à mesure que le modèle s'entraîne sur des étiquettes grossières, sa généralisation sur les étiquettes raffinées peut se détériorer en raison d'un surapprentissage. Ce phénomène est souvent observé dans le cadre de l'apprentissage par transfert, en particulier avec les problèmes avec peu d'exemples, où l'arrêt précoce de l'entraînement peut conduire à de meilleures performances. Une explication possible est proposée dans [START_REF] Ravid | Opening the black box of deep neural networks via information[END_REF] où les auteurs décrivent apprentissage en deux phases ; la deuxième phase où l'information mutuelle entre l'espace des caractéristiques et l'entrée est réduite tandis que l'accent est mis sur la tâche d'entraînement.

En nous appuyant sur cette observation, nous avons réalisé une expérience pour montrer l'impact d'un apprentissage sur des étiquettes grossières sur la prédiction des étiquettes raffinées. L'expérience est conduite sur un jeu de données d'estimation d'âges [START_REF] Rasmus | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF] où la tâche consiste à prédire l'âge d'une personne à partir de la photo de son visage. L'apprentissage est réalisé sur des plages d'âges qui composent ainsi les étiquettes grossières. En parallèle, nous essayons de prédire les âges exacts (étiquettes raffinées). Nos résultats représentés sur la Figure 1 ont montré une forte relation entre l'entropie de l'espace des caractéristiques et l'erreur quadratique moyenne de la tâche de régression. Dans une première phase, l'erreur quadratique moyenne de régression diminue avec le taux d'erreur de classification. Cependant, dans une deuxième phase, plus longue, l'erreur quadratique moyenne de régression atteint un minimum avant d'augmenter tandis que le taux d'erreur de classification reste stable, illustrant parfaitement le comportement décrit dans [START_REF] Ravid | Opening the black box of deep neural networks via information[END_REF].

Sur la base de ces observations, nous introduisons dans cet article une régularisation entropique de l'espace de caractéristiques d'architectures profondes. En effet, sur plusieurs expériences, les modèles entraînés avec cette régularisation montrent de meilleures capacités de généralisation sur des tâches plus subtiles que celle ayant servi d'entraînement. Remarquons aussi qu'il n'est plus nécessaire de compter sur un arrêt précoce de l'entraînement, comme montré sur la Figure 1. Nous mettons à disposition notre code https: //github.com/raphael-baena/FIERCE-repo.

2 État de l'art

Apprentissage avec l'entropie croisée

Dans ce papier nous considérons uniquement des architectures profondes reconnues pour atteindre l'état de l'art dans le domaine de la vision. On peut écrire une architecture profonde comme une fonction f θ : x → y, où x est l'entrée et y la prédiction de l'étiquette associée. Cette fonction est généralement obtenue par la composition de fonctions plus simples appelées couches [START_REF] Goodfellow | Deep learning[END_REF], donnant lieu à des architectures composites. Dans le contexte de l'apprentissage supervisé, il est [START_REF] Rasmus | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF] : Entropie Croisée (rouge), FIERCE (méthode proposée) (vert), Lissage d'Etiquettes (bleu). Les modèles entraînées avec l'entropie croisée ou le lissage d'étiquettes atteignent une EQM minimum avant de se stabiliser à une valeur plus grande. A l'opposée, FIERCE atteint une EQM plus faible maintenue durant l'apprentissage. Cette capacité semble reliée à l'entropie des caractéristiques. d'usage d'appeler caractéristiques le vecteur r θ (x) obtenu en sortie de l'avant-dernière couche de l'architecture. La prédiction des étiquettes résulte classiquement de l'application d'un classificateur linéaire sur les caractéristiques.

Les paramètres de l'architecture profonde sont appris sur un ensemble d'entraînement D entrainement avec pour objectif de généraliser correctement sur d'autres données. L'entraînement repose sur la minimisation d'un critère L. Le choix du critère a donc un impact direct sur les performances de l'architecture [START_REF] Katarzyna | On loss functions for deep neural networks in classification[END_REF], l'espace des caractéristiques et la distribution de sortie [START_REF] Gabriel | Regularizing neural networks by penalizing confident output distributions[END_REF][START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF][START_REF] Chuan | On calibration of modern neural networks[END_REF][START_REF] Clara | Generalized Entropy Regularization or : There's Nothing Special about Label Smoothing[END_REF]. Parmi les différents critères utilisés en pratique, l'entropie croisée est particulièrement populaire dans le cadre de problèmes de classification [START_REF] Goodfellow | Deep learning[END_REF].

Cependant, la minimisation de l'entropie croisée avec une descente de gradient stochastique (ou ses variantes) a tendance à éliminer les caractéristiques considérées comme peu informatives pour la tâche considérée. Les auteurs de [START_REF] Ravid | Opening the black box of deep neural networks via information[END_REF] ont observé un phénomène d'apprentissage en deux phases successives. Lors de la première phase, l'information mutuelle I(y, r) entre les caractéristiques r et la sortie y augmente. Au cours de la deuxième phase, beaucoup plus longue, l'information mutuelle I(x, r) entre l'entrée et les caractéristiques diminue. En d'autres termes, l'architecture trouve d'abord les caractéristiques sur lesquelles elle peut prédire les étiquettes, avant d'exceller sur la tâche d'entraînement en compressant les caractéristiques pour de ne conserver que les plus pertinentes.

De même, dans [START_REF] Chuan | On calibration of modern neural networks[END_REF], les auteurs ont montré que plus l'erreur de classification est réduite, plus la confiance en la prédiction est surestimée. Une méthode pour amoindrir ce phénomène consiste à ajouter une régularisation R(x, y, θ) au critère d'entraînement [START_REF] Chuan | On calibration of modern neural networks[END_REF]. Les régularisations comprennent une large gamme de techniques agissant sur les paramètres de l'architecture, comme la normalisation des échantillons [START_REF] Sergey | Batch normalization : Accelerating deep network training by reducing internal covariate shift[END_REF], la pénalisation des poids [START_REF] Stephen | Comparing biases for minimal network construction with back-propagation[END_REF] ou encore le dropout [START_REF] Hinton | Improving neural networks by preventing co-adaptation of feature detectors[END_REF].

Régularisation entropique sur la sortie

Certaines régularisations s'appliquent directement sur la distribution de sortie, par exemple : la pénalisation de la confiance [START_REF] Gabriel | Regularizing neural networks by penalizing confident output distributions[END_REF], le lissage des étiquettes [START_REF] Christian | Rethinking the inception architecture for computer vision[END_REF] ou la distillation [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF]. De nombreux auteurs ont montré qu'en réalité ces techniques reposent sur une forme de régularisation entropique appliquée à la distribution de sortie [START_REF] Gabriel | Regularizing neural networks by penalizing confident output distributions[END_REF][START_REF] Abhimanyu | Regularizing Prediction Entropy Enhances Deep Learning with Limited Data[END_REF][START_REF] Clara | Generalized Entropy Regularization or : There's Nothing Special about Label Smoothing[END_REF].

Cette régularisation est utilisée dans le cadre de l'apprentissage supervisé pour obtenir des distributions de sortie plus lisses [START_REF] Gabriel | Regularizing neural networks by penalizing confident output distributions[END_REF][START_REF] Abhimanyu | Regularizing Prediction Entropy Enhances Deep Learning with Limited Data[END_REF]. Elle impacte également la géométrie de l'espace des caractéristiques [START_REF] Zhiqiang | Is label smoothing truly incompatible with knowledge distillation : An empirical study[END_REF][START_REF] Rafael | When does label smoothing help ?[END_REF]. Cependant, les bénéfices de ces impacts ne sont pas évidents. En effet, les auteurs de [START_REF] Zhiqiang | Is label smoothing truly incompatible with knowledge distillation : An empirical study[END_REF] ont montré que le lissage des étiquettes peut supprimer la spécificité des caractéristiques des individus au sein d'une même classe. Cette perte d'information a suscité une controverse sur l'utilisation du lissage des étiquettes dans le cadre de la distillation [START_REF] Rafael | When does label smoothing help ?[END_REF]. Plus récemment, les auteurs de [START_REF] Simon | Why do better loss functions lead to less transferable features ?[END_REF] ont montré que les critères d'entraînement conduisant aux meilleures performances ne sont pas nécessairement synonymes de bonnes performances en transfert. Nous montrons un résultat similaire dans nos expériences.

Contrairement à ces travaux, nos proposons une régularisation entropique sur l'espace des caractéristiques (au lieu de la sortie) et nous motivons cette proposition dans la section théorique et expérimentale. 

E x -∇ θ (p θ (r|x))[(1 -σ) log(p(y = y i |r) + σ c -1 log( j,j̸ =i p(y = y j |r))]dr   .
Le lissage d'étiquettes conduit à des termes supplémentaires σ c-1 log( j,j̸ =i p(y = y j |r)). Ces termes encouragent les caractéristiques les plus discriminantes associées aux autres classes j.

Par conséquent, le lissage d'étiquettes favorise certes la diversité, mais uniquement parmi les caractéristiques les plus sélectives. Celles menant à une précision pertinente, mais moindre (p(y = y i |r) > 0, 5) ne seront donc pas encouragées. Ce résultat est cohérent avec [START_REF] Zhiqiang | Is label smoothing truly incompatible with knowledge distillation : An empirical study[END_REF][START_REF] Rafael | When does label smoothing help ?[END_REF].

Régularisation entropique des caractéristiques pour promouvoir la diversité

Nous étudions l'utilisation de l'entropie des caractéristiques en tant que terme de régularisation. Cette régularisation est motivée après plusieurs expériences montrant la relation entre l'entropie de l'espace de caractéristiques et l'erreur sur la tâche de transfert. Nous montrons que la régularisation d'entropie sur les caractéristiques favorise la diversité. L'idée est d'ajouter l'entropie de l'espace de caractéristiques en tant que terme de régularisation :

L Bayesian Entropy (x, y, θ) = L CE -λH θ (r). (2) 
où H θ (r) est l'entropie estimée pour chaque lot de données et λ > 0 est un hyperparamètre. Le gradient de la régularisation entropique des caractéristiques est :

-E x ∇ θ [-λ(log(p θ (r)) + 1)] dr . (3) 
Remarquons que si une caractéristique est très probable, i.e. p(r) grand, le gradient sera pénalisé. En ajustant λ, les caractéristiques moins discriminantes sont conservées tant qu'elles restent pertinentes pour la tâche d'entraînement.

Expériences

Dans cette partie, nous montrons d'abord que l'entropie des caractéristiques est reliée à leur capacité de retrouver de l'information sur les étiquettes raffinées. Dans [START_REF] Raphael | Preserving Fine-Grain Feature Information in Classification via Entropic Regularization[END_REF] nous fournissons plus de détails, ainsi que des expériences sur des problèmes avec peu d'exemples (few-shot) et sur la sensibilité de notre méthode aux hyperparamètres. Implémentation de la régularisation : notre régularisation consiste à soustraire l'entropie des caractéristiques Hθ (r) à l'entropie croisée. Malheureusement, il n'existe pas de moyen direct pour estimer de manière différentiable l'entropie de l'espace des caractéristiques. Nous proposons une manière d'approximer cette quantité de manière différentiable avec une loi catégorique (voir détails dans [START_REF] Raphael | Preserving Fine-Grain Feature Information in Classification via Entropic Regularization[END_REF]).

Relation entre l'entropie de l'espace de caractéristiques et la capacité de transfert

En considérant un problème de régression transformé en un problème de classification, nous montrons expérimentalement que l'entropie de l'espace de caractéristiques est reliée à sa capacité de régression mesurée par l'Erreur Quadratique Moyenne (EQM ). Nous considérons un jeu de données d'estimation d'âges [START_REF] Rasmus | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF] composé d'images de visages. Le but est de prédire les âges correspondant aux différents visages. Ce jeu de données peut être transformé en un problème de classification binaire avec les étiquettes grossières suivantes y = 1 age<36 où 36 est l'âge médian. Nous utilisons un Resnet-18 [START_REF] Kaiming | Deep residual learning for image recognition[END_REF], excepté qu'à l'avant-dernière couche, nous moyennons les caractéristiques pour obtenir un espace de dimension 1. Nous espérons que cet espace préserve dans une certaine mesure la relation d'ordre pré-existante entre les âges. L'architecture est entraînée avec une descente de gradient stochastique (SGD).

Pour estimer les âges, nous calculons les caractéristiques de 10 000 échantillons. Ensuite, nous ordonnons les caractéristiques selon leur valeur. En supposant que la distribution de probabilité des âges est connue, nous estimons les âges à partir de la distribution des caractéristiques à l'aide d'un transport optimal 1-d [START_REF] Gabriel | Computational optimal transport : With applications to data science[END_REF].

Nous présentons l'évolution de l'EQM et de l'entropie des caractéristiques sur la figure 1. Nous observons que l'utilisation du lissage d'étiquettes ou de l'entropie croisée (sans régularisation) conduit à deux phases. L'erreur quadratique moyenne diminue tandis que la précision s'améliore. Puis, une deuxième phase beaucoup plus longue s'initie (vers l'époque 50) avec une erreur quadratique moyenne qui augmente tandis que l'erreur de classification reste stable. De manière similaire, l'entropie des caractéristiques atteint un maximum avant de diminuer ; cette diminution est négativement corrélée avec l'erreur quadratique moyenne de régression. Ces phases sont semblables à l'évolution de l'information mutuelle I(r, x) décrite dans [START_REF] Ravid | Opening the black box of deep neural networks via information[END_REF], et motivent fortement notre méthode.

Nous observons que notre méthode fournit l'erreur quadratique la plus faible et démontre son efficacité à accroître et maintenir l'entropie des caractéristiques. Dans [START_REF] Raphael | Preserving Fine-Grain Feature Information in Classification via Entropic Regularization[END_REF], nous montrons comment l'erreur quadratique et l'entropie se comportent en faisant varier les différents hyperparamètres de notre méthode. Nous remarquons que sur ce jeu de données le lissage d'étiquettes dégrade l'erreur de régression. L'EQM finale est supérieure avec l'entropie croisée et, par ailleurs, l'entropie des caractéristiques continue de diminuer. Dans [START_REF] Raphael | Preserving Fine-Grain Feature Information in Classification via Entropic Regularization[END_REF], nous illustrons l'espace des caractéristiques de chaque critère. On peut y observer clairement que le lissage d'étiquettes augmente la zone d'incertitude de prédiction sans pour autant fournir d'informations pertinentes sur les étiquettes raffinées.

Distribution de sortie et transférabilité

Les techniques de régularisation entropique sur la distribution de sortie ont pour effet de lisser cette distribution [START_REF] Gabriel | Regularizing neural networks by penalizing confident output distributions[END_REF][START_REF] Christian | Rethinking the inception architecture for computer vision[END_REF]. Au lieu d'avoir une sortie avec des pics aux valeurs 0 et 1, le lissage de la distribution permet d'avoir une plus grande gamme de valeurs. Une question naturelle est alors de savoir si cette gamme fournit des informations sur les étiquettes raffinées.

Il est possible que les valeurs de sortie donnent des informations sur les étiquettes raffinées ; par exemple, le degré de similitude entre chaque classe. Pour évaluer la validité de cette interprétation, nous considérons un ensemble de données où l'incertitude de sortie peut être facilement interprétée comme des étiquettes raffinées. À cet effet, nous prenons un jeu de données hyperspectrales (télédétection) [START_REF] Lucas | Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability[END_REF]. Nous détaillons ce jeu de données dans [START_REF] Raphael | Preserving Fine-Grain Feature Information in Classification via Entropic Regularization[END_REF]. Deux problèmes importants et interconnectés de l'imagerie hyperspectrale sont la classification sémantique supervisée des pixels et le démélange spectral [START_REF] Pedram | Advances in hyperspectral image and signal processing : A comprehensive overview of the state of the art[END_REF]. En classification, on essaie d'attribuer une classe à chaque pixel. Le démélange peut être considéré comme un raffinement de la classification. Le but est alors de prédire la proportion de chaque matériau (appelée abondance) dans chaque pixel. Nous transformons le problème de régression du démélange (étiquettes raffinées) en un problème de classification en utilisant les étiquettes grossières suivantes y = (arg max i z i ) où z i est la proportion du matériau i : z ∈ [0, 1] m , i (zi) = 1. Comme y est une proportion, on peut interpréter la sortie du réseau (après un softmax) comme les proportions de chaque matériau. Les performances EQM br de cette prédiction sont évaluées sur l'image entière. Pour ce jeu de données, nous utilisons un réseau de neurones avec 2 couches cachées.

Nous calculons une autre mesure pour évaluer si les caractéristiques apprises peuvent être réutilisées afin d'effectuer la tâche de régression. Pour cela, nous figeons l'espace de caractéristiques et nous entraînons un régresseur logistique à résoudre le problème de démélange (etiquettes raffinées). Les performances de ce régresseur sont évaluées avec son erreur quadratique moyenne : EQM tr .

Comme indiqué dans le Tableau 1, le lissage d'étiquette et notre méthode FIERCE ont l'EQM la plus faible lorsque la sortie est directement interprétée comme les étiquettes raffinées. Cependant, notons que FIERCE présente la plus grande capacité de transfert (EQM tr la plus faible) : les caractéristiques apprises permettent de récupérer davantage d'informations sur les étiquettes raffinées en comparaison avec les autres critères. En considérant la différence entre les deux métriques (EQM brute et EQM de transfert), nous soupçonnons que la distribution de sortie n'est pas un indicateur pertinent de la capacité de transfert. Une discussion plus approfondie et des métriques supplémentaires sont fournies dans [START_REF] Raphael | Preserving Fine-Grain Feature Information in Classification via Entropic Regularization[END_REF].

Conclusion

Dans cet article, nous avons introduit une nouvelle forme de régularisation entropique qui s'applique à l'espace des caractéristiques d'une architecture d'apprentissage profond. Son objectif est de fournir des caractéristiques plus diverses pouvant être réutilisées afin de résoudre d'autres tâches. À cette fin, l'entropie des caractéristiques est encouragée, empêchant le modèle de supprimer les caractéristiques même si elles ne sont pas les plus discriminantes.

Soutenus par des expériences et un développement théorique, nous avons démontré la capacité de notre méthode à prévenir la perte d'information causée par l'utilisation de l'entropie croisée ou du lissage d'étiquettes, conduisant ainsi à de meilleures performances sur des problèmes plus subtils dérivées de la tâche d'entraînement.

FIGURE 1 :

 1 FIGURE 1 : Évolution de l'entropie des caractéristiques et l'erreur quadratique moyenne (EQM ) sur le jeu d'estimation d'âges[START_REF] Rasmus | Deep expectation of real and apparent age from a single image without facial landmarks[END_REF] : Entropie Croisée (rouge), FIERCE (méthode proposée) (vert), Lissage d'Etiquettes (bleu). Les modèles entraînées avec l'entropie croisée ou le lissage d'étiquettes atteignent une EQM minimum avant de se stabiliser à une valeur plus grande. A l'opposée, FIERCE atteint une EQM plus faible maintenue durant l'apprentissage. Cette capacité semble reliée à l'entropie des caractéristiques.

TABLE 1 :

 1 EQM s calculées sur le jeu de données hyperspec-

	tral.		
	CE	LS	FIERCE
	EQM br 0.186 ± 0.00 0.066 ± 0.10 0.130 ± 0.01
	EQM tr 0.177 ± 0.3	0.02 ± 0.08	0.006 ± 0.00