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Abstract—In this paper, we study blind equalization techniques
to reduce the intersymbol interference (ISI) and we are par-
ticularly interested in equalizers based on probability density
fitting (PDF). The PDF criterion was used with conventional
linear equalizers. So we try in this paper to use this criterion
in a nonlinear context using a neural network architecture.
The network weights are updated by minimizing, at first, the
stochastic quadratic distance, then the Multimodulus quadratic
distance between the equalized PDF and some target distribution.
Our approach shows a better performance in terms of mean
square error (MSE) and symbol error rate (SER).

Index Terms—blind equalization, neural network and proba-
bility density fitting.

I. INTRODUCTION

In wireless communication, multipath channel introduces
intersymbol interference (ISI). In the receiver side, it is
difficult to estimate the received data without exploiting any
prior processing. Equalization is one of the solutions used
to reduce ISI. We are oriented towards blind equalization,
because it allows a gain in flow and bandwidth given the
absence of the periodic learning sequence. In this paper
we are focused on probability density fitting (pdf) criterion
especially the stochastic quadratic distance algorithm (SQD)
[1] and the multimodulus stochastic quadratic distance
algorithm(MSQD-ℓp) [2].
In the last decade, the neural network technique becomes
a powerful tool to efficiently equalize channels. In the
literature, several works have combined the neural network
with the cost function of conventional equalizers to build
blind neural equalizers like neural network constant modulus
algorithm (NNCMA) [3] and neural network multimodulus
algorithm (NNMMA) [4]. These algorithms have achieved
better performance compared to their linear versions constant
modulus algorithm (CMA) [5] and multimodulus algorithm
(MMA) [6].
In [2], it has shown that SQD and MSQD-ℓp outperform
CMA and MMA and it was demonstrated that the MSQD-ℓ1
algorithm converges close to the minimum mean squared
error (MMSE) which is widely used as a benchmark. This

encourages us to use these criterions with the neural network
to improve the equalization performance.
In this paper we present two new blind neural equalization
algorithms. The first is derived from SQD, where we combine
the SQD cost function with the neural network and the second
one is derived from MSQD-ℓp in a neural network context.
Several neural network architectures were used for blind
equalization. We can mention for examples, the multilayer
perceptron (MLP) or feedforward equalizer (FFE) [3], the
feedforward with decision feedback equalizer (FFE-DF) [7],
the recurrent neural network equalizer (RNNE) [8] [9] and
variational autoencoders [10] [11]. Since the equalized signal
is complex and to reduce the implementation complexity,
in this paper, we have implemented a complex valued feed
forward architecture. The latter is trained with complex
backpropagation (CBP) [12] [13] [14] and an activation
function dealing with the different constellation sizes.

This paper is organized as follows. In section II we
propose the system model. In section III and IV we present
respectively the first new algorithm wich is the neural network
stochastic quadratic distance (NNSQD) and the second new
algorithm wich is the neural network multimodulus stochastic
quadratic distance (NNMSQD-ℓp). The simulations and
results are presented in Section V. Conclusion is provided in
section VI.

II. SIGNAL AND EQUALIZER MODEL

A. Signal model

Let s(n)n∈Z be a sequence of an independent and
identically distributed (i.i.d) of complex symbols belonging to
a particular modulation M-QAM and sent over a transmission
channel h = [h0, h1, ..., hLh−1

] which we assumed in this
paper finite impulse response (FIR). We denote by b(n)
an additive white Gaussian noise, x(n) is the input of the
equalizer, w are the synaptic weights of the neural network
and take the role of equalizer impulse response and y(n) is
the equalized signal at time n such that.



x(n) =
∑Lh−1

i=0 his(n− i) + b(n) and

y(n) = G(x,w),

where x = [x(n), x(n − 1), ..., x(n − Lw + 1)]T , Lw

is the size of the input neural network layer and G is the
neural network total function.
The basic model of a transmission system using a neural
equalizer as a filter is described in Fig.1
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Fig. 1: Base band model of a transmission system with a neural
network equalizer used as a filter.

B. Equalizer model

As mentioned in the above section, the neural network used
for our equalizer is the complex-valued feed forward. whose
structure is shown in Fig.2

Fig. 2: A complex-valued feed forward structure.

The neuron structure of complex-valued feed forward is
defined in Fig.3.

We assume Nk neurons in the kth layer. Each neuron has
an input named φk

j and an ouput named xk+1
j that can be

formulated as :

φk
j =

Nk−1∑
i=1

wk
ijx

k
i + θkj , (1)

xk+1
j = fk(φk

j,R) + j ∗ fk(φk
j,I), (2)

where xk
i , denotes the input of the layer, wk

ij , is the weight
between the ith input and the jth neurone in the kth layer,
θkj denotes the bias and fk(.) is the activation function in the
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Fig. 3: Model of the jth neurone in kth layer in the complex-
valued feed forward.

kth layer.
We can develop (1) as the following:

φk
j,R =

Nk−1∑
i=1

(wk
ij,Rx

k
i,R − wk

ij,Ix
k
i,I) + θkj,R (3)

φk
j,I =

Nk−1∑
i=1

(wk
ij,Rx

k
i,I + wk

ij,Ix
k
i,R) + θkj,I (4)

The complex feedforward equalizer designed during our
contribution works in two main steps for each iteration. The
first step is the forward pass from the input layer to the output
layer. During this processing, the goal is to calculate the net-
work output applying an activation function on the weighted
sum in each layer. The second part is the complex back
propagation (CBP) to update the synaptic weights according
to our equalizer criterion.

III. NEURAL EQUALIZERS BASED ON PDF CRITERION

The proposed equalizer is a mixture of the PDF criterion
and the neural network. For this purpose, the cost function
is based on the PDF during the CBP step. The two cost
functions that will be used are SQD [1] and MSQD-ℓ1 [2].
In sequel, the CMA is also a widely known blind equalizer
and is used as a reference in both conventional and neural
modes [3]. The network has three layers : input, hidden and
output layers. We assume along this paper that the activation
function is :

f(x) = x+ α ∗ sin(Π ∗ x).

This activation function is nonlinear under the effect of
sin() and the α parameter, which determines the degree of
non linearity, is real positive. Moreover, this transfer function
can deal with M-QAM signals of any constellation sizes [3].



A. Neural network stochastic quadratic distance equal-
izer(NNSQD)

SQD calculates the square distance between the probability
density (PD) of the observations and the PD of the transmitted
constellation. SQD has the following cost function [1]:

JSQD(w) =

∫ +∝

−∝
(fY p(z)− fSp(z))2dz, (5)

where y is the output of the neural equalizer and Y p = |y(n)|p,
S is the transmitted constellation and Sp = |s(n)|p.fx(z)
means the PD from x to z.

To estimate the PD of the current data, a Gaussian Kernel
Parzen window was applied. Using this non parametric
PD estimator with the previous L symbols, the PD at each
discrete instant n is as follows :

fY p(z) =
1

L

L−1∑
j=0

Kσ0
(z − |y(n− j)|p),

fSp(z) =
1

Ns

Ns∑
k=1

Kσ0(z − |s(k)|p),

(6)

where, Ns is the number of complex symbols in the
constellation and Kσ0

is a Gaussian Kernel with zero mean
and variance σ0 which is denoted also Kernel width.
For p = 2 and L = 1, the cost function is

JSQD(w) =
1

N2
s

Ns∑
k=1

Ns∑
l=1

Kσ(|s(l)|2 − |s(k)|2)

− 2

Ns

Ns∑
k=1

Kσ(|y(n)|2 − |s(k)|2),

(7)

where σ =
√
2σ0. Let µ be the learning rate, such that

wk
ij(n+ 1) = wk

ij(n)− µ
∂JSQD

∂wk
ij(n)

. (8)

The gradient is calculated as in [4]. We introduce two
constants Q and δop to simplify the expression which are
expressed as follows :

Q =
4

Ns

Ns∑
k=1

1√
2Πσ

e
−
(|y(n)|2 − |s(k)|2)2

2σ2 (|y(n)|2 − |s(k)|2)
σ2

,

δop = [fo(φo
r)f

o
′

(φo
r) + jfo(φo

i )f
o
′

(φo
i )]Q. (9)

The weights of the output layer are updated as

wo
j (n+ 1) = wo

j (n)− µδopI
∗
pj , (10)

where φo
r , φo

i , are the real and imaginary inputs of the
output layer. Ipj is the output of the hidden layer. fo(φo

r)
and fo(φo

i ) are the activation functions of the output layer

applied in the real and imaginary parts. fo
′

(φo
r) and fo

′

(φo
i )

are the derivatives of the activation functions in output layer
applied in the real and imaginary parts.

In the same way, to update the hidden layer weights,
we applied the chain rule like in [4] and denote by δhpj ,

δhpj = fh
′

j (φh
r )Real(δopw

o∗

j ) + jfh
′

j (φh
i )Imag(δopw

o∗

j ). (11)

Similarly, the weights of the hidden layer are updated as

wh
ji(n+ 1) = wh

ji(n)− µδhpjx
∗
pi, (12)

where φh
r , φh

i , are the real and imaginary inputs of the
hidden layer and xpi is the input of the network. fh

′

j (φh
r )

and fh
′

j (φh
i ) are derivatives of the activation functions of the

hidden layer applied in the real and imaginary parts at the jth

neuron.

B. Neural network multimodulus SQD-ℓ1 equalizer
(NNMSQD-ℓ1)

The decomposition of equalization criteria into an inphase
component and a quadrature component is more efficient than
processing two components together, with respect to a phase
shift introduced by the transmission channel.
This approach will lead to the Multimodulus SQD-ℓp (MSQD-
ℓp) criteria. More specifically, for p = 1, the MSQD-ℓ1, was
introduced in [2] which has the following cost function :

JMSQD−ℓ1(w) = − 1

Ns

Ns∑
k=1

Kσ(|yr| − |sr(k)|)

− 1

Ns

Ns∑
k=1

Kσ(|yi| − |si(k)|),

(13)

where Ns is the number of complex symbols in the con-
stellation and Kσ0

is the same as in NNSQD. yr and yi and
sr and si are the real and imaginary parts of the equalized
output and the emitted constellation, respectively.
We focus on the sequel on the derivation of gradient expression
of the cost function. Using the same chain rule in [4] and for
simplification purposes we introduce Qr, Qi and δop,

Qr =
1

Ns

Ns∑
k=1

1√
2Πσ

e
−
(|yr| − |sr|)2

2σ2 (|yr| − |sr|)
σ2

,

Qi =
1

Ns

Ns∑
k=1

1√
2Πσ

e
−
(|yi| − |si|)2

2σ2 (|yi| − |si|)
σ2

,

δop = Qrsign(f
o(φo

r))f
o
′

(φo
r) + jQisign(f

o(φo
i ))f

o
′

(φo
i ).
(14)

The weights of the output layer are updated as

wo
j (n+ 1) = wo

j (n)− µδopI
∗
pj (15)



where φo
r , φo

i , are the real and imaginary inputs of the
output layer and Ipj is the output of the hidden layer. fo(φo

r)
and fo(φo

i ) are the activation functions of the output layer
applied in the real and imaginary parts. fo

′

(φo
r) and fo

′

(φo
i )

are the derivatives of the activation functions in output layer
applied in the real and imaginary parts. Finally sign is the
sign function.

To update the hidden layer weights, we applied the chain rule
like in [4] and simplify the expression by introducing δhpj ,

δhpj = fh
′

j (φh
r )Real(δopw

o∗

j ) + jfh
′

j (φh
i )Imag(δopw

o∗

j ). (16)

Similarly, the weights of the hidden layer are updated as

wh
ji(n+ 1) = wh

ji(n)− µδhpjx
∗
pi, (17)

where φh
r , φh

i , are the real and imaginary inputs of the
hidden layer and xpi is the input of the network. fh

′

j (φh
r ) and

fh
′

j (φh
i ) are derivatives of the activation function of the hidden

layer applied in the real and imaginary parts at the jth neuron.

IV. SIMULATION RESULTS

We have simulated the three equalizers detailed in section
III with a complex-valued feed forward neural network using
three layers. The number of neurons in the input layer and the
hidden layer depends on the modulation size. For 16-QAM
and 64-QAM, we used 25 neurons [Li = 15 (input), Lh = 9
(hidden), Lo = 1 (outout)] and for 256-QAM we used 101
neurones [Li = 40 (input), Lh = 60 (hidden), Lo = 1
(output)].
The activation function is f(x) = x+αsin(Πx) and the value
of α varies according to the equalizer type, modulation size,
signal to noise ratio(SNR) and the layer order. In addition,
we tested the equalizers performance when using a channel
h1 with real coefficients and one typical digital radio channel
h2 that was used in [2].

h1(z) = 0.2258 + 0.5161z−1 + 0.6452z−2 − 0.5161z−3

h2(z) = (0.0410 + j0.0109) + (0.0495 + j0.0123)z−1 +
(0.0672 + j0.0170)z−2 + (0.0919 + j0.0235)z−3 +
(0.7920 + j0.1281)z−4 + (0.3960 + j0.0871)z−5 +
(0.2715+ j0.0498)z−6+(0.2291+ j0.0414)z−7+(0.1287+
j0.0154)z−8 + (0.1032 + j0.0119)z−9.

We have initialized the two matrices of synaptic
weights W o[L,N ] and Wh[L] with small values to get
|whoro

RorI | < 10−5. Except for wo[(L + 1)/2, (N + 1)/2] and
wh[(L+ 1)/2] that were set to one.
For 16-QAM modulation, the length of the conventional
equalizers Lw is set to 21. The learning rates were fixed to
µCMA = 5e−6, µSQD = 5e−5 and µMSQD−ℓ1 = 1e−4.

For the neuronal equalizers, we use the same value of α in
the hidden and output layer, that was set to 0.1. The learning
rates were fixed to µNNCMA = 3e−5, µNNSQD = 5e−5 and

µNNMSQD−ℓ1 = 1e−3.
For 64-QAM modulation, the length of the conventional
equalizers Lw is set to 21. The learning rates were fixed to
µCMA = 1.5e−7, µSQD = 6e−7 and µMSQD−ℓ1 = 1e−4.

For the neuronal equalizers, we use the same value of α in
the hidden and output layer, that was set to 0.1. The learning
rates were fixed to µNNCMA = 8e−8, µNNSQD = 1e−7 and
µNNMSQD−ℓ1 = 2e−4.
For 256-QAM modulation, the length of the conventional
equalizers Lw is set to 21. The learning rates were fixed to
µCMA = 1e−8, µSQD = 5e−8 and µMSQD−ℓ1 = 1e−5.

For the neuronal equalizers, we use the same value of α in
the hidden and output layer, that was set to 0.1. The learning
rates were fixed to µNNCMA = 2e−9, µNNSQD = 1e−8 and
µNNMSQD−ℓ1 = 8e−5.

The following three figures Fig.4, Fig.5 and Fig.6 represente
the performance of the introduced equalizers in terms of MSE
when using h1 and h2.
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Fig. 4: MSE for 16-QAM and h1.
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Fig. 5: MSE for 64-QAM and h2.
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Fig. 6: MSE for 256-QAM and h2.

We can notice according to the figures of MSE for different
values of SNR that the NNMSQD-ℓ1 equalizer is the most
performante in terms of MSE. The gain of MSE is more



considerable when the value of SNR increases. This can
be explained by the performance of the learning phase that
increases when SNR increases. In addition, the NNMSQD-ℓ1
equalizer is more efficient in terms of MSE than the MSQD-
ℓ1 which already achieves the performance of the non-blind
equalizer MMSE [12].
Fig.7, Fig.8 and Fig.9 show the performance of the equalizers
in terms of SER when using the same channels h1 and h2.
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Fig. 7: SER for 16-QAM and h1.
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It is the same case here, we can see that NNMSQD-ℓ1
has the best performance in terms of SER that confirms its
performance in terms of MSE.
Computation burdens for NNSQD and NNMSQD-ℓ1 is
defined in Tab I.

Equalizer X Exponents
NNSQD 3Lh(Li + Lo) + 2Lh Ns

NNMSQD-ℓ1 3Lh(Li + Lo) + 2Lh 2Ns

TABLE I: Computational complexity

V. CONCLUSION

In this paper, we have proposed a new approach for blind
equalization based on pdf fitting and neural network system.
We have shown that it outperforms the conventionnal kernel
blind equalization methods in terms of MSE and SER. As
a perspective, we can generalize our algorithm with time
varying channel. Deep learning has several applications in
signal processing. It evolves quickly, it starts supervised, then
unsupervised. Today, it becoms generic. This encourages us to
open a track on the use of the generic deep learning model to
create generic blind equalizers.
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Université de Bretagne Occidentale, 2015.

[16] Fki, Souhaila, Abdeldjalil Aı̈ssa-El-Bey, and Thierry Chonavel. ”Blind
equalization and automatic modulation classification based on pdf fit-
ting.” 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2015.

[17] Fki, Souhaila, et al. ”New criteria for blind equalization based on pdf
fitting.” 2014 IEEE 15th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC). IEEE, 2014.


