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I. INTRODUCTION

In wireless communication, multipath channel introduces intersymbol interference (ISI). In the receiver side, it is difficult to estimate the received data without exploiting any prior processing. Equalization is one of the solutions used to reduce ISI. We are oriented towards blind equalization, because it allows a gain in flow and bandwidth given the absence of the periodic learning sequence. In this paper we are focused on probability density fitting (pdf) criterion especially the stochastic quadratic distance algorithm (SQD) [START_REF] Lázaro | Stochastic blind equalization based on pdf fitting using parzen estimator[END_REF] and the multimodulus stochastic quadratic distance algorithm(MSQD-ℓp) [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF]. In the last decade, the neural network technique becomes a powerful tool to efficiently equalize channels. In the literature, several works have combined the neural network with the cost function of conventional equalizers to build blind neural equalizers like neural network constant modulus algorithm (NNCMA) [START_REF] Wang | Generalized derivation of neural network constant modulus algorithm for blind equalization[END_REF] and neural network multimodulus algorithm (NNMMA) [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF]. These algorithms have achieved better performance compared to their linear versions constant modulus algorithm (CMA) [START_REF] Johnson | Blind equalization using the constant modulus criterion: A review[END_REF] and multimodulus algorithm (MMA) [START_REF] Yang | The multimodulus blind equalization and its generalized algorithms[END_REF]. In [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF], it has shown that SQD and MSQD-ℓp outperform CMA and MMA and it was demonstrated that the MSQD-ℓ1 algorithm converges close to the minimum mean squared error (MMSE) which is widely used as a benchmark. This encourages us to use these criterions with the neural network to improve the equalization performance. In this paper we present two new blind neural equalization algorithms. The first is derived from SQD, where we combine the SQD cost function with the neural network and the second one is derived from MSQD-ℓp in a neural network context. Several neural network architectures were used for blind equalization. We can mention for examples, the multilayer perceptron (MLP) or feedforward equalizer (FFE) [START_REF] Wang | Generalized derivation of neural network constant modulus algorithm for blind equalization[END_REF], the feedforward with decision feedback equalizer (FFE-DF) [START_REF] Chemweno | Adaptive Channel Equalization using Multilayer Perceptron Neural Networks with variable learning rate parameter[END_REF], the recurrent neural network equalizer (RNNE) [START_REF] Gagné | Recurrent neural networks achieving MLSE performance for optical channel equalization[END_REF] [9] and variational autoencoders [START_REF] Caciularu | Blind channel equalization using variational autoencoders[END_REF] [START_REF] Caciularu | Unsupervised linear and nonlinear channel equalization and decoding using variational autoencoders[END_REF]. Since the equalized signal is complex and to reduce the implementation complexity, in this paper, we have implemented a complex valued feed forward architecture. The latter is trained with complex backpropagation (CBP) [START_REF] Leung | The complex backpropagation algorithm[END_REF] [13] [START_REF] You | Adaptive equalization using the complex backpropagation algorithm[END_REF] and an activation function dealing with the different constellation sizes. This paper is organized as follows. In section II we propose the system model. In section III and IV we present respectively the first new algorithm wich is the neural network stochastic quadratic distance (NNSQD) and the second new algorithm wich is the neural network multimodulus stochastic quadratic distance (NNMSQD-ℓp). The simulations and results are presented in Section V. Conclusion is provided in section VI.

II. SIGNAL AND EQUALIZER MODEL A. Signal model

Let s(n) n∈Z be a sequence of an independent and identically distributed (i.i.d) of complex symbols belonging to a particular modulation M-QAM and sent over a transmission channel h = [h 0 , h 1 , ..., h L h-1 ] which we assumed in this paper finite impulse response (FIR). We denote by b(n) an additive white Gaussian noise, x(n) is the input of the equalizer, w are the synaptic weights of the neural network and take the role of equalizer impulse response and y(n) is the equalized signal at time n such that.

x(n) = L h-1 i=0 h i s(n -i) + b(n) and y(n) = G(x, w),
where x = [x(n), x(n -1), ..., x(n -Lw + 1)] T , L w is the size of the input neural network layer and G is the neural network total function. The basic model of a transmission system using a neural equalizer as a filter is described in Fig. 1 Transmitter Channel(h) Decision device Blind equalization...

Neural netwo... + š(n) s(n) b(n) x(n) y(n)
Fig. 1: Base band model of a transmission system with a neural network equalizer used as a filter.

B. Equalizer model

As mentioned in the above section, the neural network used for our equalizer is the complex-valued feed forward. whose structure is shown in Fig. 2 Fig. 2: A complex-valued feed forward structure.

The neuron structure of complex-valued feed forward is defined in Fig. 3.

We assume N k neurons in the k th layer. Each neuron has an input named φ k j and an ouput named x k+1 j that can be formulated as :

φ k j = N k-1 i=1 w k ij x k i + θ k j , (1) 
x k+1 j = f k (φ k j,R ) + j * f k (φ k j,I ), (2) 
where x k i , denotes the input of the layer, w k ij , is the weight between the i th input and the j th neurone in the k th layer, θ k j denotes the bias and f k (.) is the activation function in the

f(.) k f(.) k Re Im X k 1 X k n W k 1j W k nj O k j X k+1 j + +
Fig. 3: Model of the j th neurone in k th layer in the complexvalued feed forward.

k th layer. We can develop (1) as the following:

φ k j,R = N k-1 i=1 (w k ij,R x k i,R -w k ij,I x k i,I ) + θ k j,R (3) 
φ k j,I = N k-1 i=1 (w k ij,R x k i,I + w k ij,I x k i,R ) + θ k j,I (4) 
The complex feedforward equalizer designed during our contribution works in two main steps for each iteration. The first step is the forward pass from the input layer to the output layer. During this processing, the goal is to calculate the network output applying an activation function on the weighted sum in each layer. The second part is the complex back propagation (CBP) to update the synaptic weights according to our equalizer criterion.

III. NEURAL EQUALIZERS BASED ON PDF CRITERION

The proposed equalizer is a mixture of the PDF criterion and the neural network. For this purpose, the cost function is based on the PDF during the CBP step. The two cost functions that will be used are SQD [START_REF] Lázaro | Stochastic blind equalization based on pdf fitting using parzen estimator[END_REF] and MSQD-ℓ1 [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF]. In sequel, the CMA is also a widely known blind equalizer and is used as a reference in both conventional and neural modes [START_REF] Wang | Generalized derivation of neural network constant modulus algorithm for blind equalization[END_REF]. The network has three layers : input, hidden and output layers. We assume along this paper that the activation function is :

f (x) = x + α * sin(Π * x).
This activation function is nonlinear under the effect of sin() and the α parameter, which determines the degree of non linearity, is real positive. Moreover, this transfer function can deal with M-QAM signals of any constellation sizes [START_REF] Wang | Generalized derivation of neural network constant modulus algorithm for blind equalization[END_REF].

A. Neural network stochastic quadratic distance equalizer(NNSQD) SQD calculates the square distance between the probability density (PD) of the observations and the PD of the transmitted constellation. SQD has the following cost function [START_REF] Lázaro | Stochastic blind equalization based on pdf fitting using parzen estimator[END_REF]:

J SQD (w) = +∝ -∝ (f Y p (z) -f S p (z)) 2 dz, ( 5 
)
where y is the output of the neural equalizer and Y p = |y(n)| p , S is the transmitted constellation and S p = |s(n)| p .f x (z) means the PD from x to z.

To estimate the PD of the current data, a Gaussian Kernel Parzen window was applied. Using this non parametric PD estimator with the previous L symbols, the PD at each discrete instant n is as follows :

f Y p (z) = 1 L L-1 j=0 K σ0 (z -|y(n -j)| p ), f S p (z) = 1 N s Ns k=1 K σ0 (z -|s(k)| p ), (6) 
where, N s is the number of complex symbols in the constellation and K σ0 is a Gaussian Kernel with zero mean and variance σ 0 which is denoted also Kernel width. For p = 2 and L = 1, the cost function is

J SQD (w) = 1 N 2 s Ns k=1 Ns l=1 K σ (|s(l)| 2 -|s(k)| 2 ) - 2 N s Ns k=1 K σ (|y(n)| 2 -|s(k)| 2 ), (7) 
where σ = √ 2σ 0 . Let µ be the learning rate, such that

w k ij (n + 1) = w k ij (n) -µ ∂J SQD ∂w k ij (n) . ( 8 
)
The gradient is calculated as in [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF]. We introduce two constants Q and δ o p to simplify the expression which are expressed as follows :

Q = 4 N s Ns k=1 1 √ 2Πσ e - (|y(n)| 2 -|s(k)| 2 ) 2 2σ 2 (|y(n)| 2 -|s(k)| 2 ) σ 2 , δ o p = [f o (φ o r )f o ′ (φ o r ) + jf o (φ o i )f o ′ (φ o i )]Q. ( 9 
)
The weights of the output layer are updated as

w o j (n + 1) = w o j (n) -µδ o p I * pj , (10) 
where φ o r , φ o i , are the real and imaginary inputs of the output layer. I pj is the output of the hidden layer. f o (φ o r ) and f o (φ o i ) are the activation functions of the output layer applied in the real and imaginary parts.

f o ′ (φ o r ) and f o ′ (φ o i
) are the derivatives of the activation functions in output layer applied in the real and imaginary parts.

In the same way, to update the hidden layer weights, we applied the chain rule like in [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF] and denote by δ h pj ,

δ h pj = f h ′ j (φ h r )Real(δ o p w o * j ) + jf h ′ j (φ h i )Imag(δ o p w o * j ). (11)
Similarly, the weights of the hidden layer are updated as

w h ji (n + 1) = w h ji (n) -µδ h pj x * pi , (12) 
where φ h r , φ h i , are the real and imaginary inputs of the hidden layer and x pi is the input of the network. f h ′ j (φ h r ) and f h ′ j (φ h i ) are derivatives of the activation functions of the hidden layer applied in the real and imaginary parts at the j th neuron.

B. Neural network multimodulus SQD-ℓ1 equalizer (NNMSQD-ℓ1)

The decomposition of equalization criteria into an inphase component and a quadrature component is more efficient than processing two components together, with respect to a phase shift introduced by the transmission channel. This approach will lead to the Multimodulus SQD-ℓp (MSQDℓp) criteria. More specifically, for p = 1, the MSQD-ℓ1, was introduced in [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF] which has the following cost function :

J M SQD-ℓ1 (w) = - 1 N s Ns k=1 K σ (|y r | -|s r (k)|) - 1 N s Ns k=1 K σ (|y i | -|s i (k)|), (13) 
where N s is the number of complex symbols in the constellation and K σ0 is the same as in NNSQD. y r and y i and s r and s i are the real and imaginary parts of the equalized output and the emitted constellation, respectively. We focus on the sequel on the derivation of gradient expression of the cost function. Using the same chain rule in [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF] and for simplification purposes we introduce Q r , Q i and δ o p ,

Q r = 1 N s Ns k=1 1 √ 2Πσ e - (|y r | -|s r |) 2 2σ 2 (|y r | -|s r |) σ 2 , Q i = 1 N s Ns k=1 1 √ 2Πσ e - (|y i | -|s i |) 2 2σ 2 (|y i | -|s i |) σ 2 , δ o p = Q r sign(f o (φ o r ))f o ′ (φ o r ) + jQ i sign(f o (φ o i ))f o ′ (φ o i ). ( 14 
)
The weights of the output layer are updated as

w o j (n + 1) = w o j (n) -µδ o p I * pj ( 15 
)
where φ o r , φ o i , are the real and imaginary inputs of the output layer and I pj is the output of the hidden layer. f o (φ o r ) and f o (φ o i ) are the activation functions of the output layer applied in the real and imaginary parts.

f o ′ (φ o r ) and f o ′ (φ o i
) are the derivatives of the activation functions in output layer applied in the real and imaginary parts. Finally sign is the sign function.

To update the hidden layer weights, we applied the chain rule like in [START_REF] You | Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks[END_REF] and simplify the expression by introducing δ h pj , 16) Similarly, the weights of the hidden layer are updated as

δ h pj = f h ′ j (φ h r )Real(δ o p w o * j ) + jf h ′ j (φ h i )Imag(δ o p w o * j ). (
w h ji (n + 1) = w h ji (n) -µδ h pj x * pi , (17) 
where φ h r , φ h i , are the real and imaginary inputs of the hidden layer and x pi is the input of the network.

f h ′ j (φ h r ) and f h ′ j (φ h i )
are derivatives of the activation function of the hidden layer applied in the real and imaginary parts at the j th neuron.

IV. SIMULATION RESULTS

We have simulated the three equalizers detailed in section III with a complex-valued feed forward neural network using three layers. The number of neurons in the input layer and the hidden layer depends on the modulation size. For 16-QAM and 64-QAM, we used 25 neurons [L i = 15 (input), L h = 9 (hidden), L o = 1 (outout)] and for 256-QAM we used 101 neurones

[L i = 40 (input), L h = 60 (hidden), L o = 1 (output)].
The activation function is f (x) = x+αsin(Πx) and the value of α varies according to the equalizer type, modulation size, signal to noise ratio(SNR) and the layer order. In addition, we tested the equalizers performance when using a channel h 1 with real coefficients and one typical digital radio channel h 2 that was used in [START_REF] Fki | Blind equalization based on pdf fitting and convergence analysis[END_REF].

h 1 (z) = 0.2258 + 0.5161z -1 + 0.6452z -2 -0.5161z -3
h 2 (z) = (0.0410 + j0.0109) + (0.0495 + j0.0123)z -1 + (0.0672 + j0.0170)z -2 + (0.0919 + j0.0235)z -3 + (0.7920 + j0.1281)z -4 + (0.3960 + j0.0871)z -5 + (0.2715 + j0.0498)z -6 + (0.2291 + j0.0414)z -7 + (0.1287 + j0.0154)z -8 + (0.1032 + j0.0119)z -9 .

We have initialized the two matrices of synaptic weights W o [L, N ] and W h [L] with small values to get |w horo RorI | < 10 -5 . Except for w o [(L + 1)/2, (N + 1)/2] and w h [(L + 1)/2] that were set to one. For 16-QAM modulation, the length of the conventional equalizers L w is set to 21. The learning rates were fixed to µ CM A = 5e -6 , µ SQD = 5e -5 and µ M SQD-ℓ1 = 1e -4 .

For the neuronal equalizers, we use the same value of α in the hidden and output layer, that was set to 0.1. The learning rates were fixed to µ N N CM A = 3e -5 , µ N N SQD = 5e -5 and µ N N M SQD-ℓ1 = 1e -3 . For 64-QAM modulation, the length of the conventional equalizers L w is set to 21. The learning rates were fixed to µ CM A = 1.5e -7 , µ SQD = 6e -7 and µ M SQD-ℓ1 = 1e -4 .

For the neuronal equalizers, we use the same value of α in the hidden and output layer, that was set to 0.1. The learning rates were fixed to µ N N CM A = 8e -8 , µ N N SQD = 1e -7 and µ N N M SQD-ℓ1 = 2e -4 . For 256-QAM modulation, the length of the conventional equalizers L w is set to 21. The learning rates were fixed to µ CM A = 1e -8 , µ SQD = 5e -8 and µ M SQD-ℓ1 = 1e -5 .

For the neuronal equalizers, we use the same value of α in the hidden and output layer, that was set to 0.1. The learning rates were fixed to µ N N CM A = 2e -9 , µ N N SQD = 1e -8 and µ N N M SQD-ℓ1 = 8e -5 .

The following three figures Fig. 4, Fig. 5 and Fig. 6 represente the performance of the introduced equalizers in terms of MSE when using h 1 and h 2 . We can notice according to the figures of MSE for different values of SNR that the NNMSQD-ℓ1 equalizer is the most performante in terms of MSE. The gain of MSE is more considerable when the value of SNR increases. This can be explained by the performance of the learning phase that increases when SNR increases. In addition, the NNMSQD-ℓ1 equalizer is more efficient in terms of MSE than the MSQD-ℓ1 which already achieves the performance of the non-blind equalizer MMSE [START_REF] Leung | The complex backpropagation algorithm[END_REF]. Fig. 7, Fig. 8 and Fig. 9 show the performance of the equalizers in terms of SER when using the same channels h 1 and h 2 . It is the same case here, we can see that NNMSQD-ℓ1 has the best performance in terms of SER that confirms its performance in terms of MSE. Computation burdens for NNSQD and NNMSQD-ℓ1 is defined in Tab I. 
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 4 Fig. 4: MSE for 16-QAM and h 1 .
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 5 Fig. 5: MSE for 64-QAM and h 2 .
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 6 Fig. 6: MSE for 256-QAM and h 2 .
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 7 Fig. 7: SER for 16-QAM and h 1 .
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 8 Fig. 8: SER for 64-QAM and h 2 .

Fig. 9 :

 9 Fig. 9: SER for 256-QAM and h 2 .

  X Exponents NNSQD 3L h (L i + L o ) + 2L h N s NNMSQD-ℓ1 3L h (L i + L o ) + 2L h 2N s

TABLE I :

 I Computational complexity V. CONCLUSIONIn this paper, we have proposed a new approach for blind equalization based on pdf fitting and neural network system. We have shown that it outperforms the conventionnal kernel blind equalization methods in terms of MSE and SER. As a perspective, we can generalize our algorithm with time varying channel. Deep learning has several applications in signal processing. It evolves quickly, it starts supervised, then unsupervised. Today, it becoms generic. This encourages us to open a track on the use of the generic deep learning model to create generic blind equalizers.