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Abstract—Data quality assessment of hydrographic surveys
is a complex problem, since context dependent acquisition
conditions using multiple sensors contribute to numerous data
imperfections, which have different consequences depending
on the intended final product. In this work we propose a
generic methodology integrating experts’ preferences through
multi-criteria preference models with data quality techniques to
generate explainable overall quality assessments of hydrographic
surveys which depend on the expected end-uses.

Four hydrographic surveys of different geographic locations
and contrasting characteristics were studied, according to the
preferences of an acoustician, an oceanographer, and a hydro-
grapher. The obtained results indicate that each survey was
appropriately evaluated, indicating the reasons that led to the
specific assessment.

Index Terms—hydrographic survey, data quality assessment,
preference modelling, multi-criteria decision aiding.

I. INTRODUCTION

The International Hydrographic Organization (IHO) pub-
lished recently an updated edition of the Standards for Hydro-
graphic Surveys [5]. This sixth edition shows the importance
that the world of hydrography attaches to data quality, in
particular by adding a new and stricter order, the ”exclu-
sive order”, which requires to establish the appropriate sur-
vey methodology and the appropriate acquisition sensors to
achieve the specified standards (EO, OS, 1A...). In addition,
the new standard integrates a matrix (7.6 of [5]) allowing to
refine the data quality levels of criteria according to stated
hydrographic needs, which means that depending on the final
use of a survey, its quality could be perceived differently by
users. It follows from this that, evaluating the quality of a
survey, while taking into account users’ needs, as well as
automating this evaluation are real issues. Next to that, data
and information quality are usually examined through multiple

parameters, dimensions (or criteria). The choice of these
parameters, as well as their relative importance, do obviously
depend on the user. These parameters and dimensions might
also be influenced by the context [8], which in turn might be
perceived differently by each user, and therefore modeled in
various ways.

These observations constitute the research question of our
proposal: How to automate the evaluation of the quality of hy-
drographical surveys, integrating end-use experts’ perceptions,
as well as the context of the data, while keeping a high level of
traceability of the evaluation process and a good explainability
of the result?

To answer this question, we use data quality analysis
techniques to automatically determine, from data and meta-
data, various quality measures of hydrographic surveys, and
combine these with preference models from Multi-Criteria
Decision Aiding (MCDA) to integrate various expert profiles,
into the evaluation process. We show among other things
that these multiple quality criteria, combined with different
experts’ perceptions about these data, can lead to different
overall evaluations of the quality of hydrographical surveys.
Last but not least, we show how these combined tools can lead
to explainable outputs, which can be used to audit existing
surveys, and to improve future ones.

The rest of this article is structured as follows. In Section
II we briefly introduce the two scientific disciplines which
underlie the proposed assessment process. Then, in Section III
we detail our proposal and discuss its different steps, before
presenting in Section IV a real case study tested at the Shom,
the French Naval Hydrographic and Oceanographic Service.
We then discuss our findings and the consequences of our
proposal in Section V, before drawing in Section VI some
conclusions and presenting future perspectives.



II. METHODOLOGICAL BACKGROUND

A. Hydrographic data quality basics

Hydrographic monitoring for analyzing past and current
states, as well as longitudinal evolution utilizes different
technologies to measure remotely physical variables of a given
area, which rely on the principle of sensing specific types
of radiations emitted and/or reflected by the studied zones.
Sensors that range from radars, radiometers, and sonars, to
optical airborne cameras and Light Imaging Detection and
Ranging (LIDAR), permit to detect, identify, classify, and
map the surfaces of interest. Studies of such hydrographic
phenomena produce voluminous, noisy, redundant and/or con-
tradictory heterogeneous data streams, depending on sensor
characteristics, operational conditions, and uncontrollable ex-
ternal circumstances. Therefore, data quality assessment is un-
avoidable before data are processed by different applications,
since information extracted from poor or low quality data
would produce wrong results.

Yet, quality assessment in hydrographic studies is a complex
problem, given that: perfect data acquisition conditions are
almost impossible to obtain; generated datasets do have mul-
tiple imperfections; data quality evaluation must be adapted
to each kind of sensor; workflows vary from one use case to
another; and quality depends strongly on the context. Besides
individual quality measures at different workflow stages, it
is also required to understand the impact of data quality
on the different intended products (or end-uses). In general,
compliance with the fitness for use concept is a widely
accepted notion to characterize globally data and information
quality. This concept encompasses the definition of related
dimensions depending on the analyzed operational context and
qualified features. However, given the issues to carry out an
automatic data quality control (i.e. unavailability of ground
truth values and required infrastructure to do it in real time),
part of it is done manually by experts who assign arbitrary
global qualitative estimations, based on their knowledge of
the expected final product characteristics. This evaluation
consists on removing obvious errors and anomalies, deciding
to accept or reject remaining data, estimating through sampling
if unreliable data may still be part of the dataset, and assigning
the estimated data quality levels using a pre-defined reference.

On the other hand, data, defined as streams of bits with no
comprehensible sense, may contain sets of imperfect values
that can be:

• Erroneous: Data are erroneous when values are different
from the true data.

• Incomplete: Data are not fully supplied as expected
because of missing values.

• Imprecise: Data inaccuracy does not permit to identify
true values but possible approximations.

• Uncertain: Data cannot be specified with absolute confi-
dence.

• Unavailable: The system cannot obtain some sets of
values because of its limitations.

Depending on the use case, these imperfections do not have
the same impact on the final product, making it necessary to
study particular quality profiles depending on user preferences
and application requirements.

B. Multi-criteria decision aiding
It follows from the above considerations that evaluating

the quality of information or data from hydrographic surveys
is a problem of a multi-dimensional nature, and potentially
depends on the perspective of an expected end-use. It is
therefore suitable to use aggregation techniques from the field
of Multi-Criteria Decision Aiding (MCDA), which allow to
aggregate multiple dimensions, while taking into account the
point of view of an expert of the end-use, through what we
call his or her preferences.

MCDA is a branch of operational research, and its objective
is to help one or several decision-makers (DMs) to prepare
and make decisions on a finite set X of n decision objects
(or alternatives), when several conflicting consequences (or
criteria), represented by the finite set J , must be taken into
account. This decision-maker can either be the person who
takes the responsibility for the decision act, or he or she can
be an expert user whose value system or preferences should
be taken into account in the final prescription.

Usually, three types of problems are put forward in this
context [13]: the choice problem which aims to recommend
a subset of alternatives, as restricted as possible, containing
the “satisfactory” ones, sorting problem which aims to assign
each alternative into pre-defined categories or classes, and,
the ranking problem which aims to order the alternatives by
decreasing order of preferences.

The mathematical tools used in MCDA have their origins
mainly in two very different methodological trends [3], [6],
[13]. On the one hand, the European school of thought has
developed around the concept of the outranking relation, where
the decision recommendation is constructed from pairwise
comparisons of the alternatives. On the other hand, the Anglo-
Saxon school is based on the concept of utility or value in
the Multi-Attribute Value Theory (MAVT) in order to obtain,
by aggregation, a total comparability of the alternatives. Both
schools of thought have their advantages and disadvantages,
and in the case of practical application, the pros and cons
should be weighed before choosing one of the paths.

The main differences between these two methodological
schools lie in the way the alternatives are compared and in
the type of information which is required from the decision
maker. Outranking methods might be preferable if the eval-
uations of the alternatives on the criteria are heterogeneous,
i.e., qualitative and quantitative, and if the DM would like
to include some impreciseness about his preferences in the
model. Value-based methods can be favored if the criteria are
evaluated mostly on numerical scales and if a compensatory
behavior of the DM should be modeled.

III. PROPOSED APPROACH

The proposed quality assessment process is depicted on
Figure 1. This process is intended for a user who wishes



to evaluate the quality of a hydrographic survey according
to a specific use of the survey (e.g., for an acoustic, an
oceanographic, or, a hydrographic use, in our case). The
process needs to be pre-configured by an expert of the final
need (shown on the right of the figure), who is an acoustician,
oceanographer or a hydrographer in the present case. The input
to the process is the hydrographic survey data, along with
related metadata. The outputs are the partial and the overall
evaluations of the input hydrographic survey, as well as some
recommendations to improve its quality (if necessary).
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Fig. 1. Quality assessment process for hydrographic surveys

Once the user starts the process of evaluating the quality
of a set of surveys, in a first step, he or she needs to identify
the end-use of the surveys. If the process has already been
configured for this specific use, the quality dimensions that
have been specified beforehand by an expert are extracted
and calculated (A) from the hydrographic survey data and
its corresponding meta-data. Then the Multi-Criteria assess-
ment model (B) is used to aggregate these multiple quality
dimensions into an overall quality evaluation, while taking
into account the preference model of the expert. In case the
process has not been configured yet for this use, an expert
of this specific use has to be interviewed in a sub-process
called “Preference Elicitation” (C), in order first to configure
the “Quality dimensions extraction / calculation” step with the
quality dimensions considered by that expert, and second to
configure the Multi-Criteria assessment with the preference
parameters, representing that expert’s priorities.

In the following subsections we detail each of the main

steps of this process (the letters in parentheses on Figure 1
correspond to these subsections).

A. Quality dimensions extraction

During a sea survey, the hydrographic survey services
acquire a large amount of data at sea for various needs and for
different fields or end-uses: hydrography, oceanography, sedi-
mentology, underwater acoustics, nautical cartography, digital
terrain model production, defense products, etc. The sensors
put in place are thus numerous and depend on the type of
campaign carried out.

When interested in bathymetry they use for example a
Single Beam Echo Sounder (SBES), a MultiBeam Echo
Sounder (MBES), a bathymetric LIDAR or even Satellite
Derived Bathymetry (SDB) for the seabed closest to the coast.
These data, in the form of point clouds, allow them to have
a more or less fine representation of the seabed depending on
the coverage achieved during the acquisition phases and the
resolution of the sensor technologies.

When studying the physical representation of the ocean,
it is more interesting to measure the surface currents and
the currents in the entire water column (via bottom current
meters or acoustic doppler current profilers for example) or
the variations in the water height (using pressure tide gauges
or buoys referenced to the ellipsoid) to measure tidal time
series at specific locations.

Finally, for sedimentology studies of the seabed, the knowl-
edge of the bathymetry is important in order to detect local
and multi-scale morphological breaks, but it is also particularly
interesting to have access to a classification of the encoun-
tered seabed (mud, sand, rock...). To achieve this type of
classification many different sensors are implemented, such
as acoustic sensors (SBES and MBES) to have seabed surface
information, but also techniques of in-situ sampling with grab
sampler or coring, which also provide information on the type
of seabed at greater depths (here also at specific location).

The hydrographers who carry out such survey are ac-
quainted with the data acquisition conditions and therefore
compute or are able to assign quantitative and qualitative
trustable qualifications to the respective datasets. After the
interviews with the experts and in the context of the specific
case study presented in Section IV, seven different quality
parameters of the main survey characteristics were selected
among a set of numerous possibilities, namely, CATZOC,
POSACC, SOUACC, hydrographic coverage, type of hydro-
graphic sensors, sedimentology, and ocean data. Those quality
parameters are described as follows:

• CATZOC, for category of zone of confidence in data or
tolerable quality thresholds, as an overall summary of
POSACC, SOUACC, and hydrographic coverage, con-
sisting of categorical values assigned from the best to
the worst qualification as: A1, A2, B, C, D, and U. The
associated quality dimension is global data uncertainty
because of the resulting complexity of measurements, the
integration of data from several sources, or the possibility



of human evaluation errors that may generate uncertain
evaluations.

• POSACC, for positional accuracy (in agreement with
the CATZOC value), which includes four depth intervals
from the smallest to the highest as: < 0.50m, < 2m, < 5m
+ 5%, < 20 + 10%. The related quality dimension is data
precision given that the qualification intervals represent
a variable approximation of the instrument position. The
POSACC quality parameter is traditionally obtained by
total uncertainty propagation taking into account the
entire bathymetric acquisition workflow.

• SOUACC, for sounding accuracy (in agreement with the
CATZOC value) that is represented by six intervals from
the shortest to the highest as: < 0.25m, < 0.50m, < 1m,
< 2m, < 10m, < 20m. The relevant quality dimension
is data precision, since depending on the accuracy inter-
val of a sounding instrument, resulting values are only
known approximately. Like POSACC, SOUACC quality
parameters, it is traditionally obtained by total uncertainty
propagation taking into account the entire bathymetric
acquisition workflow.

• Hydrographic coverage (in agreement with CATZOC
value), composed of six values, 300, 200, 150, 100,
80, and 50. The corresponding quality dimensions are
data completeness and data precision, as a result of the
estimated degree of coverage and derived unavailability
of expected data, respectively.

• Type of hydrographic sensors, represented as four types
of sensors, MBES, bathymetric LIDAR, SBES + side-
scan sonar, and Satellite Derived Bathymetry (SDB).
Sensor types have an impact on the density and perti-
nence of generated measurements, allowing the user to
anticipate some of the information that could be obtained.
The applicable quality dimensions are data uncertainty
depending on the utilized sensors accuracy and data
completeness determined by the potential complementary
nature of sensors.

• Sedimentology, represented by the number of sensors
from five to zero (5, 4, 3, 2, 1, 0), used to describe seabed
substrates, depending on emitted signals reflections. The
inferred quality dimensions are data precision linked to
the accuracy of different sensors and data completeness as
a result of potentially missed pertinent data not acquired
by a reduced set of sensors.

• Ocean data that identifies measurement of the tide, cur-
rent, meterology (MTO), water sound celerity (with CTD:
Conductivity Temperature Depth), depicted as four sets
of grouped evaluations (MTO + CTD + tide + current,
MTO + CTD + tide, MTO + CTD, MTO). The identified
quality dimensions are data precision due to the diverse
sensor accuracies and data completeness to account for
the probable lack of data not recorded from unused
sensors.

Quality parameters’ values are included as part of surveys’
metadata, assigned by engineers responsible for the survey.

These values reflect some aspects of a survey quality estima-
tion according to the actual acquisition context. In order to
know if the resulting dataset is appropriate to generate the
product of a particular profile, it is necessary to determine
the conformity of these quality parameters with the end-use
expert’s preferences.

B. Multi-Criteria assessment

The quality parameters extracted in the previous step be-
come the criteria in the MCDA context. In this section we
first motivate the choice of a specific MCDA preference model,
before detailing its mathematical formulation.

As it can be seen from Section III-A the evaluation scales
of the various quality parameters are quite heterogeneous.
Some of them are qualitative or ordinal (CATZOC, type of
hydrographic sensors, sedimentology, ocean data), while oth-
ers are clearly quantitative (POSACC, SOUACC, hydrographic
coverage). This speaks in favour of the outranking school
of thought mentioned in Section II-B, which intrinsically
manages well this diversity of scales. Next to that, to facilitate
the adoption of our process by users, we seek to propose a
solution in which each step is easily explainable, and where the
final assessment can be easily interpreted, in order to generate
recommendations for the improvement of future surveys. This
interpretability can be achieved by solving the sorting problem
from the outranking paradigm. Indeed, sorting alternatives in
an MCDA framework comes down to creating an overall
qualitative or ordinal assessment scale (based on so-called
categories) to aggregate the multiple criteria. This is usually
done through category limits or profiles, which can be seen as
norms, against which the alternatives are compared, in order to
decide to which category they belong. Among all the available
sorting algorithms of the outranking paradigm, we propose to
use the MR-Sort method, which has been characterized in [1],
[2], and, has the advantage of generating highly interpretable
results, while being a very expressive model. In the sequel we
introduce the formalism of the MR-Sort method.

Let us consider a finite set of alternatives A (the surveys), a
finite set of criteria indexes J (corresponding to the quality
parameters of the previous step). For each criterion, the
possible evaluations are ordered according to the preferences
of the expert, which defines the preference directions of the
criteria (either a lower value is preferred to a higher value,
or vice-versa). The overall evaluation being categorical, let
{c1, . . . , ck} be the k output categories (representing the k
levels of the output ordinal assessment scale), ordered by their
desirability, from c1 being the worst category to ck being the
best one: ck � . . . � c1 (� stands for “is preferred to”).
In our quality assessment context, these categories could for
example be {very high quality � . . . � medium quality �
low quality}. These categories are characterised by a set of
separating profiles B = {b1, . . . bk−1}. Each category ch is
thus defined through its upper limit, bh, and its lower limit,
bh−1, with the exception of the worst and best categories,
which have only one limit. Each alternative and each category
limit can be represented by a vector of evaluations with respect



to the criteria. The evaluation with respect to criterion j can be
viewed as a function gj : A∪B → R, where gj(a) denotes the
evaluation of alternative a ∈ A on criterion j and gj(bh) de-
notes the evaluation of category limit bh,∀h ∈ {1, . . . , k−1},
on criterion j. In this presentation of MR-Sort, we assume,
without loss of generality, that the performances are supposed
to be such that a higher value denotes a better performance. It
is obvious that in a real application this is not necessarily the
case. Furthermore the performances of the category limits are
non-decreasing, i.e. ∀j ∈ J, 1 < h < k : gj(bh−1) ≤ gj(bh).

MR-Sort uses two assignment rules for placing the al-
ternatives into categories: the pessimistic and the optimistic
assignment rules [3], [13]. The pessimistic rule assigns an
alternative a to the highest possible category ch so that a
outranks the category’s lower frontier bh−1. The optimistic
rule assigns a to the lowest possible category ch so that the
category’s upper frontier bh outranks a. The pessimistic rule
is the most commonly used in practice, as it generates safer
recommendations.

An alternative a is said to outrank a frontier bh−1 if and
only if there is a sufficient coalition of criteria supporting the
assertion “a is at least as good as bh−1” and no criterion
strongly opposes (vetoes) that assertion. To measure if a
sufficient coalition of criteria considers that a is as least as
good as bh−1, we first define for each criterion j a function
Cj : A × B → {0, 1} which assesses whether criterion j
supports that statement or not:

∀j ∈ J, a ∈ A, 1 ≤ h ≤ k :

Cj(a, bh−1) =

{
1, if gj(a) ≥ gj(bh−1),
0, otherwise.

(1)

To assess whether a coalition of criteria is in favor of the
outranking or not, ∀a ∈ A, 1 ≤ h ≤ k, we first define the
overall concordance as:

C(a, bh−1) =
∑
j∈J

wjCj(a, bh−1), (2)

where wj is the weight of criterion j. The weights are defined
so that they are positive (wj > 0,∀j ∈ J) and sum up to one
(
∑
j∈J wj = 1). This overall concordance is then compared

to a majority threshold λ ∈ [0.5, 1] extracted from the DM’s
preferences along with the weights (in our case the expert of
the end-use).

Even when the coalition is strong enough, a criterion may
veto the outranking situation. An alternative a is therefore in
a veto relation (denoted with V) with a profile bh−1 when:

aV bh−1 ⇐⇒ ∃j ∈ J : gj(a) < gj(b
v
h−1). (3)

The veto profile bvh−1 represents the minimum level of
performance that an alternative needs to have in order to be
allowed into category ch via the weighted coalition of criteria
in favor of this assignment. If on any criterion an alternative
has a lower performance than the veto profile of (, then it is
forbidden from being assigned to ch or above.

To summarize, alternative a outranks frontier bh−1 (and
therefore is assigned to at least the category ch) if and only
if:

a S bh−1 ⇐⇒ C(a, bh−1) > λ and not (aV bh−1). (4)

Illustrative example: To illustrate the use of the MR-
Sort method we consider a decision problem where different
surveys have to be assigned to one of two categories “Good”
(G) and “Bad” (B) according to an expert’s preferences. Let
us consider three surveys a1, a2 and a3 which are evaluated
on three criteria CATZOC (C) (A1 �C A2 �C B �C C �C

D �C U ) (�C is the strict preference relation defining the
evaluation scale of criterion CATZOC), Hydrographic cover-
age (H) (the higher the better), and, Sedimentology (S) (the
higher the better). The evaluation of these alternatives on these
3 criteria is presented in Table I, along with the parameters
of MR-Sort model (which have been determined beforehand
from the preferences of the expert via the procedures pre-
sented in Section III-C). The category separating profile b1
delimits the two categories G and B, through evaluations of
B for CATZOC, 100 for Hydrographic coverage and 2 for
Sedimentology. The veto profile bv1 is defined through the worst
evaluation of CATZOC (U ) and of Hydrographic coverage (50)
and a number of sensors for Sedimentology higher than 2. This
implies that only the last criterion will trigger a veto when the
number of sensors is equal to zero.

TABLE I
ILLUSTRATIVE EXAMPLE FOR THE MR-SORT ASSIGNMENT PROCEDURE;

Model parameters

C H S wC wH wS λ

b1 B 100 2 1
3

1
3

1
3

1
2

bv1 U 50 1

Assignments

C H S C(a, b1) C(a, b1) > λ aV b1 a S b1 assignment

a1 B 150 1 1
3 + 1

3 + 0 = 2
3 3 3 G

a2 A1 300 0 1
3 + 1

3 + 0 = 2
3 3 B

a3 C 80 4 0 + 0 + 1
3 = 1

3 3 B

As the first survey a1 is at least as good as b1 on the
two criteria C and H , it has a sufficient coalition of criteria
supporting its assignment into category G. Furthermore, it has
1 sensor so it is not in a veto situation. The second survey a2
also has a sufficient coalition of criteria in favor of assigning it
to category G however it has no sensor. Consequently it raises
a veto which invalidates the outranking relation between a2
and b1, and therefore it is assigned to category B. The last
survey, a3, is at least as good as b1 on only one criterion, S,
so it does not outrank b1, and it is consequently assigned to
category B.

C. Preference elicitation

The preference elicitation sub-process of our proposal in-
volves 2 steps. Recall that it does not concern the general
user, but is only intended for the expert user (who is the DM



in our work). In the first one, the end-use expert is asked
to provide the quality dimensions/parameters which he uses
in the overall assessment of the quality of a hydrographic
survey. The output of this step is a list of these quality
dimensions/parameters which is then used as input by the
“Quality dimensions extraction / calculation step”. The second
step is the inference of the preference parameters of the
MR-Sort Multi-Criteria aggregation method. These preference
parameters are the preference directions of the criteria scales
(whether the criterion has to be minimized or maximized),
weights of the criteria (or quality dimensions) (wj ,∀j ∈ J),
the majority threshold λ, the number and the order of the
output categories, the category limits (bh,∀h ∈ {1, . . . k−1}),
and the veto profiles (bvh,∀h ∈ {2, . . . k}).

These parameters may be both directly and indirectly
elicited. In a direct elicitation, the precise values of these
parameters are determined by interviewing the expert, usually
in an interactive process, where the effect of the preference
parameters on the overall assessment are presented to the
expert, in order to tune them as precisely as possible. Usually
the category limits and the veto profiles can be seen as some
“norms” with respect to the end-use of the survey, whereas the
criteria weights are extracted via questions regarding majority
coalitions of criteria. In case such a direct elicitation is not
possible, an indirect approach can be used, in which the expert
is asked to assess the overall quality of some surveys (called
“learning” or “assignment” examples). From his answers,
mathematical optimization models determine the values of the
parameters of the MR-Sort model, which are compatible with
these overall assessments (as in [7], [9]–[12], [15], [16]).

IV. HYDROGRAPHIC CASE STUDY

To show the relevance of our proposed assessment pro-
cess, we present in this section a case study that has been
conducted at the Shom, the French Naval Hydrographic and
Oceanographic Service. We have considered a user who is a
Shom engineer, and who wishes to evaluate the overall quality
of four hydrographic surveys. He or she starts the process
of Figure 1 and has to identify, in a first step, the end-uses
of the surveys. He or she wishes to assess the quality of
these surveys according to first an acoustic use, second an
oceanographic use, and finally, a hydrographic use. Initially
the process is not configured for these three specific end-uses,
and therefore, in the process of Figure 1, three experts (an
acoustician, an oceanographer and a hydrographer) have been
interviewed in the “Preference Elicitation” sub-process. Each
of these 3 interviews have led to a different configuration of
the process (different quality dimensions, different preference
parameters).

The three possible end-uses of the surveys are indeed very
different as the three experts have very different jobs.

The acoustician models underwater sound propagation.
Acoustic sources are of different natures: biological, geo-
phonic, and anthropogenic. The understanding of the under-
water soundscape requires the mastery of all these param-
eters. This is a major challenge for the knowledge of the

environment. In order to understand this underwater acoustic
landscape it is therefore important to be able to model the
entirety of what happens to acoustic waves in the water column
but also with the reflection on the sea floor. The quality of the
information needs to be good in terms of sedimentology, ocean
data and with an MBES sensor with good coverage.

The oceanographer studies all activities related to the un-
derstanding and modeling of the physical parameters of the
water column (temperature, salinity, transparency, ...) and their
evolution. For his work it is important that the oceanographer
has a good quality of information for the ocean data and to
a lesser extent the sedimentology data. As the oceanographer
builds his physics models from a volume of water, it is also
important to have a precise knowledge of the bathymetric
bottom and in particular: the real presence or absence of arte-
facts on the bottom that can disturb the physics model (with
complex boundary conditions to manage) such as wrecks or
underwater obstruction given by the POSACC and SOUACC
quality extraction.

The hydrographer is an expert for the measurement of the
sea floor, currents and tides. He needs to ensure safe navi-
gation bathymetric data for all nautical products, especially
for nautical charts. The most important data to be accurate
are those related to bathymetric information (as CATZOC,
bathymetric coverage and the hydrographic sensor type) as
these are the ones that guarantee a just and safe nautical chart
for the navigator. Also depending on the average depth of
the survey, the oceanographic information will be more or
less relevant (tidal phenomena having more impact at shallow
depths than at deep depths).

The four hydrographic surveys, see Figure 2, have also very
different characteristics and geographic locations. S2012056
is an airborne LIDAR topo-bathymetric survey of Guadeloupe
Island. The average depth is about 15 meters. This survey
was designed to establish a land-sea reference with very
few oceanographic measurements (no current meters or tide
gauges). S2015009 is an SBES exploration survey carried
out on the Clipperton islet under very complex conditions.
The average surveyed depth is 20 meters. The purpose of
this survey was to measure the Cliperton channel for safe
landing and boarding on the island. S2017026 is a classi-
cal MBES hydrographic survey which aims to improve the
bathymetric knowledge of the traffic separation scheme off
Ouessant Island. With an average depth of 100 meters, this
survey allows for the updating of nautical works and more
particularly nautical charts. S201902600 is an offshore MBES
survey which has been performed in the Atlantic Ocean off
the coast of the Faroe Islands. Its average depth is 1400
meters. This survey was carried out in order to know the
acoustic environment as precisely as possible with a lot of
oceanographic and sedimentological measurements.

A. Preference elicitation

As said above, the three experts have different requirements
and priorities on hydrographic surveys, which lead to 3 differ-
ent configurations of the proposed process. In a first step, for



Fig. 2. Geographic extent of the four studied hydrographic surveys. From
top to bottom: S2012056, S2015009, S2017026 and S2019026.

each expert, we identify during the interview which quality
parameters should be considered in the final assessment. The

hydrographer considers all 7 parameters presented in Section
III-A in the evaluation of the quality of a survey, whereas
the acoustician and the oceanographer do not consider the
CATZOC, and therefore only require 6 of them.

In a second step, we determine for each expert the granu-
larity of the output assessment scale. For the acoustician and
the hydrographer, the two categories “Good (G)” and “Bad
(B)” are sufficient (obviously preferentially ordered Good (G)
� Bad (B), whereas for the oceanographer a supplementary
intermediate “Acceptable (A)” category is needed (which leads
to the preference order Good (G) � Acceptable (A) � Bad
(B)).

Then, during the interview of the hydrographer, we have
identified that depending on the average depth of the survey,
the preference parameters of the hydrographer vary. This
influence of the context of the survey on the preference
parameters therefore leads us to consider 3 different parameter
profiles for the hydrographer. As a consequence, once a survey
has to be evaluated by the process for a hydrographic use, the
average depth of the survey has to be checked first, in order to
determine which preference profile of the expert hydrographer
has to be used to configure the process.

Regarding the evaluation scales of the criteria, the three
experts have unanimously defined them as follows:

• CATZOC (A1 �C A2 �C B �C C �C D �C U)
• POSACC (< 0.5m �P < 2m �P < 5m+5% depth �P

< 20m+ 10% depth)
• SOUACC (< 0.25m �SA < 0.5m �SA < 1m �SA <

2m �SA < 10m �SA < 20m)
• Hydrographic coverage (300% �H 200% �H 150% �H

100% �H 80% �H 50%)
• Hydrographic sensors (MBES �HS Lidar �HS SBES +

sonal �HS SDB)
• Sedimentology (number of sensors) (5 �S 4 �S 3 �S

2�S 1�S 0)
• Ocean data (MTO + CTD + tide + current �OD MTO +

CTD + tide �OD MTO + CTD �OD MTO)

The remaining preference parameters identified during these
three interviews are given in Tables II to IV. These preference
parameters have been determined through a direct elicita-
tion approach. The main reason for this choice is the poor
availability of enough learning or assignment examples. Next
to that, the experts’ advanced knowledge eased the task of
providing the separation profiles, the veto profiles, and the
weights directly. For each expert we first present the separation
profile(s) and the veto profile, before showing the criteria
weights and the majority threshold.

B. Quality parameters extraction

Each of the three experts has provided the list of quality
parameters that need to be taken into account in the overall
assessment of the surveys. These information are given as
inputs for the “Quality dimensions extraction / calculation”
step of the process, together with the survey data and meta-
data. This step then generates the data of Table V.



TABLE II
PREFERENCE PARAMETERS FOR THE ACOUSTIC END-USE

Acoustician POSACC SOUACC Cover. Sensors Sed. Ocean data

G / B (b1) < 5m+ 5% < 1m 150% MBES 4 MTO + CTD +
tide + current

Veto (G) (bv1 ) · · · · 1 ·

Weights (wj ) 2/22 1/22 4/22 6/22 6/22 3/22

Majority
threshold (λ)

11/22

TABLE III
PREFERENCE PARAMETERS FOR THE HYDROGRAPHIC END-USE

Hydrographer CATZOC POSACC SOUACC Cover. Sensors Sed. Ocean
data

G / B (10m)
(b1,10m)

A1 < 0.5m < 0.25m 200% MBES 2 MTO +
CTD +

tide
G / B (100m)

(b1,100m)
A2 <

5m+ 5%
< 1m 100% SBES

+ sonal
2 MTO +

CTD +
tide

G / B (1000m)
(b1,1000m)

B < 20m+
10%

< 20m 100% SBES
+ sonal

2 MTO +
CTD

Veto (G) (bv1 ) · · · 100% · · ·

Weights (wj ) 7/28 3/28 4/28 6/28 5/28 1/28 2/28

Majority
threshold (λ)

14/28

On this table we can observe that the quality of the
CATZOC for the experts is not necessarily associated with
a unique value (for the survey S2019026 we have for example
two values of CATZOC: B and C). This CATZOC value can
evolve depending on the area and the range of local depths
acquired. During the ”multi-criteria assesment” step, the most
pessimistic value of the CATZOC has been kept (in order to
be as conservative as possible for the safety of navigation).

In addition, for the measurement of POSACC and SOUACC
the Shom relies on a calculation of total propagation of
uncertainty (TPU) taking into account the entire bathymetric
acquisition chain described in [4]. Here again, a single worst-
case TPU value (one for vertical and one for horizontal TPU)
is kept for all the bathymetric survey soundings.

C. Multi-Criteria assessment

Table V serves as input for the “Multi-Criteria assessment”
step, together with the previously identified preference param-
eters of the three experts. The MR-Sort overall assessment
method generates for each end-use an overall quality evalua-
tion, which depends on the configuration of the process. The
output of this assessment step is shown in Table VI

As we already said, the use of an MR-Sort model allows
us to explain the results of the assessment. For example, for
the hydrographic use, survey S2017026 at 100m is at least as
good as the separation profile b1,100m (Table III) on all criteria
except the CATZOC. Its concordance is therefore equal to
21/28 which is greater than the threshold λ = 14/28. As a
consequence there is a sufficient coalition of criteria supporting
its assignment into category “Good”.

TABLE IV
PREFERENCE PARAMETERS FOR THE OCEANOGRAPHIC END-USE

Oceano-
grapher

POSACC SOUACC Cover. Sensors Sed. Ocean data

G / A (b2) < 2m < 0.5m 200% MBES 4 MTO + CTD +
tide + current

A / B (b1) < 5m+ 5% < 2m 100% SBES
+ sonal

2 MTO + CTD +
tide

Veto (G & A)
(bv1 & bv2 )

· · · · · MTO + CTD

Weights (wj ) 6/42 4/42 8/42 2/42 10/42 12/42

Majority
threshold (λ)

21/42

TABLE V
PERFORMANCE TABLE: OUTPUT OF THE “QUALITY EXTRACTION /

CALCULATION” STEP

Survey
(depth)

CATZOC POSACC SOUACC Cover. Sensors Sed. Ocean
data

S2019026
(1000m)

B/C < 20m+ 10% 20m 200% MBES 5 MTO +
CTD +

tide
S2015009

(10m)
C 2.5 0.55m 50% SBES

+ sonal
2 MTO +

CTD
S2012056

(20m)
B/D 5 0.5m 200% Lidar 0 MTO

S2017026
(100m)

A1/B 3.6 0.85m 130% MBES 2 MTO +
CTD +

tide

Similarly, survey S2012056 for the oceanographic use is at
least as good as the separation profile b1 (Table IV) on four
criteria, which leads to a concordance greater than the thresh-
old λ. However its evaluation on the “Ocean data” criterion is
MTO, which raises a veto and thus invalidates the outranking
relation between S2012056 and b1. Consequently this survey
is evaluated as a bad survey instead of an acceptable one.

V. DISCUSSION

The process we propose has at least 3 advantages over a
method that does not involve maritime expertise via preference
models. First of all, as it can be seen in Table VI, the overall
assessment of a survey is not necessarily the same for the
three end-uses, and depends on the preferences of the expert
and the context of the survey (here the average depth). More
specifically this can be observed for survey S2017026 which
is evaluated differently for each of the three end-uses.

Second, even if a survey is equally evaluated for two end-
uses, there might be very different reasons which have led
to this overall assessment. As an example, consider survey
S2015009, which is evaluated as “Bad” both for the acous-
tic and the hydrographic end-uses. The reason of this bad
evaluation for the acoustic end-use lies in the fact that, even
if this survey is sufficiently good on the POSACC and the
SOUACC quality parameters, the added weights of these
parameters (3/22) is far from a majority coalition (11/22). For
the hydrographic end-use, the bad overall assessment simply
comes from the fact that all the evaluations of this survey are



TABLE VI
OVERALL ASSESSMENTS: OUTPUT OF THE “MULTI-CRITERIA

ASSESSMENT” STEP

Survey (depth) Acoustic use Hydrographic use Oceanographic use

S2019026 (1000m) Good Good Good
S2015009 (10m) Bad Bad Bad
S2012056 (20m) Bad Bad Bad
S2017026 (100m) Bad Good Acceptable

unanimously lower than the minimal requirements for a good
survey.

Third, the Multi-Criteria assessment step allows to give
recommendations for future surveys by providing, if necessary,
clear explanations to the user. Let us consider as an example
survey S2017026, which is considered as a bad survey for the
acoustician, because the 3 criteria “POSACC”, “SOUACC”
and “Sensors” for which it is considered as good, are not
enough for an overall “Good” evaluation. If however, for a
future survey, one would improve the “Ocean data” or the
“Coverage” criterion by only 1 level, this would yield a good
assessment of this survey.

The identified data quality parameters of a survey and
corresponding dimensions represent a particular characteriza-
tion choice, compatible with the examined users’ preferences
profiles. Depending on the available data and metadata it is
possible to further refine the quality representation, permit-
ting to include more specific preferences of a user profile,
without modifying the proposed quality assessment process
for hydrographic surveys. Moreover, it is also possible to
calculate data quality dimensions directly from raw data, like
estimations of covered surface, missing data, depth variability,
and data density depending on the size of analyzed surface
cells. This implies however, that whenever new data quality
characterization values are to be taken into account, the
respective preferences elicitation must be adjusted accordingly.

VI. CONCLUSION AND PERSPECTIVES

The problem of hydrographic data quality assertion depends
on multiple factors that make complex to verify if a given
dataset is compatible with a specific user profile, defined
by its preferences. Our work has defined and validated an
approach combining the use of data quality parameters and
multi-criteria decision aiding to solve this problem. Although,
bathymetric metadata contain several quality parameters (in
key-value form), these values do not give information about
the use that could be made of a dataset and are not useful
to all users. The main interest of the method presented here
is to make the quality analysis explicable through an MCDA
approach with respect to the user’s criteria, by selecting the
quality parameters and dimensions of the hydrographic survey.

Additional calculated data quality dimensions could be
examined and compared to the estimations done by experts,
in order to define a raw data indicator of confidence. On the
other hand, knowing which user profile will exploit a given
dataset, it would also be suitable to take account of information

quality dimensions, as volume to verify if the available dataset
can be used for the intended task, redundancy to confirm the
interest of coping with missing data, and coherence to identify
contradictions, among others. Depending on user preferences,
more advanced data and information quality analysis could be
included, matching essential and complementary parameters
and dimensions.

To further show the interest of the proposed approach, we
also intend on deploying it on more surveys in a real-life
context. Next to that, instead of using a direct preference
elicitation approach to determine the preference parameters of
each expert, an indirect approach could be used, in which the
expert is confronted with past surveys, which he has to assess.
This information is then used by a learning algorithms which
determines automatically the parameters of the preference
model. Last but not least, currently the explanation of the
output is done manually. In the future we plan to automatize
this task through rule generation algorithms.

Our work clearly shows the interest of the proposed method
for the use of a national hydrographic service. Indeed, from a
survey and its associated metadata we can determine its overall
level of quality, but also the usefulness of this dataset for
different end-uses, as hydrographic, acoustic, or oceanographic
purposes. It can therefore be used a posteriori assess the
interest of a survey after its completion.

But our proposal could also be used a priori to plan future
hydrographic surveys according to the needs expressed by the
prescriber of the survey, allowing the survey to be planned
to meet the exact requirements of the national hydrography
programme [14] and avoiding over-quality.
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