
HAL Id: hal-03552260
https://imt.hal.science/hal-03552260

Submitted on 2 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative channel estimation and data detection
algorithm for OTFS modulation

Rabah Ouchikh, Abdeldjalil Aissa El Bey, Thierry Chonavel, Mustapha
Djeddou

To cite this version:
Rabah Ouchikh, Abdeldjalil Aissa El Bey, Thierry Chonavel, Mustapha Djeddou. Iterative chan-
nel estimation and data detection algorithm for OTFS modulation. ICASSP 2022: IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, IEEE, May 2022, Singapor, Singapore.
�10.1109/ICASSP43922.2022.9747191�. �hal-03552260�

https://imt.hal.science/hal-03552260
https://hal.archives-ouvertes.fr


ITERATIVE CHANNEL ESTIMATION AND DATA DETECTION ALGORITHM FOR OTFS
MODULATION

Rabah Ouchikh† Abdeldjalil Aı̈ssa-El-Bey⋆ Thierry Chonavel⋆ Mustapha Djeddou†

† Laboratoire Télécommunications, Ecole Militaire Polytechnique, Bordj El-Bahri, Algeria
⋆IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238 Brest, France

ABSTRACT

In this paper, we design an iterative channel estimation and
data detection algorithm in delay-Doppler domain for orthog-
onal time frequency space (OTFS) system by taking advan-
tage of the sparse nature of the channel in this domain. The
proposed algorithm iterates between message-passing-aided
data detection and data-aided channel estimation. This sparse
channel estimation is reformulated as a specific marginaliza-
tion of maximum a posteriori (MAP) problem. To deal with
the intractability of this problem, we provide a Bayesian ap-
proach based on the variational mean-field approximation via
the variational Bayesian expectation maximization (VB-EM)
algorithm. Finally, we compare the complexity and perfor-
mance in term of Bit Error Rate (BER) and Normalized Mean
Square Error (NMSE) of the proposed solution to a reference
solution in the literature (SP-I).

Index Terms— OTFS, channel estimation, Iterative algo-
rithm, Bayesian approach.

1. INTRODUCTION

The OTFS modulation technique proposed in [1, 2] offers sig-
nificant advantages over OFDM modulation. OTFS shows its
robustness in high Doppler scenarios. The genius of OTFS is
the transmission of data symbols in the delay-Doppler domain
as opposed to OFDM where transmitted data are in the time-
frequency domain [3, 4]. OTFS transforms a doubly-selective
channel into a time-invariant one in the delay-Doppler do-
main, which makes it possible to reduce pilot overhead for es-
timating rapidly time-varying channel. In the delay-Doppler
domain, the channel is sparse. This sparsity can be used to re-
duce the complexity of data detection and channel estimation
algorithms [5, 6].

Several channel estimation and data detection schemes
in the delay-Doppler domain have been proposed recently in
the literature. Estimation schemes based on pilots pulses in
delay-Doppler domain for OTFS systems have been proposed
in [4, 7, 8, 9]. A channel estimation based on a threshold-
ing and an appropriate arrangement for pilots, data and guard
interval in delay-Doppler domain have been proposed in [6].

In each OTFS frame, pilots, guard and data symbols are ar-
ranged appropriately in the delay-Doppler domain in order to
avoid interference between the data symbols and the pilots at
the receiver side. This configuration decreases the spectral ef-
ficiency of the system because a lot of space is reserved for the
guard interval in the delay-Doppler grid. Another disadvan-
tage of this method is that it uses a very powerful pilot, which
increases peak-to-average power ratio (PAPR). A low com-
plexity Message Passing (MP) algorithm for data detection in
OTFS systems have been proposed in [10]. A superimposed
pilot (SP)-based channel estimation and data detection have
been proposed in [11]. In [11], data and pilots are superim-
posed in the same locations in delay-Doppler domain. This
configuration allows pilots energy to be scattered over all the
delay-Doppler domain and high spectral efficiency compared
to previous schemes where data and pilots are separated by
guard interval. In this approach, channel estimation and data
detection are improved alternatively in an iterative process.

In the present paper, we propose an iterative channel es-
timation and data detection algorithm for OTFS systems with
superimposed pilots. The main contributions are summarized
as follows:

(i) We propose an iterative channel estimation and data
detection algorithm using a superimposed pilot, where
channel estimation step is based on the variational
mean-field approximation via the VB-EM algorithm,
while data detection step is based on MP algorithm.

(ii) We study the performance of the proposed algorithm in
terms of NMSE and BER as well as its complexity and
we compare the results obtained with the method pro-
posed in [11]. We show that our algorithm has almost
the same performance as SP-I with slightly lower com-
plexity and without need for any prior knowledge about
the channel, unlike SP-I which assumes prior knowl-
edge of channel taps.

Nomenclature: Hadamard product and Kronecker product
are represented by ⊙ and ⊗, respectively. Operators vec(.)
and vec−1(.) denote the column vectorization of an M × N
matrix into an MN column vector and the invectorization of
an MN column vector to an M × N matrix, respectively.



Finally, Fn, FH
n and IM denote the n-point DFT matrix, the

n-point IDFT matrix, and the M ×M identity matrix.

2. SYSTEM MODEL

In this section, we first recall the input/output equations of the
OTFS system with a superimposed pilot. Then, we formulate
the channel estimation and data detection problems.

2.1. OTFS input/output with superimposed pilot

Let NT , T/M , gtx(t) and grx(t) denote the total duration of
the transmitted signal frame, the sampling interval, the trans-
mitted waveform of duration T , and the received filer impulse
response. The transmitted signal s can be expressed in a ma-
trix form S as follows:

S = GtxF
H
M (FMXFH

N ) = GtxXFH
N (1)

where Gtx = diag(gtx(0), gtx(T/M), ..., gtx((M−1)T/M))
∈ CM×M and X ∈ CM×N is the two-dimensional super-
imposed symbols transmitted in the delay-Doppler domain,
which can be written as X = Xd + Xp. Where Xd and
Xp are delay-Doppler data and pilot matrices formed by the
arrangement of xd[k, l] and xp[k, l] for k = 0 : N − 1 and
l = 0 : M − 1. The elements of Xp and Xd are assumed in-
dependent and identically distributed (i.i.d.) with zero-mean
and we note E{|xp[k, l]|2} = σ2

p and E{|xd[k, l]|2} = σ2
d for

k = 0 : N − 1 and l = 0 : M − 1. We also assume that
E{|x[k, l]|2} = σ2

d + σ2
p = σ2

x.
The channel is sparse in delay-Doppler domain and its re-

sponse can be expressed as h(τ, ν) =
∑P

i=1 hiδ(τ−τi)δ(ν−
νi), where P is the number taps, hi, τi and νi represent the
complex gain, delay, and Doppler shift associated with the ith
path. The delay and the Doppler associated with the ith path
are expressed as τi = li

M∆f , νi =
ki

NT .
In vectorized form, the received signal Y in delay-

Doppler domain can be expressed as follows:

y = H(xd + xp) +
∼
w = Hx+

∼
w, (2)

where y = vec−1(Y ), H is a sparse matrix expressed as
H = (FN ⊗ IM )(

∑P
i=1 hiΠ

li∆ki)(FH
N ⊗ IM ), with ∆ =

diag(exp(j2π(0)/MN), ..., exp(j2π(MN − 1)/MN)) and
Π is the permutation matrix (forward cyclic shift).

∼
w =

(FN ⊗ IM )w. We note Mrx = FN ⊗ IM and Mtx =
FH
N ⊗ IM .

2.2. Problem formulation

Channel estimation in the delay-Doppler domain amounts to
estimate {hi, τi, νi}Pi=1, while data detection is the determi-
nation of xd. From (2), we have

y = yp + yd +
∼
w, (3)

where yp = Hxp and yd = Hxd. The elements of yp can
be expressed as a circular convolution as follows:

yp[k, l] =

kν∑
k′=−kν

lτ∑
l′=0

bk′,l′hk′,l′αk,lxp[[k − k′]N , [l − l′]M ],

(4)
where kν and lτ represent the maximum Doppler tap and
the maximum delay tap, respectively. bk′,l′ ∈ {0, 1} is the
path indicator and αk,l represents an additional phase shift
caused by the imperfection of the rectangular waveform,
where αk,l = exp(j2π(l − l)k′/MN) if l′ ≤ l < M and
exp(j2π((l − l)k′/MN) exp(−j2πk/N) elsewhere [12].

Equation (4), can be written in the following vector form:

yp = (Sp ⊙Ψ)h = Ah, (5)

where Ψ ∈ CMN×L is an additional phase shift matrix given
by [Ψ](i,l′(2kν+1)+k′+kν) = αk,l, while Sp ∈ CMN×L repre-
sents the pilots matrix, with [Sp](i,l′(2kν+1)+k′+kν) = xp[[k−
k′]N , [l− l′]M ]. h ∈ CL is a sparse channel vector containing
only P non-zero elements and L = (2kν + 1)(lτ + 1). Thus,
equation (2) can be written as follows:

y = Ah+Hxd +
∼
w. (6)

Finally, channel estimation in this context amounts to
finding the channel support {li, ki}Pi=1 as well as the cor-
responding path parameters {hi, τi, νi}Pi=1. Whereas, data
detection amounts to finding data vector xd from (6).

3. PROPOSED ITERATIVE CHANNEL ESTIMATION
AND DATA DETECTION ALGORITHM

In this section, we detail the proposed algorithm. This al-
gorithm iterate between data-assisted channel estimation and
MP-assisted data detection.

3.1. Initial channel estimation

In this part of algorithm, we calculate an initial estimate of
the channel. Equation (6) can be written as follows:

y = Ah+ v =

L∑
i=1

bigiAi + v, (7)

where v = Hxd +
∼
w. It is shown in [11] that the mean of v

is expressed as µv = E{v} = 0MN×1 and its covariance
matrix Cv = E{vvH} =

((∑P
i=1 σ

2
hi

)
σ2
d + σ2

w

)
IMN .

h = b ⊙ g, i.e. hk = bkgk, where b = [b1, b2, ..., bL]
T is

the support vector and g = [g1, g2, ..., gL]
T is the channel

gains vector. Ai represents the ith column of A. Therefore,
p(y|g, b) = CN (Abgb, σ

2
vIL), where Ab ∈ CMN×P and



gb ∈ CP are made up from A and g considering indices i
where bi ̸= 0.

To take into account the fact that most of the elements
of h are zero except for P of them which are non-zero, we
model its elements by a Bernoulli-Gaussian model. There-
fore, g obeys the following model: p(g) =

∏L
i=1 p(gi),

where p(gi) = CN (gi; 0, σ
2
gi) and b is modelled as p(b) =∏L

i=1 p(bi), where p(bi) = Ber(pi), where pi = p(bi = 1) =
1− p(bk = 0).

We derive an estimator under a Maximum A Posteriori
(MAP) criterion, which is the optimal Bayesian estimator us-
ing a Bayesian cost. Therefore, the estimation of b and g can
take the form

(ĝ, b̂) = argmax
g,b

log(p(g, b|y)). (8)

We start with the estimation of support vector b, which
can be made from marginalized MAP, leading to

b̂i = argmax
bi∈{0,1}

log(p(bi|y)). (9)

The evaluation of p(bi|y) requires a costly marginaliza-
tion of p(b|y). To avoid this problem, we use the VB-EM
algorithm [13] that involves a tractable surrogate q(bi) of
p(bi|y) via the mean-field variational approximation.

By using this approximation, (9) can easily be solved by
simple thresholding operation, i.e, b̂i = 1 if q(bi = 1) > ρ

and b̂i = 0 otherwise, with ρ = 0.5. The estimation of the
sparse vector of channel coefficients g is given as its MAP
estimate as

ĝ = argmax
g

log(p(g|b̂,y)). (10)

Letting ĝb̂ denote the entries of g limited to the estimated
channel support and Ab̂ the corresponding columns of A, the
solution of this problem is given by

ĝb̂ = (AT
b̂
Ab̂ +∆)−1AT

b̂
y

and ĝi = 0 if bi = 0,
(11)

where ∆ = diag(σ2
v/σ

2
g1 , σ

2
v/σ

2
g2 , ..., σ

2
v/σ

2
gL).

3.2. Message-passing (MP) data detection

Once the first channel estimation is done, the pilot signal is
subtracted from the received signal y to get yd which will be
used for detection and which is given as follows:

yd = y −Aĥ = Ĥxd +we (12)

where we = v + A(h − ĥ) consist of noise and channel
estimation error. The objective here is to estimate the vector
of data symbols xd from yd and Ĥ . For this purpose, we use
a low-complexity message passing (MP) detection algorithm
proposed in [10].

3.3. Data-aided Channel estimation

After estimating the data vector x̂d, equation (6) becomes as
follows:

ye = Ah+ ve, (13)

where ve = Ĥx̂d +
∼
w consists of noise and estimate of

channel matrix and data symbols vector. The MP data de-
tection steps yield independent variables for the entries of x̂d.
Then, for channel update we propose the Bayesian approach
described in subsection (3.1) with the following noise approx-
imation in (7): ve ∼ N (ĤE{x̂d}, ĤR̂xĤ

H +σ2
∼
w
I), where

R̂x = E{x̂dx̂
H
d } is the covariance matrix of x̂d.

The proposed algorithm for channel estimation and data
detection is summarized in Algorithm 1.

Algorithm 1 Iterative channel estimation and data detection
algorithm.
Input: measurements y ∈ CMN , pilot matrix A ∈ CMN×L,

initial channel estimation ĥ(0),
repeat

Compute Ĥ(i) = Mrx

(∑P
n=1 ĥ

(i)
n Πln∆kn

)
Mtx,

Compute y
(i)
d = y −Aĥ(i) = Ĥ(i)xd + ve,

Compute x̂d by feeding the MP algorithm with Ĥ(i)

and y
(i)
d ,

Compute y
(i)
e = y − Ĥ(i)x̂

(i)
d ,

Compute ĥ(i+1) by feeding y
(i)
e and A to (13),

until stopping condition
Output: ĥ, x̂d.

4. SIMULATION RESULTS AND COMPLEXITY
ANALYSIS

In this section, we first set the simulation parameters. Then,
we study the performance of the proposed algorithm in terms
of NMSE and BER by comparing it with the state of the art
method [11]. Finally, we study the complexity of the pro-
posed solution.

4.1. Simulation parameters

We consider the following simulation parameters: the car-
rier frequency is 4 GHz and spacing between sub-carriers is
15 kHz. The OTFS frame used is of size M = N = 16. A
rectangular pulse and BPSK modulation are considered. Pa-
rameters of the 5-tap channel used here are given in Table
1 of [11]. Pilot and data power used here are σ2

p = 0.3σ2
x

and σ2
d = 0.7σ2

x, respectively. It has been shown in [11]
that σ2

p = 0.3σ2
x is an optimal value that minimises the BER.

The proposed algorithm terminates when |ĥ(n)−ĥ(n+1)| < ϵ
(ϵ = 10−3) or when the number of iterations reaches 10.



4.2. Normalized Mean square error (NMSE) versus SNR

The NMSE expression we used is given as NMSE (dB) =
10 log10(1− (|hH ĥ|/∥h∥2∥ĥ∥2)2).

Fig. 1 compares NMSE for the proposed iterative channel
estimation and data detection algorithm with the SP-NI and
SP-I designs proposed in [11]. It is very clear that SP-I has
better performance than SP-NI, which is the non-iterative ver-
sion used for its initialization. We observe that the NMSE of
our proposed algorithm is close to that of the SP-I design. It
should be noted that unlike SP-I the channel estimation per-
formed in our work does not assume prior knowledge of chan-
nel delays and Doppler frequencies (li, ki). In the SP-I algo-
rithm (li, ki) are assumed constant for several OTFS frames,
and thus to estimate them, a super-frame architecture is used.
In the first frame, the arrangement of pilot, data and guard
interval proposed in [6] is used. The estimation of (li, ki) in
this first frame is done using a thresholding. Thus, in [11],
once (li, ki) are estimated, the estimation of hi is performed
on the other frames of the super-frame architecture.
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Fig. 1. NMSE comparison for the proposed algorithm and
existing SP-I and SP-NI designs.

4.3. Bit Error Rate (BER) versus SNR

In Fig. 2, we perform a comparison of BER versus SNR for
our proposed algorithm, SP-NI, SP-I designs and OTFS with
known channel state information (CSI). It can be seen from
Fig. 2 that the BER of our proposed algorithm is close to that
of SP-I. This small marginal difference is due to the small dif-
ference in the NMSE because we use the same MP detector.
We note that both proposed solution and SP-I algorithm are
close to the oracle.
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Fig. 2. BER comparison for the proposed algorithm and ex-
isting SP-I, SP-NI designs and oracle.

4.4. Complexity analysis

For the channel estimation step, the computational coast per
iteration is µe = (4P 2+6L)MN+(P 3+L). For the MP de-
tection step, the overall cost over niter is µd = niterNMSP .
The overall complexity of the proposed algorithm is C =
O(µe) + O(µd) + O(µi), where µi = µe is the complex-
ity of the first estimate. In practice, we have P ≪ MN , the
overall complexity of the proposed algorithm is µ = (Niter+
1)O(MN) +NiterO(niterNMSP ). The complexity of our
algorithm is slightly lower than that of SP-I which is given by
µSPI = (NSPI+1)O(MN)+(NSPI+1)O(niterNMSP ).
We note that the number of iterations Niter and NSPI after
convergence of the two algorithms are of the same order of
magnitude. Finally, we observe a difference in overall com-
putational cost of < 1% between the two methods and we
manage to estimate the channel without significant additional
computational cost compared to [11] where the delay and
Doppler taps of the channel are known.

5. CONCLUSION

In this paper, we have developed an iterative algorithm for
channel estimation and data detection. We addressed the
channel estimation step from a Bayesian point of view, using
mean-field approximation as well as VB-EM algorithm. For
the detection step we used the low complexity MP algorithm
proposed in OTFS literature. In addition to the gain in terms
of spectral efficiency compared to schemes where pilots and
data are separated by guard intervals, our proposed algorithm
shows BER and MSE performance close to those of the SP-I
algorithm proposed in the literature and this without any prior
assumption upon channel taps knowledge. Our algorithm is
also less complex compared to the SP-I algorithm.
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