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Abstract: This paper presents a quantized Kalman filter implemented using unreliable memories. We
consider that both the quantization and the unreliable memories introduce errors in the computations,
and we develop an error propagation model that takes into account these two sources of errors. In
addition to providing updated Kalman filter equations, the proposed error model accurately predicts
the covariance of the estimation error and gives a relation between the performance of the filter
and its energy consumption, depending on the noise level in the memories. Then, since memories
are responsible for a large part of the energy consumption of embedded systems, optimization
methods are introduced to minimize the memory energy consumption under the desired estimation
performance of the filter. The first method computes the optimal energy levels allocated to each
memory bank individually, and the second one optimizes the energy allocation per groups of memory
banks. Simulations show a close match between the theoretical analysis and experimental results.
Furthermore, they demonstrate an important reduction in energy consumption of more than 50%.

Keywords: quantized Kalman filter; unreliable memories; energy optimization; error propagation;
faulty hardware

1. Introduction

Kalman filtering is a very common recursive estimation task in statistical signal
processing [1], and it is often implemented on resource-limited hardware. Applications
that require an embedded energy-efficient Kalman filter include air quality monitoring [2],
biomedical wearable sensors [3], forest fire detection [4] and vehicle positioning [5]. Energy
budgets for embedded systems show that memory access consumes about a hundred-times
more energy than integer computations [6]. Therefore, in this paper, we focus on optimizing
the energy used by memories in Kalman filters.

All memories used in integrated circuits exhibit a fundamental trade-off between
data storage reliability and energy consumption that is related to the inability of perfectly
controlling the fabrication process. For example, the energy consumption of static random
access memories (SRAMs) can be reduced by lowering its supply voltage; however, this
increases the probability that some of the stored bits cannot be retrieved correctly [7].
Following this principle, ref. [8] developed an optimization method to lower the energy
consumed by SRAM access by reducing the bit-line voltages. This methodology was also
used to decrease the write energy of magnetic random access memories (MRAM) in [9]. In
both cases, however, this introduces errors in the words stored in memory.

The robustness to unreliability in computation operations and memories has been in-
vestigated for several signal processing and machine-learning applications, including binary
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recursive estimation [10], binary linear transformation [11], deep neural networks [12,13],
multi-agent systems [14] and distributed logistic regression [15]. Moreover, several techniques
have been proposed to compensate for faults introduced by unreliable systems. For in-
stance, [16] proposed to add redundancy in the system through algorithmic noise tolerance,
and [17] investigated the use of error-correction codes (ECC) for fault correction.

Although Kalman filtering has not previously been investigated under unreliable
hardware implementation, some related works considered this filter and other similar
models for linear systems under uncertain conditions. These include errors on the filter’s
gain [18,19], sensors failures, uncertainties on the observations [20,21], or inaccuracies in
the filter parameters [22–24]. In these works, new filter equations were derived using
the Riccati equations approach to find new bounds or guarantee on the performance of
the filter.

Although these models are not relevant for characterizing the effect of unreliable
memories, the main lessons they provide are that Kalman filtering is very sensitive to
inaccuracies and that one should re-derive the optimal Kalman filter depending on the
specifically considered uncertainty model. On a different line of research, other prior
works aim at reducing the energy requirements for Kalman filtering by focusing on re-
duced computational complexity in field-programmable gate arrays (FGPAs) [25,26] and
application-specific integrated circuits (ASICs) [27].

Designing a digital hardware implementation requires quantizing all the variables and
computational operations. Therefore, to further reduce the memory energy consumption,
one option is to properly optimize the quantization to reduce the memory requirements
of the implementation. Significant energy gains from optimized quantization have been
demonstrated in [28–30] for signal processing and digital communications applications
and in [31–33] for neural networks. The effects of quantization on the Kalman filter were
first studied in [34,35] to understand the convergence of filters with reduced precision.

More recently, refs. [36–38] considered two distributed quantized Kalman filters,
one based on quantized observations and one based on quantized innovations, where
sensors process and transmit quantized observations and innovations to a fusion center.
Furthermore, ref. [36] proposed to optimize the number of quantization bits at each sensor
to minimize the required data transmission energy.

More general linear stochastic systems were also investigated under quantized mea-
surements [39] and quantized innovations [40], where it was shown that the derived
quantized filters converged to standard Kalman filters as the number of quantization levels
increased. However, none of these theoretical works considered quantized parameters (e.g.,
quantized Kalman gain matrices, quantized measurement matrices, etc.), in addition to
quantized observations/innovations. Therefore, in this paper, we study a fully-quantized
Kalman filter and investigate its energy consumption when using unreliable memories.

Here, we aim to optimize the energy consumption of a Kalman filter implemented with
fixed-point quantization [41] and with unreliable memories. Fixed-point representations
are often preferred in energy-constrained systems as a fixed-point operation can consume
10-times less energy than a floating-point one [6]. We consider the statistical model of [7],
which relates the amount of faults introduced in memory for its energy consumption. Then,
as a first contribution, we propose a unified framework to analyze the performance of
Kalman filters with both quantization errors and faults introduced in the memory.

To develop this framework, we build on the approach of [35], which consists of evalu-
ating the covariance matrix of the estimation error at each filter iteration by considering
both error propagation from previous iterations and errors introduced at the current it-
eration. Our analysis also includes quantized filter parameters and further incorporates
the effect of unreliable memories. Determining the covariance matrix of the estimation
error has two advantages. First, it allows us to derive the optimal Kalman filter equations
under the considered quantization and memory error models. Second, and more specific
to our case, it defines a performance criterion that will be used to optimize the memory
energy consumption.
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As a second contribution, we define two optimization problems to minimize the mem-
ory energy consumption while satisfying a target constraint on the estimation performance
of the Kalman filter. In the first problem, we optimize the number B of quantization bits
and the energy allocated to each bit position to minimize the overall energy consumption of
the memory. This optimization problem extends to [8], which was not dedicated to Kalman
filtering but derived optimal bitwise energy allocations with a fixed number of quantiza-
tion bits by considering a generic Mean-Squared Error (MSE) performance criterion when
reading a word in memory.

Although a useful baseline, the setting where each bit position can have a different
energy allocation is not practical, since each of the B bits should be placed in a different
memory bank with its own power supply. This is why we also introduce a second opti-
mization problem in which we fix the number L < B of possible energy levels and optimize
the energy value in each level and the mapping of bit positions to an energy level.

At the price of a small energy increase, this optimization problem allows us to build
a practical implementation that only requires L memory banks. By using the Karush–
Kuhn–Tucker (KKT) conditions, we provide solutions for the two considered optimization
problems. Both solutions can be numerically computed using water-filling. Numerical
simulations show that, after optimization, the memory energy consumption is reduced by
up to 56% compared to uniform allocation.

The main contributions of this paper can be summarized as:

1. We develop an error propagation model of the Kalman filter that takes different
sources of errors (quantization, unreliable memories) into account and allows us
to derive new filter equations to minimize the estimation error. Moreover, these
equations accurately predict the filter’s performance, depending on the considered
sources of errors and on their parameters.

2. We propose a methodology for minimizing the energy of the unreliable memories
used in the Kalman filter, under a given performance constraint. This methodology
consists of computing the optimal number of quantization levels and bit energy
allocation in two setups. The first setup considers that the B energy levels can be
chosen freely, while the second one assumes that only L < B energy levels can be set.

A preliminary version of this paper [42] only considered optimizing the energy alloca-
tion for each memory bank individually and for a fixed number of bits without taking into
account the quantization noise nor trying to reduce the energy consumption by adjusting
the number of bits. Since the number of quantization bits also affects the energy consump-
tion of the memory, in this work, we add this parameter to the theoretical analysis and the
optimization problems.

The rest of the paper is organized as follows. Section 2 describes the quantized Kalman
filter and introduces the uncertainty model for unreliable memories. Section 3 investigates
the theoretical performance of the filter. Section 4 formally defines and solves the two
considered optimization problems. Section 5 presents the simulation results.

2. System Model

We first review the Kalman filter for estimating dynamic state variables from noisy mea-
surements. We then present the considered implementation of the filter by first introducing
its quantization model and then describing its implementation with an unreliable memory.

2.1. Kalman Filter

The process:
xk+1 = Fxk + uk , (1)

describes the linear dynamic variable x ∈ Rc, where the state vector of the process at
step k is noted as xk, F is the state transition matrix of size c× c , and uk ∈ Rc is an additive
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white noise vector [43]. Observation of the state of x can be obtained through y ∈ Rd,
the measurement vector defined as

yk = Hxk + vk . (2)

Here, H is the d× c measurement model and vk ∈ Rd is an additive white noise on the
measurements, independent from the model noise uk. We denote Q and R as the known
covariance matrices of the noise vectors uk and vk, respectively.

Using the knowledge of the model as well as the the measurement vectors yk,
the Kalman filter [1] recursively estimates the successive states xk. This is done by
minimizing the mean squared error between xk and its estimate x̂k at each step k:
MSE(x) = E[‖xk − x̂k‖2]. The filter can be decomposed in two phases: the a priori estima-
tion uses only the known model, and the a posteriori estimation takes into account the
measurements.

At each phase, both the estimates x̂k+1|k (for the a priori phase) and x̂k+1|k+1 (for the a
posteriori phase) of the state vector xk+1, and the covariance matrices of the estimations
errors Pk+1|k = Cov[xk+1 − x̂k+1|k] and Pk+1|k+1 = Cov[xk+1 − x̂k+1|k+1] are computed.
The recursive equations of the a priori estimation step are [44]:

x̂k+1|k = Fx̂k|k , (3)

Pk+1|k = FPk|kF> + Q , (4)

and the recursive equations of the a posteriori estimation step are:

Kk+1 = Pk+1|k H>(HPk+1|k H> + R)−1 , (5)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − Hx̂k+1|k) , (6)

Pk+1|k+1 = (I − Kk+1H)Pk+1|k , (7)

where A> denotes the transpose of a matrix A. In these equations, the Kalman gain K
of size c× d and the covariance matrices P of size c× c can be computed offline. On the
other hand, the terms x̂k+1|k and x̂k+1|k+1 must be computed online as they depend on the
measurements yk.

2.2. Quantized Implementation of the Filter

In the rest of the paper, we study Kalman filters that are implemented under fixed-
point quantization [41]. Under this model, each number is represented as a signed integer
coded on (1 + n + m) bits, where one bit is used for the sign, n bits are used for the integral
part of the number, and m bits are used for its fractional part. Using this model, we can
write a given number z as

z = (−1)zn
n−1

∑
b=−m

2bzb, (8)

where zb ∈ {0, 1} are the bits stored in memory to represent z. In our modeling of the
Kalman filter, all variables (including matrix components) involved in Equations (3)–(7) are
stored using this quantization model, all with the same values of n and m. The quantization
of the variables to this fixed-point model is done using a uniform quantizer. Note that the
distribution of the quantized data is not necessarily uniform (the random variables x̂k|k
and yk could follow Gaussian distributions for example). However, in [45] it is shown that
a uniform quantizer can be applied independently of the probability distribution of the
source with only a small difference to an optimal quantizer.

In the considered quantizer, the value of n is chosen to be able to represent the largest
possible value in the system. The value of m sets the resolution of the quantization so that
the smallest difference between two quantized numbers is 2−m [41]. The value of m will be
a parameter that is optimized for minimizing the energy in later sections.
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In the case of fixed values, such as components of the matrices of the filter, the fixed-
point quantized value can be written as f = f + δ f where δ f is the quantization error.
Using the previously described uniform quantizer, δ f < 2−m. In the case of quantized
random variables, such as the components of x̂k|k or yk, we let εx be the quantization
error and express x = x + εx. In [46], conditions are given for the quantization error
εx to be independent from the quantized variable depending on the distribution of the
quantized data.

For the special case of a Gaussian distribution, the quantization step needs to be
significantly smaller than the variance of the quantized data. In this case, it can be shown
that the quantization error is a white noise following a uniform distribution of variance
2−2m

12 . This independence assumption will be used in the theoretical derivations of Section 3.
Note that most existing works on quantized Kalman filters only consider that random
quantities, such as x̂k|k and yk, are quantized, whereas here, the components of the matrices,
e.g., Kk of the filter, are also quantized. This will require a new theoretical analysis to treat
this case.

2.3. Implementation of the Filter by Using an Unreliable Memory

In order to reduce its energy consumption, the quantized Kalman filter can be im-
plemented on unreliable hardware [8,10–12]. Here, we assume, as in [10,12], that only
the memory is faulty. In this case, each memory cell of a memory bank has a bit flipping
probability p. We then use the model of [7] to express p with respect to the memory bank
energy consumption e as

p = exp(−ea) , (9)

where a is a parameter that depends on the device technology. We assume that bit errors
occur independently. This is justified first by the fact that, in many cases of interest, such
as the common case of SRAM memories in a CMOS digital circuit, memory failures can
be assumed to occur independently for each bit cell [47]. Therefore, we have a spatial
independence between each memory cell for one iteration.

However, typically faults are caused by fabrication variations, and therefore this
cannot guarantee a temporal independence for successive reads of the same memory cells.
To resolve this issue, we can assume that a diversity scheme is implemented at the system
level to avoid re-using the same memory location to store the same variable, which can be
implemented at very low cost simply by modifying the memory addressing scheme.

Each memory bank has a uniform energy consumption (e.g., single supply voltage)
and is used in our case to store the bits at a certain position of all components of matrices that
are stored in the unreliable memory. Since the other terms of the filter can be precomputed
offline and stored on a reliable memory separately in the system, we assume that only the
estimates x̂k+1|k and x̂k+1|k+1 are stored in an unreliable memory bank. Therefore, in the
Kalman filter, instead of having an estimate component x̂, such as the one computed in (3),
we have a possibly incorrect estimate component x̃. We can define an energy per memory
bank vector using the binary representation given in (8):

e =
[
e−m, e−m+1, . . . , en−1

]
. (10)

We can then express as x̃b = x̂b ⊕ γb a bit at position b stored in the unreliable memory.
Here, pb = Pr(γb = 1) = exp(−eba), and ⊕ denotes the modulo-2 addition. As the filter
would be particularly sensitive to faults on the sign bit, we consider a sign-preserving
model, as in [10,48,49]. This sign-preserving model can be implemented by storing the sign
bits in a separate reliable memory.

Using this noise model defined at the bit-level x̃b, we can define a noise model at the
symbol level x̃ as

x̃ = x̂ + γ , (11)
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where γ is the noise introduced by the unreliable memory. For the subsequent theoretical
analysis, we assume that the mean E[γ] of this memory noise is negligible compared to
its variance Var[γ] = σ2

γ. We verified this condition with Monte Carlo simulations. The
covariance matrix Γ of a memory noise vector γ of length c is defined as Γ = Cov[γ] =
Icσ2

γ , and has size c× c. The matrix Γ is diagonal since the memory noise variables are
considered independent.

3. Error Analysis

As described in Section 2, we consider two types of errors affecting the filter: the quan-
tization error and the unreliable memory noise. In this section, we first describe a generic
model of error propagation in the Kalman filter, before studying both types of errors in more
detail. Finally, we compute the new covariance matrix P∗k|k = Cov[x̃k|k − xk] of the total
estimation error by taking both sources of noise (quantization and unreliable memories)
into account, compared to a standard Kalman filter, which does not include either.

3.1. Error Propagation Model

Our objective is to compute the total error ∆x̂k+1|k+1 on the computation of x̂k+1 at
step k + 1 by considering the two types of errors: quantization and unreliable memory.
To handle recursion as in [35], we choose to split the error model in two parts: the errors
occurring at step k and the errors from the previous steps, which are propagated up to
step k.

To compute ∆x̂k+1|k+1, we first need to express the total error ∆Pk+1|k on the a poste-
riori covariance matrix Pk+1|k after step k + 1. As in [35], we express this total error as

∆Pk+1|k = fP(∆Pk|k−1) + δPk+1|k , (12)

where the function fP models the errors propagated from step k, and δPk+1|k represents
the errors occurring at step k + 1. In this case, according to [35]:

fP(∆Pk|k−1) = Gk∆Pk|k−1G>k + o(∆2) , (13)

where ∆ =
∥∥∥H∆Pk|k−1H>

∥∥∥
2
� σmin(HPk|k−1H> + R) and HPk|k−1H> + R is a square

nonsingular matrix with σmin representing the smallest singular value. Therefore, we have
the approximation

fP(∆Pk|k−1) ≈ Gk∆Pk|k−1G>k , (14)

where Gk = F(I − Kk H). We then express the total error ∆x̂k+1|k+1 on x̂k+1|k+1 by
considering the same separation between propagation errors and errors from the current
iteration. This gives

∆x̂k+1|k+1 = fx(∆x̂k|k, ∆Pk|k−1) + δx̂k+1|k+1 , (15)

where the error propagation function fx is provided in [35], using the same assumption as
for (13), as

fx(∆x̂k|k, ∆Pk|k−1) ≈

(I − Kk H)(F∆x̂k|k + ∆Pk|k−1H>(HPk,k−1H> + R)−1(yk+1 − HFx̂k,k)) . (16)

In this expression, we observe the error propagation from the previous computations of
x̂k|k Pk+1|k. In particular, x̂k+1|k+1 depends on Kk+1, which is precomputed from Pk+1|k at
each iteration.

Using the recursive Equations (12) and (15), we now estimate the covariance matrix of
the total estimation error P∗k|k. Note that [35] considered only quantization errors, while
here we consider two sources of errors: quantization and unreliable memories. To evaluate
P∗k|k, we must first compute the covariance of each term of ∆x̂k+1|k+1. By assuming
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that the two sources of noise (quantization and unreliable memory noise) are statistically
independent, we decompose δx̂k+1|k+1 as

δx̂k+1|k+1 = δx̂quant
k+1|k+1 + δx̂mem

k+1|k+1 , (17)

and study the two terms δx̂quant
k+1|k+1 and δx̂mem

k+1|k+1 separately.

3.2. Quantization Error

We now aim for an analytical expression for δx̂quant
k+1|k+1, defined as the difference

between the full precision estimate x̂k+1|k+1 and its quantized version x̂k+1|k+1:

δx̂quant
k+1|k+1 = x̂k+1|k+1 − x̂k+1|k+1 . (18)

Before expressing δx̂quant
k+1|k+1, we first review generic quantization errors expres-

sions [35]. For the scalar fixed-point multiplication of a coefficient s with a random variable
t both quantized according to the model presented in Section 2.2, we can show that

st = (s + δs)(t + εt) + εst

= st + sεt + tδs + δsεt + εst , (19)

where δs = s− s and εt and εst follow uniform distributions of variance 2−2m

12 . The scalar
expression (19) can then be generalized to the case of a product between a matrix of fixed-
point coefficients A of size p× q and a matrix of fixed-point random variables B of size
q× r as

AB = AB + AεB + BδA + δAεB + εAB , (20)

where εAB is of size p× r with εABi,j = ∑
q
k=1 εABi,j,k. According to Section 2.2, each εABi,j,k

follows a uniform distribution of variance 2−2m

12 . In (20), the product δAεB can be considered
as negligible compared to the other error terms. Indeed, all scalar quantization errors ε
and δ are upper-bounded by 2−m−1, and since m ≥ 1, their product is bounded by 2−2m−2.
Thus, given that, for a value of m large enough, the value of 2−m−1 is much less than 1
and 2−2m−2 = (2−m−1)

2, we have that 2−2m−2 is negligible compared to 2−m−1. Therefore,
in the following derivation, we neglect the products of quantization errors.

We now study quantization errors introduced during the computation of x̂k+1|k+1.
While existing works, e.g., [36–38], assume that only the random quantities x̂k|k and y

k+1
are quantized, we here also consider that the matrices Dk+1 and Kk+1 are quantized as well.
This corresponds to a more practical implementation setup and requires a more complex
theoretical analysis. We first note that Equation (6) can be rewritten as

x̂k+1|k+1 = Dk+1 x̂k|k + Kk+1y
k+1

, (21)

where both Dk = (I − Kk H)F and the Kalman gains Kk can be computed offline. We thus
consider that the matrices Kk and Dk are computed in full precision and then quantized
with a fixed point model. Under these conditions, according to (20) and if we consider
that the product of quantization errors is negligible , the quantized vector x̂k+1|k+1 can be
approximated as

x̂k+1|k+1 = Dk+1 x̂k|k + δDk+1 x̂k|k + Dk+1εxk|k

+ εDk+1xk|k + Kk+1yk+1 + δKk+1 yk+1

+ Kk+1εyk+1 + εKk+1y
k+1

+ o(2−m−1) .

(22)
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We see that the expression of x̂k+1|k+1 depends on the full precision vectors x̂k|k and yk+1

and on the quantization errors and noise. Finally, the quantization error δx̂quant
k+1|k+1 defined

in (18) can be computed by using (22):

δx̂quant
k+1|k+1 ≈ δDk+1 x̂k|k + Dk+1εxk|k + εDk+1xk|k

+δKk+1 yk+1 + Kk+1εyk+1 + εKk+1yk+1
,

(23)

where the covariance matrix Σ× of ε× = εDk+1xk|k + εKk+1yk+1
is given by

Σ× = Cov[εDk+1xk|k ] + Cov[εKk+1y
k+1

] (24)

= Ic(c + d)
2−2m

12
, (25)

and Cov[εxk|k ] = Ic
2−2m

12 , Cov[εyk+1 ] = Id
2−2m

12 . Equation (23) gives us the quantization
error on the computation of x̂k+1|k+1 based on the unquantized values of x̂k|k, the filter
parameters and the quantization resolution m.

3.3. Unreliable Memory Error

We now consider the second source of noise from the unreliable memories and derive
an expression for the covariance matrix Γ = Cov[δx̂mem

k+1|k+1] of the unreliable memory
noise δx̂mem

k+1|k+1 introduced in (15).

Assuming E[γ] � Var[γ], as discussed in Section 2.3, the variance Var[γ] = σ2
γ of

the memory noise γ can be approximated by the MSE as σ2
γ ≈ E[(x̃ − x̂)2]. The value

of E[(x̃ − x̂)2] depends on the error probabilities pb as well as on the probability distri-
butions of the variables x, which are stored in memory. However, from ([8], Claim 17),
if pn−1 � 1

2 or Pr(x̂b = x̂b′) ' Pr(x̂b 6= x̂b′) for any b 6= b′, then the MSE E[(x̃− x̂)2] can
be approximated as

σ2
γ = E[(x̃− x̂)2] ≈

n−1

∑
b=−m

4b pb =
n−1

∑
b=−m

4be−eba , (26)

where the last equality is obtained from the noise-versus-energy model (9). Therefore,
the probability distributions of the variables x have no significant impact on the value of
the MSE.

Equation (26) gives us a relation between the noise variance σ2
γ and the vector e of

energy levels defined in (10). Moreover, by using (26), we show that the covariance Γ of the
memory noise vector δx̂mem

k+1|k+1 is given by

Γ = Icσ2
γ . (27)

3.4. Total Error

After separately studying the two error terms δxquant
k+1|k+1 and δx̂mem

k+1|k+1, we now
combine them to get an expression of the total estimation error e∗k+1|k+1 = x̃k+1|k+1 − xk+1.
We then provide the covariance matrix P∗k+1|k+1 of this total error.

By using x̃k|k to denote the faulty estimate of xk, we can express

x̃k|k = x̂k|k + ∆x̃k|k . (28)

Considering that only the x̂k|k are stored in the unreliable memories, the error propa-
gation model (15) can be rewritten as

∆x̃k+1|k+1 = Dk+1∆x̃k|k + δx̂quant
k+1|k+1 + δx̂mem

k+1|k+1 (29)
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= Dk+1∆x̃k|k + δDk+1 x̃k|k + Dk+1εxk|k

+ δKk+1 yk+1 + Kk+1εyk+1

+ ε× + δx̂mem
k+1|k+1 (30)

= (Dk+1 + δDk+1)∆x̃k|k + δDk+1 x̂k|k

+ Dk+1εxk|k + δKk+1 yk+1 + Kk+1εyk+1

+ ε× + δx̂mem
k+1|k+1, (31)

where (30) is obtained by replacing δx̂quant
k+1|k+1 by its expression (23), and (31) comes

from (28), which allows u to write x̃k|k = x̂k|k + ∆x̃k|k. Equation (31) provides a recur-
sive form of the error at step k, since ∆x̃k+1|k+1 depends on ∆x̃k|k and x̂k|k. All the other
terms in (31) come from the current iteration k + 1.

In certain conditions, such as if H and F are only composed of integer components,
the total estimation error x̃k+1|k+1 − xk+1 = x̂k+1|k+1 + ∆x̃k+1|k+1 − xk+1 can be further
developed as (see Appendix A for more details):

x̃k+1|k+1 − xk+1 = (Dk+1 + δDk+1)(x̃k|k − xk) (32)

+ (Kk+1 + δKk+1)vk+1 + ((Kk+1 + δKk+1)H − I)uk (33)

+ Dk+1εxk|k + Kk+1εyk+1 + ε× + δx̂mem
k+1|k+1. (34)

This equation gives us a recursive form of the total estimation error x̃k+1|k+1 − xk+1 at
step k + 1, depending on the estimation error x̃k|k − xk at step k and on the quantization
resolution 2−m and the memory noise δx̂mem

k+1|k+1.
Finally, we can compute the covariance matrix P∗k+1|k+1 of this error as

P∗k+1|k+1 = Cov[x̃k+1|k+1 − xk+1]

=(Dk+1 + δDk+1)P
∗
k|k(Dk+1 + δDk+1)

>

+(Kk+1 + δKk+1)R(Kk+1 + δKk+1)
>

+((Kk+1 + δKk+1)H − I)Q((Kk+1 + δKk+1)H − I)>

+Dk+1 Cov[εxk|k ]D
>
k+1 + Kk+1 Cov[εyk+1 ]K

>
k+1 + Σ× + Γ,

(35)

where all the terms involved, including the covariance matrices, have been explicited in
the previous sections. Equation (35) shows that the covariance matrix P∗k+1|k+1 can be
computed recursively.

Equation (35) provides us a measure of the performance of the filter, depending on
the quantization resolution and on the energy supplied to the memory. Equipped with
this derivation, we can now use the covariance matrix P∗k+1|k+1 as a performance criterion
against which to optimize the energy consumed of the unreliable memory.

4. Energy Optimization

In this section, we optimize the energy consumption of the memory while satisfying a
performance constraint defined on the total estimation error of the filter. As parameters to
optimize, we consider the number of bits m for the quantization, and the energy vector e of
the memory banks. We define two optimization problems, which both seek to minimize
the energy consumed by the memory. In the first problem, we find the optimal number
of bits m and the corresponding n + m levels of energy to allocate to the memory banks.
Although solving this problem provides the minimum energy that needs to be supplied
to the memory, it is not very practical since each of the n + m bits should be stored in a
different memory bank with a specific voltage supply.
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Therefore, in the second problem, we consider that the number of bits m is fixed
but that the number of possible energy levels is limited to L possibilities. Both the L energy
values and the allocation of each bit to one of the L possible values should be optimized.
Solving this problem allows to consider only L < n + m different memory banks.

4.1. Optimization across All the Bits

We first find the optimal level of energy eb of each memory bank and the optimal num-
ber of fractional bits m to minimize the total memory energy consumption. As performance
criterion, we consider the covariance matrix P∗N|N of the total estimation error at step N,
where N is chosen to be large enough so that the filter can converge. We further introduce
a matrix V of the same size as P∗N|N to define the performance constraint for the variances
and covariances of estimation error on each component. The optimization problem is then
defined as follows:

min
e,m

etot =
n−1

∑
b=−m

eb = 1
>e ,

s.t. P∗N|N ≺ V and eb ≥ ethres ∀b ∈ J−m, n− 1K ,

(36)

where≺ is a component-wise inequality between the two matrices and where the minimum
is taken over all energy vectors e as defined in (10) and for all the possible values of the
number of bits m. We consider that m ∈ J0, MK, where M is the maximum number of bits,
which could be stored in a memory. The value ethres is the minimum level of energy for
each memory bank to avoid undesired effects, such as circuit delays and energy leakage [7].

Problem (36) involves one discrete parameter m and m + n continuous parameters e,
which makes it difficult to solve at once. As a first step, we assume that the value of m is
fixed and solve the following simplified problem:

min
e

etot =
n−1

∑
b=−m

eb = 1
>e ,

s.t. P∗N|N ≺ V and eb ≥ ethres ∀b ∈ J−m, n− 1K ,

(37)

by using the Karush–Kuhn–Tucker (KKT) conditions (see Appendix B). From these condi-
tions, we show that the optimal energy level e∗b for bit b has expression

e∗b =

{
ethres, if λ < 1

4ba ,
1
a log(4baλ), otherwise ,

(38)

where λ is a dual variable. It allows balancing a trade-off between preserving the perfor-
mance of the system and reducing the energy consumption. A water-filling algorithm [8]
can be used to compute the optimal vector e∗ for a fixed desired performance V of the
filter. We can observe that, according to this optimal solution, the energy of the least sig-
nificant bits will be set to the threshold energy level ethres. The energy levels then increase
logarithmically for each bit as their significance increases.

Since m is discrete, the optimal solution (38) is computed using the water-filling
algorithm for each possible value of m. We then retain the solution (m?, e?), which gives
the lowest total energy e?tot = ∑n

b=−m? e?b . In this method, the influence of the quantization
error is taken into account through the performance criterion P∗N|N . For a small number
of bits m, quantization errors may make it impossible to satisfy the desired performance
constraint, and therefore the water-filling algorithm will not be able to find an optimal
solution. In this case, if we detect that the algorithm converges toward a performance value
that is still higher than the constraint, the algorithm is stopped, and we proceed to the next
value of m in the considered range.

The full optimization process is summarized in Algorithm 1. In this algorithm, the pa-
rameter β controls the rate at which the energy for each memory bank is increased at each
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iteration. The value of β is chosen either using the precision with which energy can be set in
a given device technology, or based on the desired rate of convergence for the water-filling
algorithm.

The condition
∥∥∥Pprev − P∗N|N

∥∥∥ > ξ is used to detect whether the water-filling algorithm
has a feasible solution, and thus the value of ξ is set to be low. The computation of
P∗N|N(e, m) accounts for most of the computing time of this algorithm. The total run time
thus depends on the number of iterations required by the water-filling algorithm (while
loop in Algorithm 1). For fixed values of β and V , we expect the number of iterations to
increase with m.

Algorithm 1: Computing the optimal values for e and m.

Input: V , a, β, ξ, ethres ;
emin ←− +∞;
for each value of m do

e←− ethres ;
Pprev ← 0;

while P∗N|N(e, m) � V and
∥∥∥Pprev − P∗N|N

∥∥∥ > ξ do
Pprev ← P∗N|N(e, m);

b←− arg min
b

{log( 1
4ba ) + ea};

eb ←− eb + β ;
end
if P∗N|N(e, m) ≺ V and ∑n

b=−mopti
eminb

> ∑n
b=−m eb then

emin ←− e ;
mopti ←− m ;

end
end
Result: Optimal number of bits mopti and optimal energy allocation vector emin

4.2. Optimization with a Limited Number of Energy Levels

In practice, the solution of Problem 1 makes the implementation costly as each bit
position should be stored in a separate memory bank. Therefore, we define a second
optimization problem with only L < m + n possible levels of energy. For implementation
purposes, we only consider small values for L (L < 10). The vector f = [ f0, . . . , fL−1]
contains the L levels of energy. We use n` to denote the number of bits allocated to energy
level fl , so that ∑L−1

`=0 n` = n + m. This means that each memory bank of the energy group

` has an energy level eb = f`
n`

. We write n = [n0, . . . , nL−1] for the vector containing the L
values n`.

In the following, for simplicity, we consider that the number of bits n and m are fixed,
and we seek to optimize the total energy consumption of the unreliable memory for a fixed
number of energy levels L. The objective is to reduce the total energy consumed by the
unreliable memory by allocating different levels of energy to the L groups of bits. Two
parameters are considered in this optimization: the values of each energy level e` and the
number of bits allocated to each of these energy levels n`. The optimization problem can be
written as

min
f ,n

etot =
L−1

∑
l=0

f` = 1
> f ,

s.t. P∗N|N ≺ V and f` ≥ ethresn`, n` ∈ J1, n + m− LK ∀` ∈ J0, L− 1K .

(39)
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First, we solve the optimization problem in the case where we know which bit is
allocated to which energy level. This means that the values of n` are known and that
we only want to compute the optimal values of the energy levels f`. In this case, the
optimization problem can be written as

min
f

etot =
L−1

∑
l=0

f` = 1
> f ,

s.t. P∗N|N ≺ V and f` ≥ ethresn` ∀` ∈ J0, L− 1K .

(40)

Problem (40) is quite similar to the one described in Section 4.1 and can be solved using
the same method as the one presented in Appendix B, by relying on the KKT conditions.
The optimal solution in this case is

f ∗l =

ethresn`, if λ < 1
∑

n`
b=0 4ba

,

1
a log(∑n`

b=0 4baλ), otherwise .
(41)

This solution allows us to compute the optimal energy levels f` for a given energy
allocation across the bits. The second step consists of computing the best allocation of bits
to each energy group. Given that we only consider small values of L, we compute the
optimal solution from (41) for each possible energy allocation of the bits. Then, the solution
with the smallest total energy ∑L−1

`=0 f` is retained. Although Problem 2 leads to a more
practical solution, it is expected that the optimal total energy of the memory is higher for
Problem 2 than for Problem 1.

5. Simulation Results

In our simulations, unless explicitly stated, we consider a simple tracking problem
where the state vector x is composed of two variables representing the position and velocity
of an object. Measurements y only consist of noisy observations of the position of the object.
The process matrix F and measurement matrix H are defined as

F =

[
1 δt
0 1

]
, H =

[
1 0

]
, (42)

and the process noise covariance matrix Q and measurement covariance matrix R are
given by

Q =

[
σ2

x 0
0 σ2

x

]
, R =

[
σ2

y

]
. (43)

where δt = 1 and σx = 0.01 and σy = 10. The factor a in (9) is taken as a = 12.8 as in [13].
This section is divided into two parts. We first evaluate the accuracy of the proposed theoret-
ical analysis, and we then provide solutions to the two considered optimization problems.

5.1. Accuracy of the Theoretical Analysis

First, to evaluate the accuracy of the proposed theoretical analysis, we perform Monte
Carlo simulations (Nmc = 107) and measure the covariance matrix of the error on the
estimation at step N = 250, thus giving enough time for the filter to converge in normal
conditions. This covariance matrix is compared with the theoretical expression of the
covariance of the estimation error P∗N|N computed in Section 3.4. Figure 1 shows the
variance of the estimation errors on the position and the velocity for different values of m
in the case of a reliable memory, meaning that we consider only the quantization error and
not the memory noise.

We observe that the theoretical predictions of the errors closely match the simulations,
which shows the accuracy of our theoretical analysis. From Figure 1, we can observe
that, for a small number of bits m, the quantization error is large and dominates the total
estimation error. However, starting from m = 10 bits, the estimation error reaches a
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constant level, which can be interpreted as a minimum bound on the estimation error that
one can obtain from a standard Kalman filter for this tracking problem. This shows that,
from m = 10 bits, the quantization errors become negligible compared to the estimation
error achieved by the standard full precision Kalman filter. Thus, at this point, using more
bits will not result in minimizing the estimation error, justifying the need for optimizing
the parameter m.
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Position (Theoretical)
Position (Simulation)
Velocity (Theoretical)
Velocity (Simulation)

Figure 1. Theoretical and simulated variance of estimation error on the position and velocity depend-
ing on the numbers of bits in the representation, using a reliable memory.

In a second step, we introduce the memory noise in addition to the quantization.
Figure 2 shows the variance of the estimation error on the position depending on the total
energy etot for different values of m. The variance values were obtained from both Monte
Carlo simulations and from the theoretical analysis of Section 3.4. Further, Figure 3 shows
the variance of estimation error on the position depending on the number of bits m for
different values of the total energy etot. The comparison between theoretical results and
Monte Carlo simulations show the accuracy of the theoretical analysis that predicts the
new computed covariance P∗k|k.

From Figure 2, we can also see that both the number of bits and the total energy can
affect the variance of the estimation error. If the number of bits or the energy supplied is
too low, then the quantization error or the memory noise will dominate the total estimation
error. However, we can see that there is a minimum number of bits, around m = 12,
from which, given enough energy, it will be possible to reach the minimum possible
variance of estimation error.

Moreover from Figure 3, we can see that for a low value of supplied energy per
variable, the variance of the estimation error will increase with the number of bits as there
is too little energy. However, for a larger amount of energy etot > 10, the variance of the
estimation error will decrease with the number of bits since the quantization error decreases.
Finally for a large enough number of bits, the total estimation error will only depend on
the total energy and on the variance of the estimation error of a reliable full precision filter.

As the work presented in this paper was conducted to reduce the energy consumption
of the memory of a Kalman filter, it is of a greater utility when the memory is large. For this
reason, the results presented before were also tested on a larger Kalman filter with a
dimension for the state vector x of c = 20. For simulations on this large-size example, we
use a state transition model that performs a shifting of the entries of the state to the next
state at each iteration, such as the one used in [50]. That is,

Fi,j =

{
1, if i− j = 1 ,
0, otherwise ,

(44)

and Fc,1 = 1. The initial state vector is drawn from a normal distribution.



Sensors 2022, 22, 853 14 of 20

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
etot

5

10

15

20

25

30

Va
ria

nc
e 

of
 e

st
im

at
io

n 
er

ro
r m = 4 (simulation)

m = 8 (simulation)
m = 12 (simulation)
m = 16 (simulation)
m = 20 (simulation)
m = 4 (theoretical)
m = 8 (theoretical)
m = 12 (theoretical)
m = 16 (theoretical)
m = 20 (theoretical)

Figure 2. Theoretical and simulated variance of estimation error on the position depending on the
energy supplied to each variable using an unreliable memory for different numbers of bits in the
representation m.
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Figure 3. Theoretical and simulated variance of estimation error on the position depending on
the number of quantization bits using an unreliable memory for different for different total energy
values etot.

In this case, the performance of the filter is measured by the trace of the covariance
matrix PN|N . The results in Figures 4 and 5 show that the same conclusion can be taken
from the simulations done on the small-size Kalman filter and that the method presented
in this paper can therefore be applied to large-size filters.

10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
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m = 4.0 (simulation)
m = 8.0 (simulation)
m = 12.0 (simulation)
m = 16.0 (simulation)
m = 20.0 (simulation)
m = 4.0 (theoretical)
m = 8.0 (theoretical)
m = 12.0 (theoretical)
m = 16.0 (theoretical)
m = 20.0 (theoretical)

Figure 4. Theoretical and simulated variance of estimation error on the position depending on the
energy supplied to each variable using an unreliable memory for different numbers of bits in the
representation m in the case of the large-size example.

5.2. Solutions to the Optimization Problems

We now focus on the optimization problems introduced in Section 4, starting with
the first one. Figure 6 shows the amount of energy etot needed to store each number in the
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unreliable memory to achieve a fixed variance of estimation error on the position for each
value of m.

4 6 8 10 12 14 16 18 20
m

1.0

1.5

2.0

2.5

3.0

3.5

Tr
(P

N
|N

)
etot = 10 (simulation)
etot = 20 (simulation)
etot = 30 (simulation)
etot = 10 (theoretical)
etot = 20 (theoretical)
etot = 30 (theoretical)

Figure 5. Theoretical and simulated variance of estimation error on the position depending on the
number of quantization bits using an unreliable memory for different total energy values etot in the
case of the large-size example.

The total energy etot was calculated both using the optimal allocation from Algorithm 1
and using a uniform energy allocation. From Figure 7, we can see that the total energy
etot of the memory slightly increases with the number of bits m + n. The slight increase
in memory consumption is due to the form of the optimal solution (38). Indeed, once the
minimum number of bits needed to achieve the performance constraint is reached, then
additional bits will be set at the minimum energy threshold ethres.

Figure 7 compares the optimal solution from Figure 6 with a uniform energy alloca-
tion. This shows that the optimal energy allocation allows for a significant energy gain
compared to the uniform allocation. Here, for the minimum number of bits needed to
achieve the performance constraint, the optimal allocation require 56% less energy than the
uniform allocation.

5 10 15 20 25
m

14

16
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20

22

24

e t
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P[0,0]=15.0
P[0,0]=10.0
P[0,0]=7.5
P[0,0]=5.0
P[0,0]=4.5

Figure 6. The energy needed to store each variable in an unreliable memory to achieve various
desired variances of estimation error on the position depending on the number m of bits in the
representation with the optimal energy allocation.
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Figure 7. Energy needed to store each variable in an unreliable memory to achieve a variance
of estimation error on the position PN|N [0, 0] = 15, depending on the number m of bits in the
representation.

We now focus on the second optimization problem defined in Section 4.2 at equa-
tion (40) where only a limited number of energy levels are available. Figure 8 shows the
total energy needed for each variable in memory to achieve a fixed level of error depending
on the number L of energy level possible. For each considered number of levels L ∈ J1, 7K,
the total energy etot was computed for all possible energy allocations using the optimal
solution (41). The minimum energy possible for each value of L was then kept and is shown
in Figure 8. This minimum energy is compared with the minimum energy needed for
Problem (36) where there are as many energy levels possible as the number of bits. Here,
the total number of quantization bits is B = 20.

We observe that even a small number of energy levels L can lead to significant gains
in energy. In this case, only seven levels of energy allow achieving 95% of the maximum
energy gain that was obtained in the first optimization problem. When looking at the
optimal energy allocation for each value of L bit by bit, we notice that, in most cases, the
optimal solution seems to be when the energy levels are uniformly shared between the bits.
This means that, if there are B bits and L levels available and L is a divisor of B, then each
group of bits assigned to each energy level will have a size of n` =

B
L .
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L

22.5
25.0
27.5
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32.5
35.0
37.5
40.0

e t
ot

Optimization with k energy levels
Optimization with max energy levels

Figure 8. Energy needed to store a variable in memory etot for different values of energy level
available L to achieve a fixed covariance value.

6. Conclusions

In this paper, we studied a quantized Kalman filter implemented with unreliable
memories. We provided analytical expressions for the covariance matrix of the estimation
error and provided updated filter equations to take into account all considered sources
of errors. We proposed and solved two optimization problems that allowed us to find
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the best trade-offs between the energy consumption and the performance of the filter.
The simulation results showed the accuracy of the theoretical analysis and illustrated the
significant energy gains provided by our approach.

Due to the generic nature of the considered error propagation model, these results
could be used for various realistic noise-versus-energy models of unreliable components.
Furthermore, the methodology presented in this work could also be extended to other
algorithms where sources of unreliability can be introduced, such as belief propagation [51],
binary recursive estimation [10], and multi-agent systems [52].
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Appendix A. Computation of x̃k+1|k+1− xk+1

x̃k+1|k+1 − xk+1 = x̂k+1|k+1 + ∆x̃k+1|k+1 − xk+1 (A1)

= (Dk+1 + δDk+1)∆x̃k|k + (Dk+1 + δDk+1)x̂k|k + Dk+1εxk|k

+ (Kk+1 + δKk+1)yk+1 + Kk+1εyk+1 + ε× + δx̂mem
k+1|k+1 − xk+1

(A2)

= (Dk+1 + δDk+1)∆x̃k|k + (Dk+1 + δDk+1)x̂k|k + Dk+1εxk|k

+ (Kk+1 + δKk+1)(Hxk+1 + vk+1) + Kk+1εyk+1 + ε× + δx̂mem
k+1|k+1 − xk+1

(A3)

= (Dk+1 + δDk+1)∆x̃k|k + (Dk+1 + δDk+1)x̂k|k + Dk+1εxk|k

+ (Kk+1 + δKk+1)vk+1 + Kk+1εyk+1 + ε× + δx̂mem
k+1|k+1

+ ((Kk+1 + δKk+1)H − I)xk+1

(A4)

= (Dk+1 + δDk+1)x̃k|k − (I− (Kk+1 + δKk+1)H)Fxk

+ (Kk+1 + δKk+1)vk+1 + Kk+1εyk+1 + ε× + δx̂mem
k+1|k+1

+ Dk+1εxk|k + ((Kk+1 + δKk+1)H − I)uk .

(A5)

If H and F are only composed of integer components, due to how the quantization
is done:

(Dk+1 + δDk+1) = (I− (Kk+1 + δKk+1)H)F . (A6)

Appendix B. Computation of the Optimal Solution to Problem 1

From optimization Problem (37), we can define the Lagrangian:

L(e, ν, λ) =
B−1

∑
b=0

eb + ν(
B−1

∑
b=0

4be−eba − V)−
B−1

∑
b=0

λb(eb − ethres) . (A7)

From the KKT conditions, for the optimal solution e∗:

ν(
B−1

∑
b=0

4be−e∗b a − V) = 0 , ν ≥ 0 (A8)

λb(e∗b − ethres) = 0 , λb ≥ 0 ∀b ∈ [[0, B− 1]] (A9)
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∂L
∂e∗b

= 1− ν4bae−eba − λb = 0 (A10)

From (A9) and (A10):
λb = 1− ν4bae−eba ≥ 0 . (A11)

If ν = 0 then λb = 1 and eb = ethres. Therefore, we claim that ν 6= 0, and thus
∑B−1

b=0 4be−e∗b a = V .
If ν ≤ 1

4ba , then it is not possible to have eb > ethres since it would mean that λb = 0,
and thus ν = 1

4ba eeba ≥ 1
4ba , which is in contradiction with the hypothesis. Therefore,

if ν ≤ 1
4ba , then eb = ethres.

If ν > 1
4ba , then by the same logic as before eb > ethres. In this case, λb = 0, and thus

eb = 1
a log(ν4ba).
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