
HAL Id: hal-03108570
https://imt.hal.science/hal-03108570

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

YAGO 4: A Reason-able Knowledge Base
Thomas Pellissier Tanon, Gerhard Weikum, Fabian Suchanek

To cite this version:
Thomas Pellissier Tanon, Gerhard Weikum, Fabian Suchanek. YAGO 4: A Reason-able Knowledge
Base. European Semantic Web Conference, May 2020, virtual, Greece. pp.583–596, �10.1007/978-3-
030-49461-2_34�. �hal-03108570�

https://imt.hal.science/hal-03108570
https://hal.archives-ouvertes.fr


YAGO 4: A Reason-able Knowledge Base

Thomas Pellissier-Tanon1, Gerhard Weikum2, and Fabian Suchanek1

1 Télécom Paris, Institut Polytechnique de Paris
2 Max Planck Institute for Informatics

Abstract. YAGO is one of the large knowledge bases in the Linked
Open Data cloud. In this resource paper, we present its latest ver-
sion, YAGO 4, which reconciles the rigorous typing and constraints of
schema.org with the rich instance data of Wikidata. The resulting re-
source contains 2 billion type-consistent triples for 64 Million entities,
and has a consistent ontology that allows semantic reasoning with OWL 2
description logics.

1 Introduction

A knowledge base (KB) is a machine-readable collection of knowledge about the
real world. A KB contains entities (such as organizations, movies, people, and
locations) and relations between them (such as birthPlace, director, etc.). KBs
have wide applications in search engines, question answering, fact checking, chat-
bots, and many other NLP and AI tasks. Numerous projects have constructed
KBs automatically or by help of a community. Notable KBs include YAGO [17],
DBpedia [1], BabelNet [14], NELL [2], KnowItAll [3], and Wikidata [18]. On the
industry side, giants such as Amazon, Google, Microsoft, Alibaba, Tencent and
others are running KB technology as a background asset, often referred to as
knowledge graphs.

YAGO [17,10,16,13] was one of the first academic projects to build a knowl-
edge base automatically. The main idea of YAGO was to harvest information
about entities from the infoboxes and categories of Wikipedia, and to combine
this data with an ontological backbone derived from classes in WordNet [4]. Since
Wikipedia is an excellent repository of entities, and WordNet is a widely used
lexical resource, the combination proved useful. YAGO sent each fact through
a pipeline of filtering, constraint checking, and de-duplication steps. This pro-
cedure scrutinized noisy input and boosted the quality of the final KB, to a
manually verified accuracy of 95%. This precision was possible thanks to the
tight control that the YAGO creators had over the extraction process, the fil-
tering process, the ontological type system, the choice of the relations, and the
semantic constraints. However, despite new versions YAGO2 and YAGO3 with
substantial jumps in scope and size, the focus on Wikipedia infoboxes meant
that YAGO has not arrived at the same scale as Freebase or Wikidata.

Meanwhile, Wikidata [18] has evolved into the world’s foremost publicly avail-
able KB. It is a community effort where anybody can contribute facts – either



2 Pellissier-Tanon et al.

by manually adding or curating statements in the online interface, or by bulk-
loading data. Wikidata has motivated more than 40,000 people who contribute
at least once a month. The result is a public KB with 70M named entities, very
good long-tail coverage, and impressive detail. 1

At the same time, Wikidata understands itself as a collection of information,
not as a collection of universally agreed-upon knowledge. It may intentionally
contain contradictory statements, each with different sources or validity areas.
Therefore, Wikidata does not enforce semantic constraints, such as “each person
has exactly one father”. Furthermore, the large user community has led to a pro-
liferation of relations and classes: Wikidata contains 6.7k relations, of which only
2.6K have more than 1000 facts, and it comprises around 2.4M classes2, of which
80% have less than 10 instances. Many instances (e.g., all cities) are placed in
the taxonomy under more than 60 classes, with three-fold multiple inheritance.
This complexity is the trade-off that Wikidata has found to accommodate its
large user community. For downstream applications, the convoluted and often
confusing type system of Wikidata make browsing and question answering te-
dious. Moreover, there is little hope to run strict classical reasoners (e.g., for
OWL 2) in a meaningful way, as the KB contains many small inconsistencies so
that every possible statement is deducible regardless of whether it is intuitively
correct or false. Some of these issues have been pointed out in the comprehensive
study of KB quality by [19].

Example. To illustrate the shortcomings by the verbose and sometimes confus-
ing type hierarchy of Wikidata, consider the entities Notre Dame de Paris (http:
//www.wikidata.org/entity/Q2981) and Potala Palace (http://www.wikidata.
org/entity/Q71229) both landmarks of two world religions.

Notre Dame is an instance of types catholic cathedral and minor basilicas,
with a rich set of superclasses. The Potala Palace in Lhasa is an instance of
palace and tourist attraction. Interestingly, the latter does not have Notre Dame
de Paris as an instance, neither directly nor indirectly. So a query for tourist
attractions would find the Potala Palace but not Notre Dame.

Moreover, the class tourist attraction is a subclass of geographic object which
is an instance of the class geometric concept which in turn has superclass math-
ematical concept. As a consequence, a query for mathematical concepts returns
entities like tensor, polynomial, differential equation . . . and the Potala Palace
as answers.

Contribution. In this resource paper, we describe the new YAGO version,
YAGO 4, which aims to combine the best of the two worlds: It collects the facts
about instances from Wikidata, but it forces them into a rigorous type hierarchy
with semantic constraints. The complex taxonomy of Wikidata is replaced by
the simpler and clean taxonomy of schema.org [8]. The classes are equipped

1 All the numbers given in the paper about Wikidata are valid as of Feb. 24, 2020.
2 Wikidata does not have a strong concept of a “class”; we use this term to denote

entities that have superclasses (i.e., appear as left-hand argument of “subclass of”
triples).

http://www.wikidata.org/entity/Q2981
http://www.wikidata.org/entity/Q2981
http://www.wikidata.org/entity/Q71229
http://www.wikidata.org/entity/Q71229


YAGO 4: A Reason-able Knowledge Base 3

with SHACL constraints [12] that specify disjointness, applicable relations, and
cardinalities. This way, YAGO 4 transfers the rationale of the original YAGO
from the combination of Wikipedia and WordNet to the combination of Wikidata
and schema.org. The result is a new knowledge base, which is not just large, but
also logically consistent, so that OWL-based reasoning is feasible. Hence we
call YAGO 4 a “reason-able” knowledge base. The new resource is available at
http://yago-knowledge.org under a permissive license (Creative Commons
Attribution-ShareAlike). YAGO 4 also comes with a browser and a SPARQL
endpoint. Figure 1 shows an excerpt of the new YAGO in the online browser.

Fig. 1. The YAGO 4 Browser. Hovering reveals the full name of abbreviated items; all
red and blue items are clickable.

2 Related Work

The Linked Open data cloud contains several dozen general-purpose KBs3.
YAGO 4 is not intended to replace these KBs, but rather as an addition to this
ecosystem with unique characteristics that complement the other players. For ex-
ample, DBpedia also has a new version that ingests facts from Wikidata [11], with
a well-designed pipeline that allows harvesting different knowledge sources [5].
This new DBpedia and YAGO 4 have made different design choices, resulting
in different strengths and limitations. Our key priority has been to strengthen

3 https://www.lod-cloud.net/

http://yago-knowledge.org
https://www.lod-cloud.net/


4 Pellissier-Tanon et al.

the logical rigor of the KB, so as to support OWL and other reasoners. This is
why YAGO 4 builds on schema.org and adds its own constraint system which is
much more elaborate than what DBpedia enforces.

3 Design

The construction of the YAGO 4 knowledge base is driven by several design
decisions, which we explain and motivate next. The overarching point is to cen-
ter YAGO 4 around a well-founded notion of classes. For example, a Person is
defined as a subclass of Thing, and has an explicit set of possible relations such
as birthDate, affiliation, etc.4 Conversely, other relations such as capitalOf, head-
quarter or population are not applicable to instances of the class Person. This
overarching principle of semantic consistency unfolds into several design choices.

3.1 Concise Taxonomy

Wikidata contains a very detailed taxonomy to which the community contributes
by adding instanceOf and subclassOf statements. However, the resulting class
hierarchy is so deep and convoluted that it is not easy to grasp and that browsing
it is rather tedious. For example, Paris is an instance of 60 classes, 20 of which
are called “unit”, “entity”, “subject”, or “object”. Moreover, the class hierarchy
is not stable: any contributor can add or remove subclassOf links between any
two classes. Potentially, this could lead to millions of entities being classified
differently, just by a single edit. On the other hand, schema.org, the second
major input to YAGO 4, has established itself as a reference taxonomy on the
Web, beyond its initial aim at helping search engines to index web pages. It is
stable, well maintained, and changes are made only by agreement in the W3C
Schema.org Community Group5. At the same time, schema.org does not provide
fine-grained classes such as “electric cars” or “villages” – which only Wikidata
has. Schema.org also does not have any biochemical classes (such as proteins
etc.).

We address the latter problem by using Bioschemas [7]6. This project ex-
tends schema.org in the field of the life sciences – a field that is not covered
in schema.org, and that is very prominent in Wikidata. We manually merged
6 Bioschemas classes into schema.org, referring to the merged taxonomy as the
“schema.org taxonomy” for simplicity.

To obtain the stability of schema.org while preserving the fine-grained classes
of Wikidata, we found the following solution: The top-level taxonomy of YAGO 4
is taken from schema.org (incl. Bioschemas), and leaf-level classes are taken
from Wikidata. For this purpose, we manually mapped 235 classes of schema.org
to Wikidata classes. Classes of schema.org that could not be mapped, mostly

4 For readability, we omit namespace prefixes in this paper.
5 https://www.w3.org/community/schemaorg/
6 https://bioschemas.org

https://www.w3.org/community/schemaorg/
https://bioschemas.org


YAGO 4: A Reason-able Knowledge Base 5

shopping-related or social-media classes such as schema:LikeAction, were re-
moved. With these inputs, the YAGO 4 taxonomy is then constructed as fol-
lows:

• For each instance in Wikidata, we consider each possible path in the Wikidata
taxonomy to the root node. If the first class on the path has a Wikipedia
article, we include it in YAGO 4. The rationale is that only classes with an
English Wikipedia article are of sufficient interest for a wider audience and
use cases.

• We then continue the path to the root in the Wikidata taxonomy, discard-
ing all classes on the way, until we hit a class that has been mapped to
schema.org. We continue our path to the root in the schema.org taxonomy,
adding all classes on the way to YAGO 4.

• If we do not hit a class that has been mapped to schema.org, we discard the
entire path. If an instance has no path with a class that qualifies for these
criteria, we discard the instance.

We discard all Wikidata classes that have less than 10 direct instances. This
threshold serves to ignore classes that have little value in use cases or are rather
exotic. We further remove subclasses of a small list of meta-level Wikidata classes
such as Wikipedia categories, disambiguation pages, etc. Finally, we drop sub-
classes of pair of classes for which we enforce disjointness constraints. These
design choices allow us to model villages and cars, while significantly reducing
the size of the taxonomy. From the 2.4M original Wikidata classes, we kept only
10k classes, shrinking the taxonomy by 99.6%. We also discard 11M instances
(14%) – two thirds of which (7.5M) are Wikipedia-specific meta-entities (disam-
biguation page, category, wikitext template, etc.). Our strategy capitalizes on
the stable backbone of schema.org, while being able to augment YAGO 4 with
new data coming from Wikidata.

3.2 Legible Entities and Relations

YAGO 4 is stored in the RDF format. Unlike Wikidata, we chose to give human-
readable URIs to all entities, in order to make the KB more accessible for inter-
active use. If an entity has a Wikipedia page (which we know because Wikidata
links it to Wikipedia), we take the Wikipedia title as the entity name. Other-
wise, we concatenate the English label of the entity with its Wikidata identifier
(e.g., Bischmisheim Q866094 ). Studies like [15] suggest that the Wikidata la-
bels are fairly stable, leading to fairly stable YAGO URIs. If the entity has
no English label, we stay with the Wikidata identifier. We make the necessary
changes to arrive at a valid local IRI name, and add the namespace of YAGO,
http://yago-knowledge.org/resource/. This gives the vast majority of enti-
ties human-readable names, without introducing duplicates or ambiguity.

Wikidata has a very rich set of relations, but many of these have only very few
facts. Indeed 61% of them have less than 1000 facts and 85% of them less than
10k. For YAGO 4, we chose to follow the successful model of previous YAGO
versions, which have been parsimonious on the relations per class. We chose the

http://yago-knowledge.org/resource/


6 Pellissier-Tanon et al.

relations from schema.org, which are each attached to a class. While these rela-
tions are conservative in coverage, they have emerged as a useful reference. We
mapped 116 of these relations manually to the relations of Wikidata. We simply
add this information to our schema, by using two new relations, yago:fromClass
and yago:fromProperty, as shown here:

schema:Person yago:fromClass wd:Q215627
yago:birthPlaceProperty yago:fromProperty wdt:P569

The pipeline for KB construction takes care to implement these mappings (Sec-
tion 4.1). This process discards around 7k relations from Wikidata. As a by-
product, it gives human-readable names to all relations. Example relations are
schema:birthPlace, schema:founder, and schema:containedInPlace. We use RDF
and RDFS relations whenever possible, including rdfs:label and rdfs:comment
instead of schema:name and schema:description. For example, the fact “wd:Q42
wdt:P31 wd:Q5” from Wikidata becomes

yago:Douglas Adams rdf:type schema:Person

3.3 Well-typed Values

YAGO 4 has not just well-typed entities, but also well-typed literals. For this
purpose, we translate the data values of Wikidata to RDF terms. References
to Wikidata entities are converted to references to the YAGO entities as ex-
plained in Section 3.2. External URIs are converted into xsd:anyURI liter-
als after normalizing them.7 We chose to keep external URIs as literals and
not as entities, because we do not make any statements about URIs. Time
values are converted to xsd:dateTime, xsd:date, xsd:gYearMonth or xsd:gYear,
depending on the time precision. We discard the other time values whose
precision could not be mapped to an XML schema type. Globe coordinates
are mapped to schema:GeoCoordinates resources. Quantities are mapped to
schema:QuantitativeValue resources (keeping the unit and precision). If there
is no unit and an empty precision range, we map to xsd:integer where possi-
ble. If the unit is a duration unit (minutes, seconds...) and the precision range
is empty, we map to xsd:duration. In this way, the vast majority of values are
migrated to standard RDF typed literals.

3.4 Semantic Constraints

YAGO 4 has hand-crafted semantic constraints that not just keep the data clean,
but also allow logical reasoning on the data. We model constraints in the W3C
standards SHACL [12] and OWL. YAGO 4 currently has the following con-
straints:

7 We follow the normalization suggested by RFC 2986 Section 6.2.



YAGO 4: A Reason-able Knowledge Base 7

Disjointness. We specify 6 major top-level classes: schema:BioChemical-
Entity, schema:Event, schema:Organization, schema:Person, schema:Place, and
schema:CreativeWork. With the exception of schema:Organization/schema:Place,
these are pairwise disjoint; so that these classes cannot have any instances in
common. We use OWL to express, for example:

schema:Person owl:disjointWith schema:CreativeWork

Note that organizations are not disjoint from places, because many organizations
are also located somewhere.
Domain and Range. Each relation comes with a domain and range constraint,
meaning that a relation such as birthPlace can apply only to a person and a
place. RDFS can specify the domain and range of relations by help of the predi-
cates rdfs:domain and rdfs:range, but our constraints are different: If a KB con-
tained the fact birthPlace(London, Paris), then the statement rdfs:domain(birth-
Place,Person) would simply deduce that London must be a person. In contrast,
our constraints would flag the KB as inconsistent. We use SHACL to express
these constraints, as in this example:

schema:Person sh:property yago:birthPlaceProperty
yago:birthPlaceProperty sh:path schema:birthPlace
yago:birthPlaceProperty sh:node schema:Place

The same property can be used to describe entities of different classes. For ex-
ample telephone can be used to describe both persons and organizations. In
this case, the same property is going to be in the shapes of several classes. The
domain of the property then is the union of all these classes.

In the same spirit, we also support disjunction in property ranges. For exam-
ple, the range of author is Person union Organization. Following the same argu-
ment, the range of the birthDate property is the union of datatypes xsd:dateTime,
xsd:date, xsd:gYearMonth and xsd:gYear to allow different calendar value preci-
sions. Our range constraints also include the validation of xsd:string literals via
regular expressions, as in this example:

schema:Person sh:property yago:telephoneProperty
yago:telephoneProperty sh:path schema:telephone
yago:telephoneProperty sh:pattern “+\d{1,3} ...”

Functional Constraints. A functional constraint says that a relation can have
at most one object for a subject. Several of our relations are functional, e.g.,
birthPlace or gender. Again, we use SHACL:

yago:Person sh:property yago:birthPlaceProperty
yago:birthPlaceProperty sh:maxCount “1”ˆˆxsd:integer

Cardinality Constraints. Going beyond functional constraints, we can also
specify the maximal number of objects in general. For example, people can have
only two parents in YAGO 4. We use again the SHACL sh:maxCount property.



8 Pellissier-Tanon et al.

YAGO 4 assumes that no other properties are allowed for each class, thereby
interpreting the SHACL constraints under a “closed world assumption”. The
constraints are automatically enforced during the construction of the KB (see
Section 4.1), and so the data of YAGO 4 satisfies all constraints. Overall, the
enforcement of constraints leads to the removal of 132M facts from Wikidata
(i.e. 28% of all the facts). Since the constraints are enforced at KB-construction
time, we can then add the deductive rdfs:domain and rdfs:range facts to YAGO 4
without risking that these deduce anything that violates the constraints.

The generated ontology uses the OWL 2 axioms DisjointClasses, ObjectProp-
ertyDomain, DataPropertyDomain, ObjectPropertyRange, DataPropertyRange,
ObjectUnionOf, FunctionalDataProperty, FunctionalObjectProperty, and falls
into the OWL DL flavor. Statistics about the mapping and constraints are shown
in Table 1.

Table 1. Schema and mapping statistics

Item Number

Schema.org classes 235
Bioschemas.org classes 6
Object properties 100
Datatype properties 41
Node shapes 49
Property shapes 217
Domain constraints 217
Object range constraints 132
Datatype range constraints 57
Regex constraints 21
Disjoint constraints 18

3.5 Annotations for Temporal Scope

Following previous YAGO versions, YAGO 4 also attaches temporal information
to its facts. We harvest these from the Wikidata qualifier system, which anno-
tates facts with their validity time, provenance, and other meta information.
We express the temporal scopes of facts by the relations schema:startDate and
schema:endDate. Instead of relying on a custom format for these annotations, we
made use of the RDF* model proposal [9], which has received good traction in
recent years. For example, we state that Douglas Adams lived in Santa Barbara
until 2001 as follows:
<< Douglas Adams schema:homeLocation Santa Barbara >> schema:endDate 2001

We cannot use the usual Property Graph (PG) semantics of RDF*, because this
would assert that Douglas Adams still lives in Santa Barbara. Rather, we use
the “separate-assertions mode” (SA mode), which asserts only that he lived in
Santa Barbara until 2001 – without saying where he currently lives.



YAGO 4: A Reason-able Knowledge Base 9

4 Knowledge Base

4.1 Construction

We have designed a system that builds YAGO 4 automatically from (1) a Wiki-
data dump and (2) the SHACL shapes definitions of Section 3. We keep only
the “truthy” Wikidata statements, i.e. for each subject and predicate we keep
only the statements with the “best” rank (a.k.a. “preferred” if a statement with
such a rank exists, “normal” if not).

The KB building system constructs the class hierarchy, the entities, and the
facts as outlined in Section 3. Its main purpose is then to enforce the constraints
(Section 3.4). If a resource is an instance of disjoint classes, we drop the two
rdf:type relations leading to this conflict. We drop all instances that are not
instances of any class. We enforce domain, range and regular-expression con-
straints by pruning all candidate facts that would violate a constraint. Finally,
we check the cardinality constraints, removing all objects if there are too many
for a given subject.

Our system is implemented in the Rust programming language8, using the
Iterator infrastructure to ingest and output data streams. We use the al-
ready existing stream operators, which resemble those of relational algebra
(map/project, filter, flat map, collect/materialize into a hash structure). We also
implemented new operators particularly for YAGO 4 (stream-hash join, stream-
hash anti join, group-by, and transitive closure). For example, the owl:sameAs
links between YAGO 4 and Freebase can be extracted from Wikidata by the
following algebraic operator plan:

π<yago,owl:sameAs,<http://rdf.freebase.com/ns/+str(o)>>

./s=wd

σmatches(str(o),/m/0([0-9a-z ]{2,7})

σp=wdt:P646

Wikidata

WikidataToYagoMapping

Here, π is the projection operator, σ the selection, ./ the inner join, Wikidata
the table of all Wikidata triples (s, p, o), and WikidataToY agoMapping the
mapping between Wikidata and YAGO instances (wd, yago). To avoid reading
the full Wikidata N-Triples dump each time, we first load the Wikidata dump
into the RocksDB key-value store to index its content9. This index allows for
efficiently selecting triples based on a predicate or a (predicate, subject) tuple,
and getting back a stream of triples from the database.

8 https://www.rust-lang.org/
9 https://rocksdb.org/

https://www.rust-lang.org/
https://rocksdb.org/


10 Pellissier-Tanon et al.

The advantage of having operator plans in Rust is that we can benefit from
declarative programs where performance optimizations are carried out by the
compiler, generating highly efficient native code. After having loaded the data
into RocksDB, our execution plan generates the Wikipedia-flavored YAGO 4
(see below) in two hours on a commodity server.

We ran our system on a dump of 78M Wikidata items. 8M of these are entities
about Wikimedia Websites-related entities, such as categories. From the 474M
Wikidata facts whose property has been mapped to schema.org, we filtered out
89M of them because of the domain constraints and 42M more because of the
range and regex constraints. The cardinality constraints lead to the removal of
an extra 0.6M facts.

4.2 Data

YAGO 4 is made available in three “flavors”:

• Full: This flavor uses all data from Wikidata, resulting in a very large KB.

• Wikipedia: This smaller flavor of YAGO 4 contains only the instances that
have a Wikipedia article (in any language).

• English Wikipedia: This is an additional restriction of the Wikipedia fla-
vor, containing only instances that have an English Wikipedia article.

All three flavors of YAGO 4 are built in the same way, and have the same
schema, with 116 properties and the same taxonomy of 140 top-level classes
from schema.org and bioschemas.org, and the same subset of Wikidata classes.
Table 2 shows statistics for the three YAGO 4 variants, generated from the
Wikidata N-Triples dump of November 25, 2019.
Each flavor of YAGO 4 is split into the following files:

• Taxonomy: The full taxonomy of classes.

• Full-types: All rdf:type relations.

• Labels: All entity labels (rdfs:label, rdfs:comment and schema:alternateName).

• Facts: The facts that are not labels.

• Annotations: The fact annotations encoded in RDF* [9].

• SameAs: The owl:sameAs links to Wikidata, DBpedia, and Freebase and
the schema:sameAs to all the Wikipedias.

• Schema: The schema.org classes and properties, in OWL 2 DL.

• Shapes: The SHACL constraints used to generate YAGO 4.

Each file is a compressed N-Triples file, so that standard tools can directly ingest
the data.



YAGO 4: A Reason-able Knowledge Base 11

Table 2. Size statistics for YAGO 4 in the flavors Full, Wikipedia (W), and English
Wikipedia (E), Wikidata and DBpedia (per DBpedia SPARQL server on 2020-03-04).

Yago Full Yago W Yago E Wikidata DBpedia

Classes 10124 10124 10124 2.4M 484k
Classes from Wikidata 9883 9883 9883 2.4M 222
Individuals 67M 15M 5M 78M 5M
Labels (rdfs:label) 303M 137M 66M 371M 22M
Descriptions (rdfs:comment) 1399M 139M 50M 2146M 12M
Aliases (schema:alternateName) 68M 21M 14M 71M 0
rdf:type (without transitive closure) 70M 16M 5M 77M 114M
Facts 343M 48M 20M 974M 131M
Avg. # of facts per entity 5.1 3.2 4 12.5 26
sameAs to Wikidata 67M 15M 5M N.A. 816k
sameAs to DBpedia 5M 5M 5M 0 N.A.
sameAs to Freebase 1M 1M 1M 1M 157k
sameAs to Wikipedia 43M 43M 26M 66M 13M
Fact annotations 2.5M 2.2M 1.7M 220M 0
Dump size 60GB 7GB 3GB 127GB 99GB

4.3 Access

Web Page. The YAGO 4 knowledge base is available at http://

yago-knowledge.org. The Web page offers an introduction to YAGO, docu-
mentation (“Getting started”), and a list of publications and contributors. The
Web page also has a schema diagram that lists all top-level classes with their
associated relations and constraints.

License. The entire YAGO 4 knowledge base, as well as all previous versions
and the logo, can be downloaded from the Web page. YAGO 4 is available under
a Creative Commons Attribution-ShareAlike License. The reason for this choice
is that, while Wikidata is in the public domain, schema.org is under a Creative
Commons Attribution-ShareAlike License.10

Source Code. We have released the source code for constructing YAGO 4 on
GitHub at https://github.com/yago-naga/yago4 under the GNU GPL v3+
license.

SPARQL Endpoint. YAGO 4 comes with a responsive SPARQL end-
point, which can be used as an API or interactively. The URL is http:

//yago-knowledge.org/sparql/query. The YAGO URIs are also all derefer-
encable, thus complying with the Semantic Web best practice.

Browser. YAGO 4 comes with a graphical KB browser, with an example shown
in Figure 1. For each entity, the browser visualizes the outgoing relationships in a

10 http://schema.org/docs/terms.html

http://yago-knowledge.org
http://yago-knowledge.org
https://github.com/yago-naga/yago4
http://yago-knowledge.org/sparql/query
http://yago-knowledge.org/sparql/query
http://schema.org/docs/terms.html


12 Pellissier-Tanon et al.

star-shape around the entity. Above the entity, the browser shows the hierarchy
of all classes of which the entity is a (transitive) instance, including those with
multiple inheritance. If an entity has more than one object for a given relation,
a relation-specific screen shows all objects of that relation for the entity. For size
reasons, the browser shows only the Wikipedia flavor of YAGO.

Applications. YAGO has already been used in quite a number of projects [16],
including question answering, entity recognition, and semantic text analysis. We
believe that the new version of YAGO opens up the door to an entire array of
new applications, because it is possible to perform logical reasoning on YAGO 4.
Not only is the KB equipped with semantic constraints, but it is also provably
consistent. We have checked the “English Wikipedia” flavor of YAGO 4 with the
OWL 2 DL reasoner HermiT [6], proving its logical consistency.11 This makes it
possible to perform advanced kinds of logical inference on YAGO 4.

5 Conclusion

This paper presents YAGO 4, the newest version of the YAGO knowledge base.
The unique characteristics of YAGO 4 is to combine the wealth of facts from
Wikidata with the clean and human-readable taxonomy from schema.org, to-
gether with semantic constraints that enforce logical consistency. This way, the
resulting KB can be processed with OWL and other reasoners, and is also more
user-friendly for browsing and question answering. We hope that the YAGO 4
resource fills a gap in the landscape of public KBs, and will be useful in down-
stream applications.

We plan to release updates of YAGO 4 to reflect the changes in Wikidata. A
change of the schema vocabulary would require human intervention, and could
be done a few times a year. Future work includes extending the set of semantic
constraints to capture inverse functions, symmetric and transitive properties, and
more. We also consider tapping into additional data sources, beyond Wikidata,
to further enrich the factual knowledge of YAGO 4.

Acknowledgements. This work was partially supported by the grant ANR-16-
CE23-0007-01 (“DICOS”).

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.:
Dbpedia: A nucleus for a web of open data. In: ISWC. pp. 722–735 (2007).
https://doi.org/10.1007/978-3-540-76298-0 52

2. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.:
Toward an architecture for never-ending language learning. In: AAAI (2010), http:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879

11 HermiT was unable to load the “Full” flavor due to a memory overflow, but it
contains the same taxonomy and the same constraints as the “English Wikipedia”
flavor.

https://doi.org/10.1007/978-3-540-76298-0_52
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1879


YAGO 4: A Reason-able Knowledge Base 13

3. Etzioni, O., Cafarella, M.J., Downey, D., Kok, S., Popescu, A., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web-scale information extraction in knowitall. In:
WWW. pp. 100–110 (2004). https://doi.org/10.1145/988672.988687

4. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998),
https://mitpress.mit.edu/books/wordnet

5. Frey, J., Hofer, M., Obraczka, D., Lehmann, J., Hellmann, S.: DBpedia FlexiFusion
the best of Wikipedia > Wikidata > your data. In: ISWC. pp. 96–112 (2019).
https://doi.org/10.1007/978-3-030-30796-7 7

6. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit:
An OWL 2 reasoner. J. Autom. Reasoning 53(3), 245–269 (2014).
https://doi.org/10.1007/s10817-014-9305-1

7. Gray, A.J.G., Goble, C.A., Jimenez, R.: Bioschemas: From potato salad to protein
annotation. In: ISWC (2017), http://ceur-ws.org/Vol-1963/paper579.pdf

8. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data
on the web. Commun. ACM 59(2), 44–51 (2016). https://doi.org/10.1145/2844544

9. Hartig, O.: Foundations of RDF? and SPARQL? (an alternative approach to
statement-level metadata in RDF). In: Alberto Mendelzon Workshop on Founda-
tions of Data Management and the Web (2017), http://ceur-ws.org/Vol-1912/
paper12.pdf

10. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo,
G., Weikum, G.: YAGO2: exploring and querying world knowledge in
time, space, context, and many languages. In: WWW. pp. 229–232 (2011).
https://doi.org/10.1145/1963192.1963296

11. Ismayilov, A., Kontokostas, D., Auer, S., Lehmann, J., Hellmann, S.: Wiki-
data through the eyes of dbpedia. Semantic Web 9(4), 493–503 (2018).
https://doi.org/10.3233/SW-170277

12. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Can-
didate Recommendation 11(8) (2017), https://www.w3.org/TR/shacl/

13. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: A knowledge base from
multilingual wikipedias. In: CIDR (2015), http://cidrdb.org/cidr2015/Papers/
CIDR15_Paper1.pdf

14. Navigli, R., Ponzetto, S.P.: Babelnet: Building a very large multilingual seman-
tic network. In: ACL. pp. 216–225 (2010), https://www.aclweb.org/anthology/
P10-1023/

15. Pellissier Tanon, T., Kaffee, L.: Property label stability in wikidata: Evolution
and convergence of schemas in collaborative knowledge bases. In: WikiWorkshop,
WWW. pp. 1801–1803 (2018). https://doi.org/10.1145/3184558.3191643

16. Rebele, T., Suchanek, F.M., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: YAGO:
A multilingual knowledge base from wikipedia, wordnet, and geonames. In: ISWC.
pp. 177–185 (2016). https://doi.org/10.1007/978-3-319-46547-0 19

17. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW. pp. 697–706 (2007). https://doi.org/10.1145/1242572.1242667

18. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

19. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Qual-
ity assessment for linked data: A survey. Semantic Web 7(1), 63–93 (2016).
https://doi.org/10.3233/SW-150175

https://doi.org/10.1145/988672.988687
https://mitpress.mit.edu/books/wordnet
https://doi.org/10.1007/978-3-030-30796-7_7
https://doi.org/10.1007/s10817-014-9305-1
http://ceur-ws.org/Vol-1963/paper579.pdf
https://doi.org/10.1145/2844544
http://ceur-ws.org/Vol-1912/paper12.pdf
http://ceur-ws.org/Vol-1912/paper12.pdf
https://doi.org/10.1145/1963192.1963296
https://doi.org/10.3233/SW-170277
https://www.w3.org/TR/shacl/
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
https://www.aclweb.org/anthology/P10-1023/
https://www.aclweb.org/anthology/P10-1023/
https://doi.org/10.1145/3184558.3191643
https://doi.org/10.1007/978-3-319-46547-0_19
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/2629489
https://doi.org/10.3233/SW-150175

	YAGO 4: A Reason-able Knowledge Base

