
HAL Id: hal-03108522
https://imt.hal.science/hal-03108522

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Experimental Study of State-of-the-Art Entity
Alignment Approaches

Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang , Fabian Suchanek

To cite this version:
Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang , Fabian Suchanek. An Experimental Study of
State-of-the-Art Entity Alignment Approaches. IEEE Transactions on Knowledge and Data Engi-
neering, 2020, �10.1109/TKDE.2020.3018741�. �hal-03108522�

https://imt.hal.science/hal-03108522
https://hal.archives-ouvertes.fr


An Experimental Study of State-of-the-Art
Entity Alignment Approaches

Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, Fabian M. Suchanek

Abstract—Entity alignment (EA) finds equivalent entities that are located in different knowledge graphs (KGs), which is an essential
step to enhance the quality of KGs, and hence of significance to downstream applications (e.g., question answering and recommendation).
Recent years have witnessed a rapid increase of EA approaches, yet the relative performance of them remains unclear, partly due to
the incomplete empirical evaluations, as well as the fact that comparisons were carried out under different settings (i.e., datasets, information used
as input, etc.). In this paper, we fill in the gap by conducting a comprehensive evaluation and detailed analysis of state-of-the-art EA approaches.
We first propose a general EA framework that encompasses all the current methods, and then group existing methods into three major
categories. Next, we judiciously evaluate these solutions on a wide range of use cases, based on their effectiveness, efficiency and robustness.
Finally, we construct a new EA dataset to mirror the real-life challenges of alignment, which were largely overlooked by existing literature. This
study strives to provide a clear picture of the strengths and weaknesses of current EA approaches, so as to inspire quality follow-up research.

F

1 INTRODUCTION

Recent years have witnessed the proliferation of knowledge
graphs (KGs) and their applications. Typical KGs store world
knowledge in the form of triples (i.e.,<entity, relation, entity>),
where entities refer to unique objects in the real world while
relations depict relationships connecting these objects. Using
entities as anchors, the triples in a KG are intrinsically interlinked,
thus constituting a large graph of knowledge. Currently, we have
a large number of general KGs (e.g., DBpedia [1], YAGO [52],
Google’s Knowledge Vault [14]), and domain-specific KGs (e.g.,
Medical [48] and Scientific KGs [56]). These KGs have been
leveraged to enhance various downstream applications, such as
keyword search [64], fact checking [30], question answering [12],
[28], etc.

In practice, a KG is usually constructed from one single data
source, and hence, it is unlikely to reach full coverage of the
domain [46]. To increase its completeness, a prevalent approach
is to integrate knowledge from other KGs, which may contain
extra or complementary information. For instance, a general KG
may only involve basic information about a scientist, whereas
more specifics (e.g., biography and publication lists) can be found
in scientific domain KGs. In order to consolidate knowledge
among KGs, one pivotal step is to align equivalent entities in
different KGs, which is termed entity alignment (EA) [7], [25] 1.

In general, current EA approaches mainly tackle the problem
by assuming that equivalent entities in different KGs possess
similar neighboring structure, and employing representation
learning methods to embed entities as data points in a low-
dimensional feature space. By performing effective (entity)
embedding, pair-wise dissimilarity of entities can be easily
evaluated as the distance between data points, in order to
determine whether two entities match.

While the direction is rapidly progressing (e.g., over twenty
papers have been published in the last three years), there is no
systematic and comprehensive comparison of these solutions. In

1. In fact, as where we are standing, entity alignment can be deemed as
a special case of entity resolution (ER), which recalls a pile of literature (to
be discussed in Section 2.2). As some ER methods (with minor adaptation)
can be used to handle EA, they are also involved in this experimental study
to ensure the comprehensiveness of the comparison.

this article, we provide an empirical evaluation of state-of-the-art
EA approaches with the following features:

(1) Fair comparison within and across categories. Almost all
recent studies [5], [24], [38], [55], [60], [61], [62], [63], [67] are con-
fined to comparing with only a subset of methods. In addition, dif-
ferent approaches follow different settings: some merely use the
KG structure for alignment, while others also utilize additional
information; some align KGs in one pass, while others employ
an iterative (re-)training strategy. Although a direct comparison
of these methods, as reported in the literature, demonstrates the
overall effectiveness of the solutions, a more preferable and fairer
practice would be to group these methods into categories and
then compare the results both within and across categories.

In this study, we include most state-of-the-art methods for
lateral comparison, including those very recent efforts that have
not yet been compared with others before. By dividing them
into three groups and conducting detailed analysis on both intra-
and inter-group evaluations, we are able to better position these
approaches and assess their effectiveness.

(2) Comprehensive evaluation on representative datasets.
To evaluate the performance of EA systems, several datasets
have been constructed, which can be broadly categorized into
cross-lingual benchmarks, represented by DBP15K [53], and
mono-lingual benchmarks, represented by DWY100K [54]. A very
recent study [24] points out that KGs in previous datasets are
much denser than real-life ones, and consequently it creates the
SRPRS dataset with entity degrees following normal distribution.
Despite of a wide choice of datasets, existing studies merely
report their results on one or two specific datasets, making it
difficult to assess their effectiveness in a wide range of possible
scenarios, e.g., cross-lingual/mono-lingual, dense/normal, and
large-scale/medium-scale KGs.

In response, this study conducts a comprehensive experimen-
tal evaluation on all the representative datasets (i.e., DBP15K,
DWY100K and SRPRS), which comprise nine KG pairs, and ana-
lyzes in depth in terms of effectiveness, efficiency and robustness.

(3) New dataset for real-life challenges. Existing EA datasets
contain, for each entity in source KG, exactly one corresponding
entity in the target KG. This, however, is an unrealistic scenario.



In real life, KGs contain entities that other KGs do not contain.
For instance, when aligning YAGO 4 and IMDB, only 1% of
entities in YAGO 4 are related to movies, while the other 99%
of entities in YAGO 4 necessarily have no match in IMDB. These
unmatchable entities would increase the difficulty of EA.

Besides, we observe that the KGs in existing datasets use
identical naming systems, and the baseline approach that relies
on the string similarity between entity names can achieve 100%
accuracy on all mono-lingual datasets. Nevertheless, in real-life
KGs, an entity is often identified by an incomprehensible id, and
associated with one or several human-readable names. Therefore,
different entities might share the same name. This obviously
poses a problem for EA, as there is no guarantee that an entity
with the name “Paris” in the source KG is the same as an entity
with the name “Paris” in the target KG—simply because one
might be the city in France and the other one a city in Texas.

We thus consider that the existing datasets for EA are an
oversimplification of the real-life challenges, disregarding the
fundamental issues of unmatchable entities and ambiguous
entity names. As a remedy, we propose a new dataset that
mirrors these difficulties.

Contributions. Overall, this article is oriented to both
the scientific community and the practitioners. The main
contributions of the article are:

• To the best of our knowledge, this study is amongst the
first efforts to systematically and comprehensively evaluate
state-of-the-art EA approaches. This is accomplished by: (1)
identifying the main components of existing EA approaches
and offering a general EA framework; and (2) grouping state-
of-the-art approaches into three categories and performing
detailed intra- and inter-group evaluations, which better
position different EA solutions; and (3) examining these
approaches on a broad range of use cases, including cross-
/mono-lingual alignment, and alignment on dense/normal,
large-/medium-scale data. The empirical results reveal the
effectiveness, efficiency and robustness of each solution.

• The experience and insight we gained from the study
enable us to discover the shortage of current EA datasets.
As a remedy, we construct a new mono-lingual dataset to
mirror the real-life challenges of unmatchable entities and
ambiguous entity names, which were largely overlooked by
current EA literature. We expect this new dataset to serve
as a better benchmark for evaluating EA systems.

Organization. Section 2 formalizes the task of EA, and
introduces the scope of this study. Section 3 presents a general
EA framework to encompass state-of-the-art EA approaches.
The categorization, experimental settings, results and discussions
are elaborated in Section 4. Section 5 provides a new dataset and
corresponding experiment results, and Section 6 concludes the
article.

2 PRELIMINARIES

In this section, we first formally define the task of EA, then we
introduce the scope of this study.

2.1 Task Definition
A KGG=(E,R,T) is a directed graph comprising a set of entities
E, relations R, and triples T ⊆E×R×E. A triple (h,r,t)∈T
represents a head entity h that is connected to a tail entity t via a
relation r. Given a source KGG1=(E1,R1,T1), a target KGG2=

(E2,R2,T2), and seed entity pairs (training set), i.e., S={(u,v) |
u∈E1,v∈E2,u↔ v}, where↔ represents equivalence (i.e., u
and v refer to the same real-world object), the task of EA can be
defined as discovering the equivalent entity pairs in the test set.

KGEN KGES

[Roma(city)]

[Alfonso]

[Madrid]

[Roma(film)]

[Spain]

[Mexico]

[Roma(película)]

[España]

[Roma(ciudad)]

[Madrid]

[Alfonso]

[Mexico]

[Gravity(film)] [Gravity(película)]

Fig. 1. An example of EA. Relation identifiers and other entities are omitted
for clarity; seed entity pairs are connected by dashed lines.

Example 1. Figure 1 shows a partial English KG (KGEN) and a
partial Spanish KG (KGES) concerning the director Alfonso
Cuarón. Note that each entity in the KG has a unique
identifier. For example, the movie “Roma” in the source KG
is uniquely identified by Roma(film)2.
Given the seed entity pair (Mexico, Mexico), EA aims to
find the equivalent entity pairs in the test set, e.g., returning
Roma(ciudad) in KGES as the corresponding target entity
to the source entity Roma(city) in KGEN.

2.2 Scope and Related Work

While the problem of EA was introduced a few years ago,
the more generic version of the problem—identifying entity
records referring to the same real-world entity from different
data sources—has been investigated from various angles by
different communities, under the names of entity resolution
(ER) [15], [18], [45], entity matching [13], [42], record linkage [8],
[34], deduplication [16], instance/ontology matching [20], [35],
[49], [50], [51], link discovery [43], [44], entity linking/entity
disambiguation [11], [29]. Next, we describe the related work
and the scope of this experimental study.

Entity linking. The task of Entity Linking (EL) is also known
as Entity Disambiguation. It is concerned with identifying entity
mentions in natural language text, and mapping them to the
entities of a given reference catalogue (a KG in most cases). For
example, the goal is to identify the string “Rome” in a natural
language text as an entity mention, and to find out whether it
refers to the capital of Italy or to one of the many movies of that
name. Existing approaches [21], [22], [29], [36], [68] exploit rich
amount of information, including the words that surround the
entity mention, the prior probability of certain target entities,
the already disambiguated entity mentions, and background
knowledge such as Wikipedia, to disambiguate linking targets.
However, most of these information is not available in our
KG alignment scenarios (e.g., embeddings of the description
of entities, or the prior distribution of entity linking given a
mention). Additionally, EL concerns the mapping between
natural language text and a KG. Our work, in contrast, studies
the mapping of entities between two KGs.

2. The identifiers in some KGs are human-readable, such as the ones shown
in the figure, while some can be incomprehensible, e.g., mids (/m/012rkqx)
in Freebase.
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Entity resolution. The task of entity resolution (ER), also
known as entity matching, deduplication or record linkage,
assumes that the input is relational data, and each data object
usually has a large amount of textual information described in
multiple attributes. Therefore, a number of known similarity
or distance functions (e.g., Jaro-Winkler distance for names and
numerical distance between dates) are used to quantify the sim-
ilarity between two objects. Based on that, rule-based or machine
learning-based methods are capable of solving the problem of
classifying two objects as matching or non-matching [9].

More specifically, for mainstream ER solutions, to match
entity records, the attributes are firstly aligned either manually
or automatically, then the similarities between corresponding
attribute values are computed, and finally the similarity
scores between aligned attributes are aggregated to derive the
similarities between records [32], [45].

Entity resolution on KGs. Some ER approaches are designed
to handle KGs and deal exclusively with binary relationships,
i.e., graph-shaped data. These approaches are also frequently
referred to as instance/ontology matching methods [49], [50].
The graph-shaped data comes with its own challenges: (1)
the textual descriptive information about entities is often less
present, or reduced to its bare minimum in the form of an entity
name; and (2) KGs operate under the Open World Assumption,
in which the attributes of an entity may be absent in the KG
although they are present in reality. This distinguishes KGs
from classical databases, where all fields of a record are usually
assumed to be present; and (3) KGs have additional predefined
semantics. In the simplest case, these take the form of a taxonomy
of classes. In more complex cases, KGs can be equipped with
an ontology of logical axioms.

Over the last two decades, and particularly in the context of
the rise of the Semantic Web and the Linked Open Data cloud [26],
a number of approaches have been developed specifically for the
setting of KGs. These can be classified along several dimensions:

• Scope. Some approaches align the entities of two KGs,
others align the relationship names (also known as the
schema), and again other approaches align the class
taxonomies of two KGs. Some methods achieve all three
tasks at once. In this work, we focus on the first of these
tasks, entity alignment.

• Background knowledge. Some approaches use an ontology
(T-box) as background information. This is true in particular
for the approaches that participate in the Ontology Align-
ment Evaluation Initiative (OAEI) 3. In this work, we concen-
trate on approaches that can work without such knowledge.

• Training. Some approaches are unsupervised, which work
directly on the input data, without any need for training
data or indeed a training phase. Examples are PARIS [51]
and SiGMa [35]. Other approaches, on the other hand, learn
the mappings between the entities based on pre-defined
mappings. In this work, we focus on the latter class of
approaches.

Among the supervised or semi-supervised approaches, most
build on the recent advances in deep learning [23]. They mainly
rely on graph representation learning technologies to model the
KG structure and generate entity embeddings for alignment. We
use “entity alignment (EA) approaches” as the general reference
to them, and they are also the focus of this study. Nevertheless, we
include PARIS [51] in our comparison, as a representative system

3. http://oaei.ontologymatching.org/

of the unsupervised approaches. We also include Agreement-
MakerLight (AML) [17] as a representative unsupervised system
that uses the background knowledge. For the other systems, we
refer the reader to other surveys [9], [33], [41], [43].

In addition, since EA pursues the same goal as ER, it can
be deemed a special but non-trivial case of ER. In this light,
general ER approaches can be adapted to the problem of EA,
and we include representative ER methods for comparison (to
be detailed in Section 4).

Existing benchmarks. To evaluate the effectiveness of
EA solutions, several synthetic datasets (e.g., DBP15K and
DWY100K) have been constructed by using the existing inter-
language and reference links in DBpedia. More detailed statistics
of these datasets can be found in Section 4.2.

Notably, the Ontology Alignment Evaluation Initiative (OAEI)
promoted the Knowledge Graph track 4. In contrast to existing
EA benchmarks, where merely instance-level information is
provided, KGs in these datasets contain both schema and
instance information, which can be unfair for evaluating current
EA approaches that do not assume the availability of ontology
information. Hence, they are not presented in this article.

3 A GENERAL EA FRAMEWORK

In this section, we introduce a general EA framework that is
conceived to encompass state-of-the-art EA approaches.

By carefully examining the frameworks of current EA
solutions, we identify the following four main components
(illustrated in Figure 2):

Embedding 

learning module

Alignment 

module

Extra information module

Prediction 

module

Fig. 2. A general EA framework.

• Embedding learning module. This component aims to
learn embeddings for entities, which can be roughly catego-
rized into two groups: KG representation based models, e.g.,
TransE [4] and graph neural network (GNN) based models,
e.g., the graph convolutional network (GCN) [31].

• Alignment module. This component aims to map the
entity embeddings in different KGs (learned from the
previous module) into a unified space. Most methods use
the margin-based loss to enforce the seed entity embeddings
from different KGs to be close. Another frequently used
approach is corpus fusion, which aligns KGs on the
corpus-level and directly embeds entities in different KGs
into the same vector space.

• Prediction module. Given the unified embedding space,
for each source entity in the test set, the most likely target en-
tity is predicted. Common strategies include using the cosine
similarity, the Manhattan distance, or the Euclidean distance
between entity embeddings to delegate the distance (similar-
ity) between entities and then selecting the target entity with
the lowest distance (highest similarity) as the counterpart.

4. http://oaei.ontologymatching.org/2019/knowledgegraph
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• Extra information module. On top of the basic modules,
some solutions propose to take advantage of extra informa-
tion to enhance EA performance. One common practice is
the bootstrapping (or self-learning) strategy, which leverages
confident alignment results generated by the prediction
module as the training data for the subsequent alignment
iterations (black dashed lines in Figure 2). Additionally,
others propose to take advantage of multi-type literal
information, e.g., attributes, entity descriptions and entity
names, to complement the KG structure (blue dashed line).

Example 2. Further to Example 1, we explain these modules. The
embedding learning module generates embeddings for entities
in KGEN and KGES, respectively. Then the alignment module
projects the entity embeddings into the same vector space,
where the entity embeddings in KGEN and KGES are directly
comparable. Finally, using the unified embeddings, the predic-
tion module aims to predict the equivalent target entity in KGES
for each source entity in KGEN. The extra information module
leverages several techniques to improve the EA performance.
Concretely, the bootstrapping strategy aims to include the
confident EA pairs detected from a previous round, e.g.,
(Spain, España), into the training set for learning in the
next round. Another approach is to use the literal information,
e.g., the comprehensible entity identifiers (shown in Figure 1),
to complement the entity embeddings for alignment.

To provide a module-wise comparison, we organize the state-
of-the-art approaches under the introduction to each module
(Table 1). In this case, we refer interested readers to Appendix
B for a concise but complete view. Next, we introduce how these
modules are realized by different state-of-the-art approaches.

3.1 Embedding Learning Module
In this subsection, we introduce in detail the methods used
for the embedding learning module, which leverages the KG
structure to generate an embedding for each entity.

As can be observed from Table 1, TransE [4] and GCN [31]
are the mainstream models. Here we provide a brief description
of these basic models.

TransE. TransE interprets relations as translations operating on
the low-dimensional representations of entities. More specifically,
given a relational triple (h, r, t), TransE suggests that the
embedding of the tail entity t should be close to the embedding
of the head entity h plus the embedding of the relationship r,
i.e., ~h+~r≈~t. As thus, the structural information of entities can
be preserved and the entities that share similar neighbors will
have close representations in the embedding space.

GCN. The graph convolutional network (GCN) is a kind
of convolutional networks that directly operates on graph-
structured data. It generates node-level embeddings by encoding
the information about node neighborhoods. The inputs of the
GCN include feature vectors for every node in the KG, and a
representative description of the graph structure in matrix form,
i.e., an adjacency matrix. The output is a new feature matrix. A
GCN model normally comprises multiple stacked GCN layers,
hence it can capture a partial KG structure that is several hops
away from the entity.

On top of these basic models, some methods make
modifications. Regarding the TransE-based models, MTransE
removes the negative triples during training, BootEA and NAEA
replace the original margin-based loss function with a limit-based

objective function, MuGNN uses the logistic loss to substitute for
the margin-based loss, and JAPE designs a new loss function.

As for the GCN-based models, noticing that the GCN
neglects the relations in KGs, RDGCN adopts the dual-primal
graph convolutional neural network (DPGCNN) [40] as a
remedy. MuGNN, on the other hand, utilizes an attention-based
GNN model to assign different weights to different neighboring
nodes. KECG combines the graph attention network (GAT) [58]
and TransE to capture both the inner-graph structure and the
inter-graph alignment information.

There are also a few approaches that design new embedding
models. In RSNs, it is contended that the triple-level learning
cannot capture the long-term relational dependencies of entities
and is insufficient for the propagation of semantic information
among entities. As thus, it uses recurrent neural networks (RNNs)
with residual learning to learn the long-term relational paths
between entities. In TransEdge, a new energy function to measure
the error of edge translation between entity embeddings is
devised for learning KG embeddings, in which edge embeddings
are modeled by context compression and projection.

3.2 Alignment Module

In this subsection, we introduce the methods used for the align-
ment module, which aims to unify separated KG embeddings.

The most common strategy is adding a margin-based
loss function on top of the embedding learning module. The
margin-based loss function requires that the distance between
the entities in positive pairs should be small, the distance between
the entities in negative pairs should be large, and there should
exist a margin between the distances of positive and negative
pairs. Here positive pairs denote the seed entity pairs, while the
negative pairs are constructed by corrupting the positive pairs.
In this way, the two separated KG embedding spaces can be
pushed into one vector space. Table 1 shows that, most methods
built on GNN adopt such a margin-based alignment model
to unify two KG embedding spaces, whereas in GM-Align, the
alignment process is achieved by a matching framework that
maximizes the matching probabilities of seed entity pairs.

Another frequently used approach is corpus fusion, which
utilizes the seed entity pairs to bridge the training corpora of two
KGs. Given the triples of two KGs, some methods, e.g., BootEA
and NAEA, swap the entities in the seed entity pairs and generate
new triples to calibrate the embeddings into a unified space.
Other approaches treat the entities in seed entity pairs as the
same entity and build an overlay graph connecting two KGs,
which is then used for learning entity embeddings.

Some early studies design transition functions to map the
embedding vectors in one KG to another, while some use
additional information, e.g., the attributes of entities, to shift the
entity embeddings into the same vector space.

3.3 Prediction Module

Given the unified embedding space, this module aims to
determine the most likely target entity for each source entity.

The most common approach is returning a ranked list of
target entities for each source entity according to a specific
distance measure between the entity embeddings, among which
the top ranked entity is regarded as the match. Frequently used
distance measures include the Euclidean distance, the Manhattan
distance and the cosine similarity. Note that the similarity score
between entities can be easily converted to the distance score

4



TABLE 1
A summary of the EA approaches involved in this study.

Method Embedding Model Alignment Model Extra information Prediction C-L M-L Group

MTransE [7] TransE ? Transition 7 Euclidean distance 3 7 I
RSNs [24] RSNs Corpus fusion 7 Cosine similarity 3 3 I
MuGNN [5] GNN Margin-based 7 Cosine similarity 3 3 I
KECG [38] GAT+TransE Margin-based 7 Euclidean distance 3 3 I

ITransE [69] TransE Transition Bootstrapping Euclidean distance 7 3 II
BootEA [54] TransE ? Corpus fusion Bootstrapping Cosine similarity 3 3 II
NAEA [70] TransE ? Corpus fusion Bootstrapping Cosine similarity 3 3 II
TransEdge [55] TransEdge Corpus fusion Bootstrapping Cosine similarity 3 3 II

JAPE [53] TransE ? Attribute-refined Attribute Cosine similarity 3 7 III
GCN-Align [59] GCN Margin-based Attribute Manhattan distance 3 7 III
AttrE [57] TransE Attribute-refined Attribute Cosine similarity 7 3 III
KDCoE [6] TransE Transition Entity description Euclidean distance 3 7 III
HMAN [63] GCN Margin-based Description, Attribute Euclidean distance 3 7 III
GM-Align [62] GCN Graph matching Entity name Matching probability 3 7 III
RDGCN [60] DPGCNN Margin-based Entity name Manhattan distance 3 7 III
HGCN [61] GCN Margin-based Entity name Manhattan distance 3 7 III
MultiKE [67] TransE ? Corpus fusion Entity name, Attribute Cosine similarity 7 3 III
CEA [65] GCN Margin-based Entity name Cosine similarity 3 3 III
1 C-L stands for Cross-lingual Evaluation, M-L stands for Mono-lingual Evaluation.
2 TransE ? represents variants of the TransE model.

by subtracting the similarity score from 1, and vice versa 5. In
GM-Align, the target entity with the highest matching probability
is aligned to the source entity.

Besides, a very recent approach, CEA, points out that there
is often an additional interdependence between different EA
decisions, i.e., a target entity is less likely to be matched to a
source entity if it is aligned to another source entity with higher
confidence. To model such a collective signal, it formulates this
process as a stable matching problem built upon the distance mea-
sure, which reduces mismatches and leads to higher accuracy.

3.4 Extra Information Module

Although the embedding learning, alignment and prediction
modules can already constitute a basic EA framework, there is
still room for improvement. In this subsection, we introduce the
methods used in the extra information module.

A common method is the bootstrapping strategy (also
frequently called the iterative training or self-learning strategy),
which iteratively labels likely EA pairs as the training set for
the next round and thus progressively improves the alignment
results. Several methods have been devised, and the main
difference lies in the selection of confident EA pairs. ITransE
adopts a threshold-based strategy, while BootEA, NAEA and
TransEdge formulate the selection as a maximum likelihood
matching process under a 1-to-1 mapping constraint.

Some methods use multi-type literal information to provide
a more comprehensive view for alignment. The attributes
associated with entities are frequently used. While some merely
use the statistical characteristics of the attribute names (e.g.,
JAPE, GCN-Align and HMAN), the other methods generate attribute
embeddings by encoding the characters of attribute values (e.g.,
AttrE and MultiKE).

There is a growing tendency towards the use of entity names.
GM-Align, RDGCN and HGCN use entity names as the input features
for learning entity embeddings, while CEA exploits the semantic
and string-level aspects of entity names as individual features.

5. In this work, we use the distance between entity embeddings and the
similarity between entity embeddings interchangeably.

Besides, KDCoE and the description-enhanced version of HMAN
encode entity descriptions into vector representations, which are
considered as new features for alignment.

It is worth noting that multi-type information is not always
available. Besides, since EA underlines the use of graph structure
for alignment, the majority of existing EA datasets contain very
limited textual information, which restrains the applicability of
some approaches such as KDCoE, MultiKE and AttrE.

4 EXPERIMENTS AND ANALYSIS

This section presents an in-depth empirical study 6.

4.1 Categorization
According to the main components, we can broadly categorize
current methods into three groups: Group I, which merely utilizes
the KG structure for alignment, Group II, which harnesses the it-
erative training strategy to improve alignment results, and Group
III, which utilizes information in addition to the KG structure. We
introduce and compare these three categories using Example 1.

Group I. This category of methods merely harnesses the KG
structure for aligning entities. Consider again Example 1. In
KGEN, the entity Alfonso is connected to the entity Mexico
and three other entities, while Spain is connected to Mexico
and one more entity. The same structural information can be
observed in KGES. Since we already know that Mexico in
KGEN is aligned to Mexico in KGES, by using the KG structure,
it is easy to conclude that the equivalent target entity for Spain
is España, and the equivalent target entity for Alfonso is
Alfonso.

Group II. Approaches in this category iteratively label likely
EA pairs as the training set for the next round and progressively
improve alignment results. They can also be categorized into
Group I or III, depending on whether they merely use the KG
structure or not. Nevertheless, they are all characterized by the
use of the bootstrapping strategy.

6. A link will be provided, and all datasets and program sources will be
made available on a Github page.
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We still use Example 1 to illustrate the bootstrapping mecha-
nism. As depicted in Figure 1, using the KG structure, it is easy to
discover that the source entity Spain corresponds to the target
entity España, and Alfonso to Alfonso. Nevertheless, for
the source entity Madrid, its target entity remains unclear, since
the target entities Roma(ciudad) and Madrid both have
the same structural information with the source entity Madrid—
two hops away from the seed entity and with degree 1. To resolve
this issue, bootstrapping-based methods conduct several rounds
of alignment, where the confident pairs detected from the pre-
vious round are regarded as seed entity pairs for the next round.
More specifically, they consider the entity pairs detected from the
first round, i.e., (Spain, España) and (Alfonso, Alfonso),
as the seed pairs in the following rounds. Consequently, in the
second round, for the source entity Madrid, only the target
entity Madrid shares the same structural information with
it—two hops away from the seed entity pair (Mexico, Mexico)
and one hop away from the seed entity pair (Spain, España).

Group III. Although it is intuitive to leverage the KG structure
for alignment given graph-formatted input data sources, KGs also
contain rich semantics, which can be used to complement struc-
tural information. Methods in this category distinguish them-
selves by the use of information in addition to the KG structure.

Referring to Example 1, after using the KG structure and even
the bootstrapping strategy, it is still difficult to determine the tar-
get entity for the source entity Gravity(film), as its structural
information (connected to the entity Alfonso and with degree
2) is shared by two target entities Gravity(pelı́cula) and
Roma(pelı́cula). In this case, using entity name information
to complement the KG structure can easily distinguish these two
entities and return Gravity(pelı́cula) as the target entity
for the source entity Gravity(film).

4.2 Experiment Settings

Datasets. We adopt three frequently utilized and
representative datasets, including nine KG pairs, for evaluation:

DBP15K [53]. This dataset consists of three multilingual
KG pairs extracted from DBpedia: English to Chinese
(DBP15KZH-EN), English to Japanese (DBP15KJA-EN) and English
to French (DBP15KFR-EN). Each KG pair contains 15 thousand
inter-language links as gold standards.

DWY100K [54]. This dataset comprises two mono-lingual KG
pairs, DWY100KDBP-WD and DWY100KDBP-YG, which are extracted
from DBpedia, Wikidata and YAGO 3. Each KG pair contains
100,000 entity pairs. The extraction process follows DBP15K,
whereas the inter-language links are replaced with the reference
links connecting these KGs.

SRPRS. Guo et al. [24] point out that KGs in previous EA
datasets, e.g., DBP15K and DWY100K, are too dense and the
degree distributions deviate from real-life KGs. Therefore, they
establish a new EA benchmark that follows real-life distribution
by using the reference links in DBpedia. The final evaluation
benchmark consists of cross-lingual (SRPRSEN-FR, SRPRSEN-DE)
and mono-lingual KG pairs (SRPRSDBP-WD, SRPRSDBP-YG), where
EN, FR, DE, DBP, WD, and YG represent DBpedia (English),
DBpedia (French), DBpedia (German), DBpedia, Wikidata and
YAGO 3, respectively. Each KG pair contains 15,000 entity pairs.

A summary of the datasets can be found in Table 2. In each
KG pair, there are relational triples, cross-KG entity pairs (gold
standards, in which 30% are seed entity pairs and used for
training), and attribute triples.

TABLE 2
Statistics of EA benchmarks and our constructed dataset.

KG pair #Rel Triples #Relations #Attr Triples

DBP15KZH-EN
70,414 1,701 248,035
95,142 1,323 343,218

DBP15KJA-EN
77,214 1,299 248,991
93,484 1,153 320,616

DBP15KFR-EN
105,998 903 273,825
115,722 1,208 351,094

DWY100KDBP-WD
463,294 330 341,770
448,774 220 779,402

DWY100KDBP-YG
428,952 302 383,757
502,563 31 98,028

SRPRSEN-FR
36,508 221 60,800
33,532 177 53,045

SRPRSEN-DE
38,363 222 55,580
37,377 120 73,753

SRPRSDBP-WD
38,421 253 64,021
40,159 144 133,371

SRPRSDBP-YG
33,748 223 58,853
36,569 30 18,241

DBP-FB
96,414 407 127,614

111,974 882 78,740

Degree distribution. To gain insight into the datasets, we
show the degree distributions of entities in these datasets in
Figure 3. The degree of an entity is defined as the number of triples
an entity is involved in. Higher degree implies richer neighboring
structure. In each dataset, since the degree distributions of
different KG pairs are very similar, we merely present the
distribution of one KG pair in Figure 3 in the interest of space.

The (a) series of sub-figures corresponds to DBP15K. It is
evident that the entities with degree of 1 account for the largest
share, and with the increase of degree values, the number of
entities fluctuates while it generally exhibits a downward trend.
Noteworthily, the curve of the coverage approximates a straight
line, as the number of entities changes subtly when the degree
increases from 2 to 10.

The (b) series of sub-figures corresponds to DWY100K. The
structure of the KGs in this dataset is very different from (a), as
there are no entities with degree of 1 or 2. Besides, the number
of entities peaks at degree of 4, and drops consistently when the
entity degree increases.

The (c) series of sub-figures corresponds to SRPRS. Evidently,
the degree distribution of entities in this dataset is more realistic,
where the entities with lower degrees account for higher percent-
ages. This can be attributed to its carefully designed sampling
strategy. Note that the (d) series of sub-figures corresponds to
our constructed dataset, which will be introduced in Section 5.

Evaluation metrics. Following existing EA solutions, we
utilize Hits@k (k=1, 10) and mean reciprocal rank (MRR) as the
evaluation metrics. At the prediction stage, for each source entity,
the target entities are ranked according to their distance scores
with the source entity in an ascending order. Hits@k reflects
the percentage of correctly aligned entities in the top-k closest
target entities. In particular, Hits@1 represents the accuracy of
alignment results, which is the most important indicator.

MRR denotes the average of the reciprocal ranks of the
ground truths. Note that higher Hits@k and MRR indicate better
performance. Unless otherwise specified, the results of Hits@k

6



0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10

(a-1) DBP15K-ZH

0%

20%

40%

60%

80%

100%

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

(a-2) DBP15K-EN

0%

20%

40%

60%

80%

100%

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10

(d-1) FB

0%

20%

40%

60%

80%

100%

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10

(d-2) DBP

0%

20%

40%

60%

80%

100%

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

(b-1) DWY-100K-DBP

0%

20%

40%

60%

80%

100%

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

(b-2) DWY-100K-WD

0%

20%

40%

60%

80%

100%

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

(c-1) SRPRS-EN

0%

20%

40%

60%

80%

100%

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

(c-2) SRPRS-FR

Fig. 3. Degree distributions on different datasets. The X-axis denotes entity degree. The left Y-axis represents the number of entities (corresponding to
bars), while the right Y-axis represents the percentage of entities with a degree lower than a given x value (corresponding to lines).

are represented in percentages.

Methods to compare. We include aforementioned methods
for comparison, except for KDCoE and MultiKE, since the
evaluation benchmarks do not contain entity descriptions. We
also exclude AttrE as it only works under the mono-lingual setting.
Additionally, we report the results of the structure-only variants
of JAPE and GCN-Align, i.e., JAPE-Stru and GCN.

As mentioned in Section 2.2, in order to demonstrate the
capability of ER approaches for coping with EA, we also
compare with several name-based heuristics, as the typical
approaches of these relevant tasks [13], [42], [47] heavily rely on
the similarity between object names to discover the equivalence.
Concretely, we use: (1) Lev, which aligns entities using Levenshtein
distance [37], a string metric for measuring the difference between
two sequences; and (2) Embed, which aligns entities according to
the cosine similarity between the name embeddings (averaged
word embedding) of two entities. Following [65], we use the
pre-trained fastText embeddings [2] as word embeddings, and for
multilingual KG pairs, we use the MUSE word embeddings [10].

Implementation details. The experiments are conducted on
a personal computer with an Intel Core i7-4790 CPU, an NVIDIA
GeForce GTX TITAN X GPU and 128 GB memory. The programs
are all implemented in Python.

We directly use the source codes provided by the authors
for reproduction, and the results are obtained by executing the
models using the set of parameters reported in their original
papers 7. We use the same set of parameters on the datasets that
are not included in the original papers.

On the DBP15K dataset, all of the evaluated methods
provide results in their original papers, except for MTransE and
ITransE. We compare our implemented results with their reported
results. If the difference falls out of a reasonable range, i.e.,
±5% of the original results, we mark the methods with ∗. Note
that theoretically there should not be a huge difference, since
we use the same source codes and the same parameters for
implementation. On SRPRS, only RSNs reports the results in its
original paper [24]. We run all methods on SRPRS and provide
the results in Table 4. On DWY100K, we run all approaches,
and compare the performance of BootEA, MuGNN, NAEA, KECG
and TransEdge with the results provided in their original papers.
Methods with notable differences are marked with ∗.

7. In the interest of space, we put the detailed parameter settings in the
appendix.

On each dataset, the best results within each group are
denoted in bold. We mark the best Hits@1 performance
among all approaches with N, as this metric can best reflect the
effectiveness of EA methods.

4.3 Results and Analyses on DBP15K

The experiment results on the cross-lingual dataset DBP15K
are reported in Table 3. The Hits@10 and MRR results of CEA
are missing as it directly generates aligned entity pairs instead
of returning a list of ranked entities 8. We then compare the
performance within each category and across categories.

Group I. Among the approaches merely using the KG
structure, RSNs consistently achieves the best results in terms of
both Hits@1 and MRR, which can be ascribed to the fact that the
long-term relational paths it captures provide more structural
signals for alignment. The results of MuGNN and KECG are equally
matched, partially due to their shared objective of completing
KGs and reconciling the structural differences. While MuGNN
utilizes AMIE+ [19] to induce rules for completion, KECG harnesses
TransE to implicitly achieve this aim.

The other three approaches attain relatively inferior results.
Both MTransE and JAPE-Stru adopt TransE for capturing the KG
structure, while JAPE-Stru outperforms MTransE, as MTransE models
the structure of KGs in different vector spaces, and the informa-
tion loss happens when translating between vector spaces [53].
GCN obtains relatively better results than MTransE and JAPE-Stru.

Group II. Within this category, ITransE attains much worse
results than other methods, which can be attributed to the infor-
mation loss during the translation between embedding spaces
and its simpler bootstrapping strategy (detailed in Section 3.4).
BootEA, NAEA and TransEdge utilize the same bootstrapping
strategy. The performance of BootEA is slightly inferior to the
reported results, while the results of NAEA are much worse. The-
oretically, NAEA should achieve better performance than BootEA
as it leverages an attentional mechanism to obtain neighbor-level
information. TransEdge employs an edge-centric embedding
model to capture structural information, which generates more
precise entity embeddings and hence better alignment results.

Group III. Both JAPE and GCN-Align harness the attributes
to complement entity embeddings, and their results exceed

8. The Hits@10 and MRR results of CEA are also missing in Table 4 and
Table 5 because of the same reason.
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TABLE 3
Experiment results on DBP15K.

Method
ZH-EN JA-EN FR-EN

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 20.9 51.2 0.31 25.0 57.2 0.36 24.7 57.7 0.36
JAPE-Stru 37.2 68.9 0.48 32.9 63.8 0.43 29.3 61.7 0.40
GCN 39.8 72.0 0.51 40.0 72.9 0.51 38.9 74.9 0.51
RSNs 58.0 81.1 0.66 57.4 79.9 0.65 61.2 84.1 0.69
MuGNN 47.0 83.5 0.59 48.3 85.6 0.61 49.1 86.7 0.62
KECG 47.7 83.6 0.60 49.2 84.4 0.61 48.5 84.9 0.61

ITransE 33.2 64.5 0.43 29.0 59.5 0.39 24.5 56.8 0.35
BootEA ∗ 61.4 84.1 0.69 57.3 82.9 0.66 58.5 84.5 0.68
NAEA ∗ 38.5 63.5 0.47 35.3 61.3 0.44 30.8 59.6 0.40
TransEdge 75.3 92.4 0.81 74.6 92.4 0.81 77.0 94.2 0.83

JAPE 41.4 74.1 0.53 36.5 69.5 0.48 31.8 66.8 0.44
GCN-Align 43.4 76.2 0.55 42.7 76.2 0.54 41.1 77.2 0.53
HMAN 56.1 85.9 0.67 55.7 86.0 0.67 55.0 87.6 0.66
GM-Align ∗ 59.5 77.9 0.66 63.5 83.0 0.71 79.2 93.6 0.85
RDGCN 69.7 84.2 0.75 76.3 89.7 0.81 87.3 95.0 0.90
HGCN 70.8 84.0 0.76 75.8 88.9 0.81 88.8 95.9 0.91
CEA 78.7N - - 86.3N - - 97.2N - -

Embed 57.5 68.6 0.61 65.1 75.4 0.69 81.6 88.9 0.84
Lev 7.0 8.9 0.08 6.6 8.8 0.07 78.1 87.4 0.81

TABLE 4
Experiment results on SRPRS.

Method
EN-FR EN-DE DBP-WD DBP-YG

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 21.3 44.7 0.29 10.7 24.8 0.16 18.8 38.2 0.26 19.6 40.1 0.27
JAPE-Stru 24.1 53.3 0.34 30.2 57.8 0.40 21.0 48.5 0.30 21.5 51.6 0.32
GCN 24.3 52.2 0.34 38.5 60.0 0.46 29.1 55.6 0.38 31.9 58.6 0.41
RSNs 35.0 63.6 0.44 48.4 72.9 0.57 39.1 66.3 0.48 39.3 66.5 0.49
MuGNN 13.1 34.2 0.20 24.5 43.1 0.31 15.1 36.6 0.22 17.5 38.1 0.24
KECG 29.8 61.6 0.40 44.4 70.7 0.54 32.3 64.6 0.43 35.0 65.1 0.45

ITransE 12.4 30.1 0.18 13.5 31.6 0.20 10.1 26.2 0.16 10.3 26.0 0.16
BootEA 36.5 64.9 0.46 50.3 73.2 0.58 38.4 66.7 0.48 38.1 65.1 0.47
NAEA 17.7 41.6 0.26 30.7 53.5 0.39 18.2 42.9 0.26 19.5 45.1 0.28
TransEdge 40.0 67.5 0.49 55.6 75.3 0.63 46.1 73.8 0.56 44.3 69.9 0.53

JAPE 24.1 54.4 0.34 26.8 54.7 0.36 21.2 50.2 0.31 19.3 50.0 0.30
GCN-Align 29.6 59.2 0.40 42.8 66.2 0.51 32.7 61.1 0.42 34.7 64.0 0.45
HMAN 40.0 70.5 0.50 52.8 77.8 0.62 43.3 74.4 0.54 46.1 76.5 0.56
GM-Align 57.4 64.6 0.60 68.1 74.8 0.71 76.2 83.0 0.79 80.4 83.7 0.82
RDGCN 67.2 76.7 0.71 77.9 88.6 0.82 97.4 99.4 0.98 99.0 99.7 0.99
HGCN 67.0 77.0 0.71 76.3 86.3 0.80 98.9 99.9 0.99 99.1 99.7 0.99
CEA 96.2N - - 97.1N - - 100.0N - - 100.0N - -

Embed 58.1 66.8 0.61 62.6 77.6 0.68 100.0N 100.0 1.00 100.0N 100.0 1.00
Lev 85.1 90.1 0.87 86.2 92.1 0.88 100.0N 100.0 1.00 100.0N 100.0 1.00

the results of their structure-only counterparts, validating
the usefulness of the attribute information. Also utilizing the
attributes, HMAN outperforms JAPE and GCN-Align, since it also
considers relation types as the model input.

The other four methods exploit entity name information,
instead of attributes, for alignment, and achieve better results.
Among them, the results of RDGCN and HGCN are close,
surpassing GM-Align. This is partially because they employ
relations to optimize the learning of entity embeddings, which
was largely neglected in previous GNN-based EA models.
CEA attains the best performance in this group, as it effectively
exploits and fuses available features.

Name-based heuristics. On KG pairs with closely-related
languages, Lev attains promising results, whereas it fails to
work on distantly-related language pairs, i.e., DBP15KZH-EN and

DBP15KJA-EN. As for Embed, it achieves consistent performance
on all KG pairs.

Intra-category comparison. CEA achieves the best Hits@1
performance on all datasets. As for other metrics, TransEdge,
RDGCN and HGCN attain the leading results. This verifies the
effectiveness of using extra information, i.e., the bootstrapping
strategy and textual information.

The performance of the name-based heuristics (i.e., Embed) is
very competitive, exceeding most of the methods that do not use
entity name information in terms of Hits@1. This demonstrates
that typical ER solutions can still work on the task of EA. Never-
theless, Embed is still inferior to most EA methods that incorporate
the entity name information, i.e., RDGCN, HGCN and CEA.

It can also be observed that, methods from the first two
groups, e.g., TransEdge, attain consistent results across all
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three KG pairs, while the solutions utilizing the entity name
information, e.g., HGCN, achieve much better results on the
KG pairs with closely-related languages (FR-EN) than those
with distantly-related languages (ZH-EN). This reveals that the
language barriers can hamper the use of textual information and
in turn hurt the overall effectiveness.

4.4 Results and Analyses on SRPRS

The results on SRPRS are reported in Table 4. There are some
observations similar to DBP15K, which we will not elaborate.
We focus on the differences from DBP15K, as well as the
patterns specific to this dataset.

Group I. It is evident that the overall performance on SRPRS
is lower than that on DBP15K, which indicates that these
methods might not perform well on relatively sparse KGs. RSNs
still outperforms the other approaches, which is closely followed
by KECG. Notably, in contrast to the decent results on DBP15K,
MuGNN attains much worse results on SRPRS, as there are no
aligned relations on SRPRS, where the rule transferring fails to
work. Also, the number of detected rules is much smaller, due
to the sparser KG structure.

Group II. Among these solutions, TransEdge still yields
consistently superior results.

Group III. Compared with GCN and JAPE-Stru, incorporating
the attributes leads to better results for GCN-Align, while it does
not contribute to the performance of JAPE. This is because the
number of attributes is relatively smaller in this dataset. In
comparison, using entity names enhances the results to a much
higher level. Note that CEA attains ground-truth performance
on SRPRSDBP-WD and SRPRSDBP-YG.

Name-based heuristics. Lev and Embed achieve ground-truth
performance on all mono-lingual EA datasets, since the names
in the entity identifiers of DBpedia, Wikidata and YAGO are
identical. Lev also achieves promising results on cross-lingual KG
pairs with closely-related language pairs.

Intra-category comparison. Different from DBP15K, methods
that incorporate entity names (Group III) dominate on SRPRS.
This is because: (1) the KG structure is less effective on this dataset
(much sparser compared with DBP15K); and (2) the entity name
information plays a very significant role on cross-lingual datasets
with closely-related language pairs and mono-lingual datasets,
where the names of equivalent entities are very similar.

4.5 Results and Analyses on DWY100K

The results on the large-scale mono-lingual dataset, DWY100K,
are reported in Table 5. We fail to obtain the results of RDGCN
and NAEA under our experimental environment, as they require
extremely large amount of memory space.

Methods in the first group achieve more promising results
on this dataset, which can be ascribed to the relatively richer KG
structure (shown in Figure 3). Among them, MuGNN and KECG at-
tain over 60% on DWY100KDBP-WD and 70% on DWY100KDBP-YG in
terms of Hits@1, as the rich structure facilitates the process of KG
completion, which in turn enhances the overall EA performance.

With the aid of the iterative training strategy, approaches
in the second group further improve the results, whereas the
results of BootEA and TransEdge are slightly lower than their
reported values. As for methods in Group III, CEA achieves the
ground-truth performance. Similarly, the name-based heuristics
Lev and Embed also attain ground-truth results.

4.6 Efficiency Analysis

For the comprehensiveness of the evaluation, we report the
averaged running time on each dataset in Table 6 to compare
the efficiency of state-of-the-art solutions, which can also reflect
their scalability. We are aware that different parameter settings,
e.g., the learning rate and the number of epochs, might influence
the eventual time cost. However, here we merely aim to provide
a general picture of the efficiency of these methods by adopting
the parameters reported in their original papers. Again, we fail
to obtain the results of RDGCN and NAEA on DWY100K under
our experimental environment, as they require extremely large
amount of memory space.

On DBP15K and SRPRS, GCN is the most efficient method
with consistent alignment performance, which is closely followed
by JAPE-Stru and ITransE. For the other methods, most of them
have the same magnitude of time costs (1,000-10,000s), except for
NAEA and GM-Align, which require extremely higher running time.

On the much larger dataset DWY100K, the time costs of
all solutions climb dramatically, due to the larger number of
parameters and higher computational costs. Among others,
MuGNN, KECG, HMAN cannot work by using the GPU because
of the memory limitation, and we report the time cost by using
the CPU as suggested by the authors of these approaches. It
is noted that merely three methods can finish the alignment
process within 10,000s, and the time costs for most approaches
fall between 10,000s and 100,000s. GM-Align even requires 5 days
to generate the results. This unveils that state-of-the-art EA
methods still have low efficiency when dealing with data at very
large scale. Some of them, such as NAEA, RDGCN, and GM-Align,
have rather poor scalability.

4.7 Comparison with Unsupervised Approaches

As mentioned in Section 2.2, there are many unsupervised
approaches designed for the alignment between KGs, which do
not utilize representation learning techniques. For the comprehen-
siveness of the study, we compare with a representative system,
PARIS [51]. Built on the similarity comparison between literals,
PARIS uses a probabilistic algorithm to jointly align entities in
an unsupervised manner. Besides, we also compare with Agree-
mentMakerLight (AML) [17], an unsupervised ontology alignment
system that leverages the background knowledge of KGs9.

We use the F1 score as the evaluation metric, since PARIS and
AML do not output a target entity for every source entity so as to
deal with entities that do not have a match in the other KG. The
F1 score is the harmonic mean between precision (i.e., the number
of correctly aligned entity pairs divided by the number of source
entities for which an approach returns a target entity) and recall
(i.e., the number of source entities for which an approach returns
a target entity divided by the total number of source entities).

As depicted in Figure 4, the overall performance of PARIS
and AML are slightly inferior to CEA. However, although CEA
has more robust performance, it relies on the training data (seed
entity pairs), which might not exist in the real-world KGs. In
contrast, unsupervised systems work without requiring any
training data, and can still output very promising results. Besides,
by comparing the results of PARIS and AML, it shows that the
ontology information indeed can improve the alignment results.

9. AML requires ontology information, which does not exist in current
EA datasets. Therefore, we mine the ontology information for these KGs.
However, we can only successfully run AML onSRPRSEN-FR andSRPRSEN-DE.
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TABLE 5
Experiment results on DWY100K and DBP-FB.

Method
DWY100KDBP-WD DWY100KDBP-YG DBP-FB

Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE 23.8 50.7 0.33 22.7 41.4 0.29 8.5 23.0 0.14
JAPE-Stru 27.3 52.2 0.36 21.6 45.8 0.30 4.7 16.1 0.09
GCN 49.4 75.6 0.59 59.8 82.9 0.68 17.8 42.3 0.26
RSNs 49.7 77.0 0.59 61.0 85.7 0.69 25.3 49.7 0.34
MuGNN 60.4 89.4 0.70 73.9 93.7 0.81 21.3 51.8 0.31
KECG 63.1 88.8 0.72 71.9 90.4 0.79 23.1 50.8 0.32

ITransE 17.1 36.4 0.24 15.9 36.1 0.23 3.0 10.0 0.06
BootEA ∗ 69.9 86.1 0.76 61.1 77.5 0.69 21.2 42.5 0.29
TransEdge ∗ 68.4 90.0 0.79 83.4 95.3 0.89 30.4 56.9 0.39

JAPE 33.9 60.9 0.43 21.6 45.7 0.30 6.5 20.4 0.12
GCN-Align 51.3 77.7 0.61 59.6 83.7 0.68 17.8 42.3 0.26
HMAN 65.5 89.7 0.74 77.6 93.8 0.83 25.9 54.2 0.36
GM-Align 86.3 92.2 0.89 78.3 82.3 0.80 72.1 85.5 0.77
RDGCN - - - - - - 67.5 84.1 0.73
HGCN 98.4 99.2 0.99 99.2 99.9 0.99 77.9 92.3 0.83
CEA 100.0N - - 100.0N - - 96.3N - -

Embed 100.0N 100.0 1.00 100.0N 100.0 1.00 58.3 79.4 0.65
Lev 100.0N 100.0 1.00 100.0N 100.0 1.00 57.8 78.9 0.64

TABLE 6
Averaged time cost on each dataset (in seconds).

Method DBP15K SRPRS DWY100K DBP-FB

MTransE 6,467 3,355 70,085 9,147
JAPE-Stru 298 405 6,636 767
GCN 49 42 1,446 103
RSNs 7,539 2,602 28,516 7,172
MuGNN 3,156 2,215 47,735 9,049
KECG 3,724 1,800 125,386 51,280

ITransE 494 175 9,021 517
BootEA 4,661 2,659 64,471 4,345
NAEA 19,115 11,746 - -
TransEdge 3,629 1,210 20,839 3,711

JAPE 5,578 586 21,129 1,201
GCN-Align 103 87 3,212 227
HMAN 5,455 4,424 31,895 8,878
GM-Align 26,328 13,032 459,715 53,332
RDGCN 6,711 886 - 3,627
HGCN 11,275 2,504 60,005 4,983
CEA 128 101 17,412 345

4.8 Module-level Evaluation

In order to gain insight into the methods used in different
modules, we conduct the module-level evaluation and report
corresponding experiment results. Specifically, we choose the
representative methods from each module, and generate possible
combinations. By comparing the performance of different
combinations, we can get a clearer view of the effectiveness of
different methods in these modules.

Regarding the embedding learning module, we use GCN
and TransE. As for the alignment module, we adopt the margin-
based loss function (Mgn) and the corpus fusion strategy (Cps).
Following current approaches, we combine GCN with Mgn, and
TransE with Cps, where the parameters are tuned in accordance
to GCN-Align and JAPE, respectively. In the prediction module,
we use the Euclidean distance (Euc), the Manhattan distance
(Manh) and the cosine similarity (Cos). With regard to the extra
information module, we denote the use of the bootstrapping
strategy as B by implementing the iterative method in ITransE. The
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Fig. 4. F1 scores of PARIS, AML and CEA on EA datasets.

use of multi-type information is represented as Mul, and we adopt
the semantic and string-level features of entity names as in CEA.

The Hits@1 results of 24 combinations are shown in Table 7 10.
It can be observed that, adding the bootstrapping strategy and/or
textual information indeed enhances the overall performance.
Regarding the embedding model, the GCN+Mgn model appears
to have more robust and superior performance than TransE+Cps.
Besides, the distance measures also have influence on the results.
Compared with Manh and Euc, Cos leads to better performance
on TransE-based models, while it brings worse results on
GCN-based models. Nevertheless, after incorporating entity name
embeddings, using Cos leads to consistently better performance.

Notably, GCN+Mgn+Cos+Mul+B (referred as CombEA) achieves
the best performance, showcasing that a simple combination
of the methods in existing modules can lead to promising
alignment performance.

4.9 Summary
Based on the experimental results, we provide the following
summaries.

10. The results on other datasets exhibit similar trends, and hence are
omitted in the interest of space.
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TABLE 7
Hits@1 results of module-level evaluation.

Method ZH-EN JA-EN FR-EN SRPRSDBP-YG

GCN+Mgn+Manh 39.9 39.8 37.8 32.7
GCN+Mgn+Manh+Mul 62.9 70.3 86.6 96.5
GCN+Mgn+Manh+B 47.0 47.4 45.7 37.0
GCN+Mgn+Manh+Mul+B 64.2 71.9 87.8 97.8

GCN+Mgn+Euc 40.0 39.5 36.9 32.6
GCN+Mgn+Euc+Mul 62.9 70.8 88.3 99.9
GCN+Mgn+Euc+B 46.2 47.2 44.5 37.1
GCN+Mgn+Euc+Mul+B 64.3 72.5 89.1 100.0

GCN+Mgn+Cos 37.8 38.8 35.7 29.6
GCN+Mgn+Cos+Mul 72.1 78.6 92.9 99.9
GCN+Mgn+Cos+B 44.2 47.2 44.7 33.6
GCN+Mgn+Cos+Mul+B 74.6 81.3 93.5 100.0

TransE+Cps+Manh 41.0 36.0 30.3 18.1
TransE+Cps+Manh+Mul 65.0 72.1 86.6 94.9
TransE+Cps+Manh+B 46.4 40.9 35.7 18.8
TransE+Cps+Manh+Mul+B 66.3 73.3 87.7 95.1

TransE+Cps+Euc 41.5 36.4 30.6 18.0
TransE+Cps+Euc+Mul 64.8 71.8 87.9 99.9
TransE+Cps+Euc+B 46.3 41.2 35.7 18.2
TransE+Cps+Euc+Mul+B 65.7 72.7 88.6 100.0

TransE+Cps+Cos 41.5 36.4 30.6 18.2
TransE+Cps+Cos+Mul 71.6 77.4 92.1 99.9
TransE+Cps+Cos+B 46.5 41.4 36.0 19.1
TransE+Cps+Cos+Mul+B 73.4 78.4 92.9 100.0

EA vs. ER. EA differs from other relevant tasks as it works
on graph-structured data. Consequently, all existing EA solutions
use the KG structure to generate entity embeddings for aligning
entities, which can achieve promising results on DBP15K and
DWY100K. Nevertheless, solely relying on the KG structure has
its limitations, since there exist long-tail entities that possess
very limited structural information, or entities that have similar
neighboring entities but do not refer to the same real-world
object. As a remedy, some recent studies propose to incorporate
textual information, and hence achieve better performance.
This, however, raises a question about whether ER approaches
can handle EA task, since the texts associated with entities are
frequently used by typical ER solutions.

We answer this question by involving the name-based
heuristics that have been used in most typical ER methods for
comparison, and the experimental results reveal that: (1) ER solu-
tions can work on EA, whereas the performance heavily depends
on the textual similarity between entities; and (2) although ER
solutions can outperform most structure-based EA approaches,
they are still outperformed by EA methods that use the name informa-
tion to complement entity embeddings; and (3) incorporating the
main ideas in ER, i.e., relying on the literal similarity to discover
the equivalence between entities, into EA methods, is a promising
direction worthy of exploration (as demonstrated by CEA).

Influence of datasets. As shown in Figure 5, the performance
of EA solutions varies greatly on different datasets. Generally, EA
methods achieve relatively better results on dense datasets, i.e., on
DBP15K and DWY100K. Besides, the results on mono-lingual
KGs are better than those on cross-lingual ones (DWY100K vs.
DBP15K). Particularly, on mono-lingual datasets, the most perfor-
mant method CEA, as well as the name-based heuristics Lev and
Embed, attain 100% accuracy. This is because these datasets are
extracted from DBpedia, Wikidata and YAGO, and the equivalent
entities in these KGs possess identical names in the entity identi-
fiers. However, these datasets fail to mirror the real-life challenge

of ambiguous entity names. To fill in this gap, we construct a new
mono-lingual benchmark, which is to be detailed in Section 5.
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Fig. 5. The box plot of Hits@1 of all methods on different datasets.

4.10 Guidelines and Suggestions

In this section, we provide guidelines and suggestions for
potential users of EA approaches.

Guidelines for practitioners. There are many factors that
might influence the choice of EA models. We select four most
common factors and give the following suggestions:

• Input information. If the inputs only contain KG structure
information, one might have to choose from the methods
in Groups I and II. Conversely, if there exist abundant side
information, one might want to use methods from Group
III to take full advantage of these features and provide more
reliable signals for alignment.

• The scale of data. As mentioned in Section 4.6, some state-
of-the-art methods have rather poor scalability. Therefore,
the scale of data should be taken into consideration before
making alignment decisions. For data of very large scale,
one could use some simple but efficient models such as
GCN-Align to reduce the computational overhead.

• The objective of alignment. If one only focuses on the
alignment of entities, one might want to adopt GNN based
models since they are usually more robust and scalable.
Nevertheless, if there are additional tasks such as alignment
of relations, one might want to use the KG representation
based methods since they intrinsically learn both entity and
relation representations. Besides, several recent studies [55],
[60] demonstrate that the relations can help the alignment
of entities.

• The trade-off in bootstrapping. The bootstrapping process
is effective, as it can progressively augment the training
set and lead to increasingly better alignment results.
Nevertheless, it suffers from the error propagation problem,
which might introduce wrongly-matched entity pairs
and amplify their negative effect on the alignment in
the following rounds. Also, it can be time-consuming.
Consequently, when deciding whether to use the
bootstrapping strategy, one could estimate the difficulty of
the datasets. If the datasets are relatively easy, e.g., with rich
literal information and dense KG structures, exploiting the
bootstrapping strategy might be a better choice. Otherwise,
one should be careful when using such a strategy.

Suggestions for future research. We also discuss some open
problems that are worthy of exploration in the future:
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• EA for long-tail entities. In real-life KGs, only a few entities
are densely connected to others, and the rest majority pos-
sess rather sparse neighborhood structure. The alignment
of these long-tail entities is vital to the overall alignment
performance, which, however, was largely neglected by
current EA literature. A very recent study [66] leverages
the side information to complement structural information
for aligning entities in tail. It also proposes to reduce long-tail
entities through augmenting relational structure via KG com-
pletion embedded into an iterative self-training process. Nev-
ertheless, there is still much room for further improvement.

• Multi-modal EA. An entity could be associated with
information in multiple modalities, such as texts, images,
and even videos. To align such entities, the task of multi-
modal entity alignment is worth further investigation [39].

• EA in the open world. Current EA solutions work under
the closed-domain setting [27]; that is, they assume every
entity in the source KG has an equivalent entity in the
target KG. Nevertheless, in practical settings, there always
exist unmatchable entities. Besides, the labeled data, which
are required by the majority of state-of-the-art approaches,
might be unavailable. Therefore, it is of significance to
explore EA in the open-world settings.

5 NEW DATASET AND FURTHER EXPERIMENTS

As highlighted in Section 4, in existing mono-lingual datasets,
the names in the identifiers of equivalent entities from different
KGs are identical. This means that a simple comparison of these
names can achieve reasonably accurate results (100% precision
on SRPRSDBP-YG). In real-life KGs, however, entity identifiers
are often not human-readable. For example, Freebase identifies
Paris (the capital of France) by /m/05qtj. Wikidata has a
similar policy. These identifiers are then linked to one or several
human-readable names. For example, /m/05qtj is linked to
“Paris”, “The City of Light”, etc. As it so happens, just retrieving
these names from the KGs, and matching entities that share
a name, still achieves a precision of 100% on datasets such as
DWY100KDBP-WD and SRPRSDBP-WD. In real-life KGs, however, this
method will not work. The reason is that different entities (with
different identifiers) can have the same name. For example,
both the Freebase entity /m/05qtj (the capital of France) and
/m/0h0_x (the king of Troy) share the name “Paris” – as do
20 cities in the U.S. that are called “Paris”. This obviously poses
a problem for EA, as there is no guarantee that an entity with
the name “Paris” in the source KG is the same as an entity with
the name “Paris” in the target KG – simply because one might
be the city in France and the other one the king of Troy. This
is an important complication in real-life KGs: For example, in
YAGO 3, 34% of entities have a name that is shared by more
than one entity. This problem is insufficiently mirrored in the
mono-lingual datasets that are commonly used for EA.

There is a second problem with the EA datasets: They contain,
for each entity in the source KG, exactly one corresponding entity
in the target KG. Thus, an EA approach can just map every entity
in the source KG to the most similar entity in the target KG.
This, however, is an unrealistic scenario. In real life, KGs contain
entities that other KGs do not contain. For example, when one
tries to align YAGO 3 and DBpedia, one will encounter entities
that appear in YAGO 3, and not in DBpedia, and vice versa.
The problem is even more pronounced for KGs that feed from
different sources, such as, say, YAGO 4 and IMDB. Only 1% of
entities in YAGO 4 are movies or entities related to movies (such

as actors). The other 99% of entities in YAGO 4 (such as universi-
ties, smartphone brands, etc.) necessarily have no match in IMDB.
This problem is not considered at all in current EA datasets.

We thus observe that the existing datasets for EA are an
oversimplification of the real-life problem, disregarding the
fundamental issues of ambiguity and unmatchable entities. As a
remedy, we propose a new dataset that mirrors these difficulties.
We expect this dataset to lead to better EA models that can deal
with more challenging problem instances, and to offer a better
direction for the research community. This section introduces the
construction of the new dataset and our experimental results on it.

5.1 Dataset Construction

To reflect the difficulty of using entity names, we adopt
Freebase [3] as the target KG, since it represents entities with
incomprehensible identifiers (i.e., Freebase mids), and different
entities might share the same name. DBpedia is used as the
source KG, as it contains external links to Freebase, which can
be directly utilized as gold standards. The specific construction
process is elaborated as follows:

Determining the source entity set. We take advantage of the
disambiguation records in DBpedia and collect the entities that
share the same disambiguation term to constitute the entity
set of the source KG. For instance, regarding the ambiguous
term Apple, the disambiguation records involve entities such
as Apple Inc. and Apple(fruit), and these entities are
included in the source entity set.

Determining links and the target entity set. Then we use the
external links between DBpedia and Freebase to retrieve the
entities in Freebase that correspond to source entities, which
constitute the entity set of the target KG. These external links are
regarded as gold standards. Note that the entities in the target
KG are identified by mids, and multiple entities might share the
same name, e.g., Apple.

Retrieving triples. After determining the entity sets in the
source and target KGs, we mine from the respective KGs the
relational and attributive triples that involve these entities.

Refining links and entity sets. Following previous work [53],
[54], we keep the links whose source and target entities are
involved in at least one triple in respective KGs, which reduces
the amount of links to 25,542. The entity sets are adjusted
correspondingly, in which the entities that participate in triples
but not in links are also included. Eventually, there are 29,861
entities in the source KG, among which 4,319 are unmatchable,
and 25,542 matchable entities in the target KG. Following existing
datasets, 30% of the links and unmatchable entities are used as
training set. Other statistics of the dataset are shown in Table 2.

5.2 Experiment Results on DBP-FB

Following the current evaluation paradigm, we first discuss EA
performance without the unmatchable entities. Table 5 reveals
that, the overall performance of the methods in the first two
groups is worse than that on SRPRS, which can be attributed to
the higher structural heterogeneity of DBP-FB. This can also be
observed from sub-figures (d) in Figure 3—unlike KG pairs in (a),
(b) or (c), the entity distributions in these KGs are very different,
which poses difficulty to the utilization of structural information.

Methods harnessing entity names still yield the best results,
whereas the performance all drops compared with the results on
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previous mono-lingual datasets. Additionally, on DBP-FB, Em-
bed and Lev merely achieve the Hits@1 values at 58.3% and 57.8%,
respectively, while these figures for SRPRSDBP-YG, SRPRSDBP-WD,
DWY100KDBP-YG and DWY100KDBP-WD are all 100%. This validates
that DBP-FB can better reflect the challenge of entity name
ambiguity compared with existing ones. Therefore, DBP-FB
can be considered as a more preferable mono-lingual dataset.

5.3 Unmatchable Entities
DBP-FB also includes the unmatchable entities, which is another
a real-life challenge for EA. We take into consideration these
unmatchable entities and report the performance of CombEA
(from Section 4.8) on DBP-FB. Following Section 4.7, we adopt
the precision, recall and F1 score as the evaluation metrics, except
that, we define the recall as the number of matchable source
entities for which an approach returns a target entity, divided
by the total number of matchable source entities.

TABLE 8
EA performance on DBP-FB after considering unmatchable entities.

Method Precision Recall F1

CombEA 0.662 1.000 0.797
CombEA +TH 0.728 0.951 0.825

Table 8 reveals that, CombEA has very high recall, but
relatively low precision, as it generates a target entity for each
source entity (including the unmatchable ones). This also reflects
how current EA solutions perform when there are source entities
that cannot be aligned. However, this issue is neglected by
existing EA datasets.

To mitigate this issue, on top of the current EA solutions,
we propose an intuitive strategy to handle the unmatchable
entities in DBP-FB. Specifically, we set a NIL threshold θ to
predict the unmatchable entity. As introduced in Section 3.3, EA
solutions normally use a specific distance measure to retrieve the
target entity. If the distance value between a source entity and
its closest target entity is above θ, we consider the source entity
to be unmatchable and do not generate the alignment result for
it. The threshold value θ can be learned from the training data.

As shown in Table 8, the threshold-enhanced solution
CombEA +TH achieves a better F1 score. We hope this preliminary
study can inspire follow-up research on this issue.

6 CONCLUSION

EA is a pivotal step for integrating KGs to increase knowledge
coverage and quality. Although many solutions have been
proposed, there has not been a comprehensive assessment and
detailed analysis of their performance. To fill in the gap, this
article reports an empirical evaluation of state-of-the-art EA
approaches in terms of both effectiveness and efficiency on
representative datasets, analyzes their performance in depth, and
provides evidence-based discussions. Moreover, we establish a
new dataset that better reflects the real-life challenges for future
research.
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[20] L. A. Galárraga, N. Preda, and F. M. Suchanek. Mining rules to align
knowledge bases. In AKBC@CIKM, pages 43–48, 2013.

[21] O.-E. Ganea and T. Hofmann. Deep joint entity disambiguation with
local neural attention. In EMNLP, pages 2619–2629, Sept. 2017.

[22] A. Globerson, N. Lazic, S. Chakrabarti, A. Subramanya, M. Ringgaard,
and F. Pereira. Collective entity resolution with multi-focal attention.
In ACL, pages 621–631, Aug. 2016.

[23] I. J. Goodfellow, Y. Bengio, and A. C. Courville. Deep Learning. Adaptive
computation and machine learning. MIT Press, 2016.

[24] L. Guo, Z. Sun, and W. Hu. Learning to exploit long-term relational
dependencies in knowledge graphs. In ICML, pages 2505–2514, 2019.

[25] Y. Hao, Y. Zhang, S. He, K. Liu, and J. Zhao. A joint embedding method
for entity alignment of knowledge bases. In CCKS, pages 3–14, 2016.

[26] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool
Publishers, 2011.

[27] S. Hertling and H. Paulheim. The knowledge graph track at OAEI -
gold standards, baselines, and the golden hammer bias. In A. Harth,
S. Kirrane, A. N. Ngomo, H. Paulheim, A. Rula, A. L. Gentile, P. Haase,
and M. Cochez, editors, ESWC, volume 12123 of Lecture Notes in
Computer Science, pages 343–359. Springer, 2020.

[28] B. Hixon, P. Clark, and H. Hajishirzi. Learning knowledge graphs for
question answering through conversational dialog. In NAACL, pages
851–861, 2015.

[29] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol,
B. Taneva, S. Thater, and G. Weikum. Robust disambiguation of named
entities in text. In EMNLP, pages 782–792, 2011.

13



[30] V. Huynh and P. Papotti. Buckle: Evaluating fact checking algorithms
built on knowledge bases. PVLDB, 12(12):1798–1801, 2019.

[31] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. CoRR, abs/1609.02907, 2016.

[32] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard, H. Li,
F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan, R. Deep,
and V. Raghavendra. Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197–1208, 2016.
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