N

N

Computing and Illustrating Query Rewritings on Path
Views with Binding Patterns

Julien Romero, Nicoleta Preda, Antoine Amarilli, Fabian Suchanek

» To cite this version:

Julien Romero, Nicoleta Preda, Antoine Amarilli, Fabian Suchanek. Computing and Illustrating
Query Rewritings on Path Views with Binding Patterns. International conference on information and
knowledge management (CIKM), 2020, virtual, France. 10.1145/3340531.3417431 . hal-03108517

HAL Id: hal-03108517
https://imt.hal.science/hal-03108517

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://imt.hal.science/hal-03108517
https://hal.archives-ouvertes.fr

Computing and lllustrating Query Rewritings
on Path Views with Binding Patterns

Julien Romero
julien.romero@telecom-paris.fr
LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

Antoine Amarilli
antoine.amarilli@telecom-paris.fr
LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

ABSTRACT

In this system demonstration, we study views with binding patterns,
which are a formalization of REST Web services. Such views are
database queries that can be evaluated using the service, but only
if values for the input variables are provided. We investigate how
to use such views to answer a complex user query, by rewriting
it as an execution plan, i.e., an orchestration of calls to the views.
In general, it is undecidable to determine whether a given user
query can be answered with the available views. In this demo, we
illustrate a particular scenario studied in our earlier work [11],
where the problem is not only decidable, but has a particularly
intuitive graphical solution. Our demo allows users to play with
views defined by real Web services, and to animate the construction
of execution plans visually.

KEYWORDS

query rewriting; database; visualisation

ACM Reference Format:

Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian Suchanek.
2020. Computing and Illustrating Query Rewritings on Path Views with
Binding Patterns. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM °20), October 19-23, 2020,
Virtual Event, Ireland. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3340531.3417431

1 INTRODUCTION

Many databases on the Web can be queried through REST Web
services: The user accesses a specific parameterised URL, and the
service responds by sending back the results of the query. Thus, the
parameterised URL acts as a remote function. For example, a music
database could offer the function getAlbum, which, given a song,
returns the album of the song. The user calls this function by access-
ing a URL like http://music-database.org/getAlbum?song=X, where

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °20, October 19-23, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10...$15.00
https://doi.org/10.1145/3340531.3417431

Nicoleta Preda
nicoleta.preda@uvsq.fr
University of Versailles

Versailles, France

Fabian Suchanek
fabian.suchanek@telecom-paris.fr
LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France

X is the name of the song. The service then responds by sending
back the album of the song X. The advantage of such an interface
is that it offers a simple way of accessing the data without down-
loading all of it. It also allows the data provider to choose which
data to expose. According to the Web site programmableweb.com,
there are more than 23,000 Web services of this form - including
LibraryThing, Amazon, IMDb, Musicbrainz, and Lastfm.

These services typically offer only a limited number of functions.
If the query cannot be answered by calling a single function, the
user has to combine several function calls. For example, assume that
we want to know the singer of the song Jailhouse (Figure 1). Assume
furthermore that we have two functions at our disposal: getAlbum
retrieves the album of a song, and getAlbumDetails retrieves the
songs on the album with their singers. Then we can retrieve the
singer of Jailhouse by first calling getAlbum on Jailhouse (retriev-
ing Failhouse Rock), and then getAlbumDetails on Jailhouse Rock
(retrieving all songs on that album with their singers). In this way,
we will find the answer to our query, Elvis Presley. One can show
that under certain conditions [11], this sequence of function calls is
a plan that is guaranteed to deliver exactly all answers to the query
on all databases: it is an equivalent rewriting of the query.

Equivalent rewritings are obviously of primordial interest to
the user because they can be used to find the exact answer to
the query. Alas, for expressive languages of remote functions, and
when assuming arbitrary integrity constraints on the remote data,
it is in general undecidable to determine whether a query has an
equivalent rewriting on the given set of functions [2, 4]. This is
because a rewriting can consist of an arbitrarily complex sequence
of function calls. Thus, when we search for a rewriting naively (by
enumerating all possible combinations of functions), we do not
know when to stop: If we stop, we might miss a rewriting that was
just a few steps away. If we do not stop until we found a rewriting,
we will keep searching forever if there is none. This is indeed what
some state-of-the-art approaches do [2].

We have studied a specific scenario of this problem [11], where
functions are paths of binary relations (as in the figure), the query
consists of a single relation, and the only permitted constraints are
unary inclusion dependencies. Under these conditions, we showed
that the problem is not only decidable, but also has a particularly
intuitive graphical solution: Equivalent rewritings start from the
query constant (Jailhouse in Figure 1), walk “forward” to some
arbitrary other constants in the database (Jailhouse Rock in the

https://doi.org/10.1145/3340531.3417431
https://doi.org/10.1145/3340531.3417431
http://music-database.org/getAlbum?song=X
https://doi.org/10.1145/3340531.3417431
programmableweb.com

getAlbumDetails

singer
Elvis Presley i Failhouse

getAlbum

onAlbum Jailhouse Rock

Figure 1: An equivalent rewriting (blue) executed on a database (black).

example), and walk these same paths “backward”, finally going
back to the initial constant, and into the answer of the query (Elvis
Presley in the example). Formally, this property can be modelled as
an intersection of two formal languages: A context-free language
models the type of forward-backward behaviour that we just de-
scribed, and a regular language models the set of valid plans with
the given functions. Since the intersection of these languages is
again context-free, it can be determined in polynomial time whether
an execution plan exists for a given query.

Thus, the problem has a rather sophisticated formal solution,
while at the same time having a rather intuitive graphical inter-
pretation. Our present demo proposal exploits this particularity to
make equivalent rewritings understandable through a graphical
animation. In this way, our demo playfully introduces the audience
to a problem that is both complex and practically relevant.

2 EQUIVALENT REWRITINGS

Let us first introduce the formal side of our problem. In what follows,
we assume a vocabulary of binary relation names, such as singer,
onAlbum etc. We also assume that we have, for each relation r,
its inverse relation r~, such that r(x, y) iff r~(y, x). Our scenario
allows for unary inclusion dependencies (UIDs) on these relations,
i.e., constraints such as the following:
Vx,y : singen(x,y) = 3z : onAlbum(x, z)

This dependency says that if a song x has a singer, then it also has
an album.

We consider atomic user queries. These take the form r(c, x),
where r is a relation name, c is a constant, and x is a variable.
For example, the query singer(Jailhouse, x) asks for the singer of
the song Jailhouse. We model a Web service function as a view
with binding patterns [2]. In the simple, decidable scenario that we
consider [11], such a function takes the following form:

F&xip, 0 Xiy,) & ri(x, x1), r2(x1, x2), .0 Fn(Xn—1, Xn)

Here, f is the function name, x is the input variable, rq, ..., r, are
relation names, x1, ..., X, are the body variables, and x; , ..., x;,,
are the output variables, with 1 < i; < --- < iy < n. The part to
the right of the arrow consists of an ordered sequence of atoms
and is called the body of the function. A variable that appears in
the body, but is neither an input variable nor an output variable
is called an existential variable. In our example from Figure 1, the
functions are:

getAlbumDetails(x, y, z) « onAlbum™ (x, y), singer(y, z)
getAlbum(x,y) « onAlbum(x, y)

The first function definition says that getAlbumDetails requires an
input variable x, and delivers two outputs, y and z. These outputs are
computed by evaluating the body of the function on the database,
i.e., by finding the songs y of the album x, and the singers z of the
songs y. An execution plan is a chain of function calls. It takes the

following form:

filen, Br1s - Prm)s falaz, P21, - P2,my)s o fr(@ns Bty - Brymy,)

Here, the f; are function names, a; is a constant (e.g., Jailhouse), the
a; and Py ; are either variables or constants, and if a; is a variable,
it must occur in a preceding function call as a S ;. In our example
of Figure 1, the plan is:

getAlbum(Jailhouse, y), getAlbumDetails(y, Jailhouse, z)
To execute such a plan, we call the first function, then the second
function with each result of the first function, and so on, and return
all possible values in the end. From the results of the last call, we
select only those where the second element is Jailhouse. With this,
evaluating the plan is equivalent to executing a large conjunctive
query, which consists of the bodies of the functions in the plan
with the proper substitutions. In our example, executing the plan is
equivalent to running the following query on the database:

onAlbum(Jailhouse, y), onAlbum™ (y,Jailhouse),

singer(Jailhouse,x) (%)
Under the UIDs that we assume, this query computes the exact
answers of the user query singer(Jailhouse, x). For a full formal
definition of functions, queries, unary inclusion dependencies, and
execution plans, we refer the reader to [11].

Given a user query, a set of functions, and a (possibly empty) set
of UIDs as input, our goal is to find those plans that are equivalent
rewritings of the query, i.e., that provide the same results as the
query on all databases. As we have briefly alluded to, we showed
in [11] that these equivalent rewritings have a particular shape:
They always consist of a “forward” walk followed by a “backward”
walk through the same constants. To make this more precise, let us
look at the sequence of relation names in the query () from above:

onAlbum, onAlbum™, singer

Here, onAlbum, onAlbum™ form a forward-backward path, which
is then followed by the relation of the query. More generally, one
can show that the sequence of relation names in an equivalent
rewriting is always given by a context-free grammar [11], which
we will denote G. In its simplest variant!, the grammar G looks as
follows for a query relation g:

S — (S8S|rSr™|e)q for all relation names r
For example, if we consider relations a, b, ¢, d, then G generates
(among others) the following sequence:

a,b,b”,c,d, d",c",a",q
This moves “forward” (with a, b), then “backward” (with b™), and
again “forward” and “backward” etc., ending by the query relation g.

While the language of G accurately describes the shape of the

forward-backward paths, it does not guarantee that these paths can
be constructed by a sequence of function calls. In our running exam-
ple from Figure 1, the path singer, singer™ has a forward-backward

The real G is more complex, to account for existential variables. See [11] for details.

getAlbum onAlbum

onAlbum

I103us

getAlbum: onAlbum
getAlbumDetails: onAlbum-, singer

query: singer

A

hasArtistld
IN .
hasArtistld-
8
G
g
B a
[+
=
1
v
B8
=
7
v
v
GetArtistsByReleaseID3: hasReleaseld-, *, lyricsBy
GetArtistsByReleaseID4: hasReleaseld-, *, produced-
GetArtistInfoByIDl: hasArtistId-, *, describes-
GetTracksByArtistIDl: hasArtistId-, *, sang
query: released y

Figure 2: Screenshots of our demo. Left: Our toy example, with the functions on top and the plan being constructed below.
The gray arrows indicate the animation. Right: A plan generated for real Web service functions. In both cases, the bottom box

contains the function definitions and the query.

shape, but we do not have functions that would allow us to construct
a plan of this shape. In order to find those sequences of relations
that correspond to execution plans, we need the language of all
possible execution plans. In its simplest variant, this language is
just the iterated disjunction of the bodies of the functions. In our
running example, the language is given by the following regular
expression E:

(onAlbum | onAlbum™ singer)*

This language enumerates the sequences of relations of the queries
of execution plans. For example, it enumerates onAlbum, onAlbum™,
singer, which corresponds to the plan getAlbum, getAlbumDetails.
The intersection of the language of E with the language of G is then
a context-free language that describes all equivalent rewritings.
Since all equivalent rewritings are, by definition, equivalent to
the query, it does not matter which one the user chooses to execute.
If the function calls are associated with a cost (network latency, say,
or a fee), then the plan with the least number of calls will be best.
This is the scenario we adopt for this demo: For a given query, we
are only concerned with the shortest plan (breaking ties arbitrarily).
Longer plans are usually repetitive and not very instructive.

3 DEMO

While the formal properties of equivalent rewritings are rather
sophisticated, our demo gives users a rather playful access to the
concept. The user can first specify a set of functions. This is done
simply by describing each function as its sequence of relations, as
in:

getAlbum : onAlbum
getAlbumDetails : onAlbum™, singer

Alternatively, the user can load predefined function definitions
of real Web services. We provide function definitions for Abe
Books (http://abebooks.com), ISBNDB (http://isbndb.com/), Library-
Thing (http://www.librarything.com/), Movie DB (https://www.
themoviedb.org), and MusicBrainz (http://musicbrainz.org/) from [9,
11].

The user can then specify a query, by merely giving the relation
name. The demo will then search for an execution plan, and animate
it to the user. Figure 2 (left) shows how this looks for our running
example: The functions are shown on top in blue and orange. The
query is shown below as a red edge. The input constant to the query
is represented by a generic placeholder “IN”. Here, the system has
found a plan, and animates it to the user: The blue function was
already copied to the right place near the input constant, and the
orange function is in the process of moving to the right place (as

http://abebooks.com
http://isbndb.com/
http://www.librarything.com/
https://www.themoviedb.org
https://www.themoviedb.org
http://musicbrainz.org/

illustrated by the grey arrows). When it arrives, it will connect to
the first function, and yield the plan shown in Figure 1.

For advanced (or curious) users, our interface shows the gram-
mars of the two languages that were used to compute the plan,
as well as the sequence of relations. In this way, the user can see
that the path in the animation (here: onAlbum, onAlbum™, singer)
corresponds indeed to a word that is an element of both languages.

Figure 2 (right) shows a more complex example: The user has
loaded functions from real Web services — 65 functions in total.
The stars in the function definitions (and the corresponding empty
arrow heads in their graphical representation) indicate existential
variables, i.e., variables that appear in the body of the function, but
are not an output variable. The query asks which albums a given
artist released. The resulting plan is quite complicated and consists
of several forward-backward paths. The animation takes around
half a minute: The functions will, one after the other, move into
their place to form the final execution plan.

Technically, the user interface of our demo is an HTML page
that runs in a Web browser. Behind the scenes, a Flask web server
handles the user requests. When the user clicks on the “Find plan”
button, the function definitions are sent to a Python implementation
of our algorithm from [11] (based on Pyformlang?) to compute the
plan. The computation takes a few seconds for the most complicated
problems. The page then displays the plan as an SVG image, which
is animated with animation tags. Our server runs on a computer
with 2 CPUs of 2.6GHz, and can be easily deployed elsewhere thanks
to a Docker container.

4 RELATED WORK

The problem studied in this paper is that of orchestrating views
with binding patterns in order to answer user queries. This setting is
fundamentally different from answering classical database queries:
We cannot execute arbitrary queries. We are limited to executing
the views that the services provide. In our running example from
Figure 1, we cannot ask directly the query singer(Jailhouse, x) (as
we could in a classical database setting). Rather, we have to call
two functions to obtain the desired answers, and we have to make
sure that these functions have their input variables bound before
we call them. This is what distinguishes our setting from classical
SQL query optimization, from federated databases [10, 12], or from
commercial services such as Google BigQuery. These systems can
answer arbitrary queries, whereas the services that we discuss in
this paper are limited to predefined views. This makes answering
queries much harder.

Similar problems to ours have been studied in the context of
Web service composition, query rewriting, information integration,
execution plan optimization, and reasoning on Web service models.
We refer the reader to [11] for an overview and discuss only system
demonstrations here. Our work concerns the automatic generation
of equivalent rewritings — not actually calling the functions to re-
trieve results. Other demonstrations call the functions [3, 8], but,
unlike our system, they do not always succeed in finding equiv-
alent rewritings for the language that they consider, even when
such rewritings exist. Other demonstrations [5] allow exploring
federated query execution plans. As we have already seen, these

Zhttps://pyformlang.readthedocs.io/

are fundamentally different from our setting. Rule-based semantic
specifications for workflows of Web services provided have also
been demonstrated in [6]. In our scenario, however, the goal is to
find the execution plans in the first place.

Our system uses a wrapper to translate the results of a Web
service to RDF. The wrapper can be defined manually, or it can be
automatically inferred [7, 13].

Another line of research considers the automated creation of
mash-ups [1]. Different from our scenario, the input is not a query,
but a partial mashup specification that is to be completed by calls
to Web services.

5 CONCLUSION

In this system demonstration, we present a graphical animation of
equivalent rewritings for views with binding patterns. Our demo
allows users to specify such views (or to load real functions from
Web services), and to pose a query. The system will then search
for an execution plan, and animate it for the user. It will also show
the formal languages used behind the scenes to generate the plan,
allowing the user to understand how they are connected to an
intuitive graphical interpretation of the plans. As soon as the plan
involves several functions, the animation is quite lively, with all the
arrows rushing “magically” to their place. Our demo is accessible at
http://dangie.r2.enst.fr/ (together with an explanatory video), and
the entire code is freely available on Github3.
Acknowledgements. This work was partially supported by the
grants ANR-16-CE23-0007-01 (“DICOS”) and ANR-18-CE23-0003-02
(“CQFD”).

REFERENCES

[1] Serge Abiteboul, Ohad Greenshpan, Tova Milo, and Neoklis Polyzotis. 2009.
MatchUp: Autocompletion for Mashups. In ICDE, demo track.

[2] Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura. 2016.
Generating Plans from Proofs: The Interpolation-based Approach to Query Refor-
mulation. Morgan & Claypool Publishers.

[3] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. 2014. PDQ: Proof-
driven query answering over web-based data. VLDB, demo track (2014).

[4] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. 2015. Querying with
access patterns and integrity constraints. VLDB journal (2015).

[5] Anders Langballe Jakobsen, Gabriela Montoya, and Katja Hose. 2019. How
Diverse Are Federated Query Execution Plans Really?. In ESWC.

[6] Tobias Kafer, Sebastian Lauber, and Andreas Harth. 2018. Using Workflows to
Build Compositions of Read-Write Linked Data APIs on the Web of Things. In
ISWC, demo track, Marieke van Erp, Medha Atre, Vanessa Lopez, Kavitha Srinivas,
and Carolina Fortuna (Eds.).

[7] Maria Koutraki, Dan Vodislav, and Nicoleta Preda. 2015. Deriving Intensional
Descriptions for Web Services. In CIKM.

[8] Nicoleta Preda, Fabian M. Suchanek, Gjergji Kasneci, Thomas Neumann, Maya
Ramanath, and Gerhard Weikum. 2009. ANGIE: Active Knowledge for Interactive
Exploration. In VLDB demo track.

[9] Nicoleta Preda, Fabian M. Suchanek, Wenjun Yuan, and Gerhard Weikum. 2013.
SUSIE: Search Using Services and Information Extraction. In ICDE.

[10] Bastian Quilitz and Ulf Leser. 2008. Querying Distributed RDF Data Sources with
SPARQL. In ESWC.

[11] Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian M. Suchanek. 2020.

Equivalent Rewritings on Path Views with Binding Patterns. In ESWC.

Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.

2011. FedX: Optimization Techniques for Federated Query Processing on Linked

Data. In ISWC.

Mohsen Taheriyan, Craig A. Knoblock, Pedro A. Szekely, and José Luis Ambite.

2012. Rapidly Integrating Services into the Linked Data Cloud. In ISWC.

=
&N

=
&

Shttps://github.com/Aunsiels/dangie

https://pyformlang.readthedocs.io/
http://dangie.r2.enst.fr/
https://github.com/Aunsiels/dangie

	Abstract
	1 Introduction
	2 Equivalent Rewritings
	3 Demo
	4 Related Work
	5 Conclusion
	References

