
HAL Id: hal-03108494
https://imt.hal.science/hal-03108494

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Rewriting On Path Views Without Integrity
Constraints

Julien Romero, Nicoleta Preda, Fabian Suchanek

To cite this version:
Julien Romero, Nicoleta Preda, Fabian Suchanek. Query Rewriting On Path Views Without Integrity
Constraints. 2020. �hal-03108494�

https://imt.hal.science/hal-03108494
https://hal.archives-ouvertes.fr

Query Rewriting On Path Views

Without Integrity Constraints

Julien Romero1[0000−0002−7382−9077], Nicoleta Preda2, and Fabian Suchanek1

1 LTCI, Télécom Paris, Institut Polytechnique de Paris
{julien.romero,fabian.suchanek}@telecom-paris.fr

2 University of Versailles nicoleta.preda@uvsq.fr

Abstract. A view with a binding pattern is a parameterised query on
a database. Such views are used, e.g., to model Web services. To an-
swer a query on such views, one has to orchestrate the views together in
execution plans. The goal is usually to �nd equivalent rewritings, which
deliver precisely the same results as the query on all databases. However,
such rewritings are usually possible only in the presence of integrity con-
straints � and not all databases have such constraints. In this paper,
we describe a class of plans that give practical guarantees about their
result even if there are no integrity constraints. We provide a characteri-
sation of such plans and a complete and correct algorithm to enumerate
them. Finally, we show that our method can �nd plans on real-world
Web Services.

1 Introduction

Anna The GuardianJournalist

Oxford University

worksForjobTitle

graduatedFrom

getCompany

getHierarchy

JohnAccountant
worksForjobTitle

getHierarchy

getA
lm
aM
ater

Fig. 1: An equivalent execution plan (blue) and a maximally contained rewriting
(orange) executed on a database instance (black).

A view with binding patterns is a parameterised query de�ned in terms
of a global schema [6]. Such a query works like a function: it requires spe-
ci�c values as input and delivers the query results as output. For example,
consider the database instance about employees at Figure 1. The call to the

J. Romero et al.

function getCompany with an employee Anna as input, returns the company
The Guardian as output. Abstractly, the function is represented as the rule:
getCompany(in, out)← worksFor(in, out). The worksFor relation is of the global
schema, which is orthogonal to the schema of the actual data. Unlike query inter-
faces like SPARQL endpoints, functions prevent arbitrary access to the database
engines. In particular, one can model Web forms or REST Web Services as views
with binding patterns. According to programmableweb.com, there are currently
more than 22,000 such REST Web Services.

If we want to answer a query on a global database that can be accessed
only through functions, we have to orchestrate the functions into an execution
plan. In our example from Figure 1, if we want to �nd the job title of Anna, we
�rst have to �nd her company (by calling getCompany), and then her job title
(by calling getHierarchy on her company, and �ltering the results about Anna).
Our problem is thus as follows: Given a user query (such as jobTitle(Anna, x))
and a set of functions (each being a parameterised conjunctive query), �nd an
execution plan (i.e., a sequence of function calls) that delivers the answer to
the query on a database that o�ers these functions. While the schema of the
database is known to the user, she or he does not know whether the database
contains the answer to the query at all.

Much of the literature concentrates on �nding equivalent rewritings, i.e., ex-
ecution plans that deliver the same result as the original query on all databases
that o�er this speci�c set of functions. Unfortunately, our example plan is not an
equivalent rewriting: it will deliver no results on databases where (for whatever
reasons) Anna has a job title but no employer. The plan is equivalent to the
query only if an integrity constraint stipulates that every person with a job title
must have an employer and the database instance is complete.

Such constraints are hard to come by in real life, because they may not hold
(a person can have a job title but no employer; a person may have a birth date
but no death date; some countries do not have a capital3; etc.). Even if they hold
in real life, they may not hold in the database due to the incompleteness of the
data. Hence, they are also challenging to mine automatically. In the absence of
constraints, however, an atomic query has an equivalent rewriting only if there
is a function that was de�ned precisely for that query.

This problem appears in particular in data integration settings, where
databases are incomplete, and the equivalent rewritings usually fail to deliver re-
sults. Therefore, data integration systems often use maximally contained rewrit-
ings instead of equivalent rewritings. Intuitively speaking, maximally contained
rewritings are execution plans that try to �nd all calls that could potentially
lead to an answer. In our example, the plan getAlmaMater, getHierarchy is in-
cluded in the maximally contained rewriting: It asks for the university where
Anna graduated, and for their job positions. If Anna happens to work at the
university where she graduated, this plan will answer the query.

This plan appears somehow less reasonable that our �rst plan because it
works only for people who work at their alma mater. However, both plans are

3 e.g., the Republic of Nauru

http://programmableweb.com

Query Rewriting On Path Views Without Integrity Constraints

equal concerning their formal guarantees: none of them can guarantee to deliver
the answers to the query. This is a conundrum: Unless we have information about
the data distribution or more schema information, we have no formal means to
give the �rst plan higher chances of success than the second plan � although the
�rst plan is intuitively much better.

In this paper, we propose a solution to this conundrum: We can show that
the �rst plan (getCompany, getHierarchy) is �smart�, in a sense that we formally
de�ne. We can give guarantees about the results of smart plans in the absence
of integrity constraints. We also give an algorithm that can enumerate all smart
plans for a given atomic query and path-shaped functions (as in Figure 1).
We show that under a condition that we call the Optional Edge Semantics our
algorithm is complete and correct, i.e., it will exhaustively enumerate all such
smart plans. We apply our method to real Web services and show that smart
plans work in practice and deliver more query results than competing approaches.

This paper is structured as follows: Section 2 discusses related work, Section 3
introduces preliminaries, and Section 4 gives a de�nition of smart plans. Section 5
provides a method to characterise smart plans, and Section 6 gives an algorithm
that can generate smart plans. We provide extensive experiments on synthetic
and real Web services to show the viability of our method in Section 7.

All the proofs and technical details are in the appendix of the accompanying
technical report [13].

2 Related Work

Equivalent Rewritings. An equivalent rewriting of a query is an alternative
formulation of the query that has the same results as the query on all databases.
Equivalent rewritings have also been studied in the context of views with binding
patterns [2,12]. However, they may not be su�cient to answer the query [6].
Equivalent rewritings rely on integrity constraints, which may not be available.
These constraints are di�cult to mine, as most real-life rules have exceptions.
Also, equivalent rewritings may falsely return empty answers only because the
database instance is incomplete with respect to the integrity constraints. We aim
to come up with new relevant rewritings that still o�er formal guarantees about
their results.
Maximally Contained Rewriting. In data integration applications, where
databases are incomplete, and equivalent rewritings are likely to fail, maximally
contained rewritings have been proposed as an alternative. A maximally con-
tained rewriting is a query expressed in a chosen language that retrieves the
broadest possible set of answers [6]. By de�nition, the task does not distinguish
between intuitively more reasonable rewritings and rewritings that stand little
chance to return a result on real databases. For views with binding patterns, the
problem has been studied for di�erent rewriting languages and under di�erent
constraints [5,4,7]. Some works [8,9] propose to prioritise the execution of the
calls in order to produce the �rst results fast. While the �rst work [8] does not
give guarantees about the plan results, the second one [9] can give guarantees

J. Romero et al.

only for very few plans. Our work is much more general and includes all the
plans generated by [9], as we will see.
Plan Execution. Several works study how to optimise given execution
plans [14,15]. Our work, in contrast, aims at �nding such execution plans.
Federated Databases. In federated databases [1,3], a data source supports
any queries in a prede�ned language. In our setting, in contrast, the database
can be queried only through functions, i.e., speci�c prede�ned queries with input
parameters.

3 Preliminaries

We use the terminology of [12], and recall the de�nitions brie�y.
Global Schema. We assume a set C of constants and a set R of binary relation
names. A fact r(a, b) is formed from a relation name r ∈ R and two constants
a, b ∈ C. A database instance I, or simply instance, is a set of facts.
Queries. An atom takes the form r(α, β), where r ∈ R, and α and β are either
constants or variables. It can be equivalently written as r−(β, α). A query takes
the form:

q(α1, ..., αm)← B1, ..., Bn

where α1, ...αm are variables, each of which must appear in at least one of the
body atoms B1, ...Bn. We assume that queries are connected, i.e., each body
atom must be transitively linked to every other body atom by shared variables.

An embedding for a query q on a database instance I is a substitution σ for
the variables of the body atoms so that ∀B ∈ {B1, ..., Bn} : σ(B) ∈ I. A result
of a query is an embedding projected to the variables of the head atom. We write
q(α1, ..., αm)(I) for the results of the query on I. An atomic query is a query
that takes the form q(x)← r(a, x), where a is a constant and x is a variable. A
path query is a query of the form:

q(xi)← r1(a, x1), r2(x1, x2), ..., rn(xn−1, xn)

where a is a constant, xi is the output variable, each xj except xi is either a
variable or the constant a, and 1 ≤ i ≤ n.
Functions. We model functions as views with binding patterns [10], namely:

f(x, y1, ..., ym)← B1, ..., Bn

Here, f is the function name, x is the input variable (which we underline),
y1, ..., ym are the output variables, and any other variables of the body atoms are
existential variables. In this paper, we are concerned with path functions, where
the body atoms are ordered in a sequence r1(x, x1), r2(x1, x2), ..., rn(xn−1, xn).
The �rst variable of the �rst atom is the input of the plan, the second variable
of each atom is the �rst variable of its successor, and the output variables follow
the order of the atoms.
Calling a function for a given value of the input variable means �nding the result
of the query given by the body of the function on a database instance.

Query Rewriting On Path Views Without Integrity Constraints

Plans. A plan takes the form

π(x) = c1, . . . , cn, γ1 = δ1, . . . , γm = δm

Here, a is a constant and x is the output variable. Each ci is a function call
of the form f(α, β1, . . . , βn), where f is a function name, the input α is either
a constant or a variable occurring in some call in c1, . . . , ci−1, and the outputs
β1, . . . , βn are variables. Each γj = δj is called a �lter, where γj is an output
variable of any call, and δj is either a variable that appears in some call or a
constant. If the plan has no �lters, then we call it un�ltered. The semantics of
the plan is the query

q(x)← φ(c1), . . . , φ(cn), γ1 = δ1, . . . , γm = δm

Here, x is the output variable of the plan, and · = · is an atom that holds in
any database instance if and only if its two arguments are identical. Each φ(ci)
is the body of the query de�ning the function f of the call ci, in which we have
substituted the constants and variables given by ci, and where we have used
fresh existential variables across the di�erent φ(ci).

To evaluate a plan on an instance means running the query above. In practice,
this boils down to calling the functions in the order given by the plan. Given an
execution plan πa and a database I, we call πa(I) the answers of the plan on I.

Example 3.1. Consider our example in Figure 1. There are 3 relation names
in the database: worksFor, jobTitle, and graduatedFrom. The functions are:

getCompany(x, y)← worksFor(x, y)

getHierarchy(y, x, z)← worksFor−(y, x), jobTitle(x, z)

getAlmaMater(x, y)← graduatedFrom(x, y)

The following is an execution plan:

π1(z) =getCompany(Anna, x), getHierarchy(x, y, z), y = Anna

The �rst element is a function call to getCompany with the name of the person
(Anna) as input, and the variable x as output. The variable x then serves as
input in the second function call to getHierarchy. Figure 1 shows the plan with
an example instance. This plan computes the query:

worksFor(Anna, x),worksFor−(x, y), jobTitle(y, z), y = Anna

In our example instance, we have the embedding:

σ = {x −→ The Guardian, y −→ Anna, z −→ Journalist}.

An execution plan π is redundant if it has no call using the constant a as input,
or if it contains a call where none of the outputs is an output of the plan or an
input to another call.

An equivalent rewriting of an atomic query q(x) ← r(a, x) is an execution
plan that has the same results as q on all database instances. For our query lan-
guage, a maximally contained rewriting for the query q is a plan whose semantics
contains the atom r(a, x).

J. Romero et al.

4 De�ning Smart Plans

Given an atomic query, and given a set of path functions, we want to �nd a
reasonable execution plan that answers the query.
Introductory Observations. Let us consider again the query q(x) ←
jobTitle(Anna, x) and the two plans in Figure 1. The �rst plan seems
to be smarter than the second one. The intuition becomes more for-
mal if we look at the queries in their respective semantics. The �rst
plan is the plan π1(z) given in Example 3.1. Its semantics is the query:
worksFor(Anna, x),worksFor−(x, y), jobTitle(y, z), y = Anna. If the �rst atom
has a match in the database instance, then y = Anna is indeed a match, and
the plan delivers the answers of the query. If the �rst atom has no match in
the database instance, then the plan returns no result, while the query may
have one. To make the plan equivalent to the query on all database instances,
we would need the following unary inclusion dependency: jobT itle(x, y) → ∃z :
worksAt(x, z). In our setting, however, we cannot assume such an integrity con-
straint. Let us now consider the second plan:

π2(z) = getAlmaMater(Anna, x), getHierarchy(x, y, z), y = Anna

Its semantics are: graduatedFrom(Anna, x),worksFor−(x, y), jobTitle(y, z), y =
Anna. To guarantee that y = Anna is a match, we need one constraint at the
schema level: the inclusion dependency graduatedFrom(x, y) → worksFor(x, y).
However, this constraint does not hold in the real world, and it is stronger than
a unary inclusion dependency (which has an existential variable in the tail). Be-
sides, π2, similarly to π1, needs the unary inclusion dependency jobT itle(x, y)→
∃z : graduatedFrom(x, z) to be an equivalent rewriting.
De�nition. In summary, the �rst plan, π1, returns the query answers if all the
calls return results. The second plan, π2, may return query answers, but in most
of the cases even if the calls are successful, their results are �ltered out by the
�lter y = Anna. This brings us to the following de�nition of smart plans:

De�nition 4.1 (Smart Plan). Given an atomic query q and a set of func-
tions, a plan π is smart if the following holds on all database instances I: If the
�lter-free version of π has a result on I, then π delivers exactly the answers to
the query.

We also introduce weakly smart plans:

De�nition 4.2 (Weakly Smart Plan). Given an atomic query q and a set
of functions, a plan π is weakly smart if the following holds on all database
instances I where q has at least one result: If the �lter-free version of π has a
result on I, then π delivers a super-set of the answers to the query.

Weakly smart plans deliver a superset of the answers of the query, and thus do
not actually help in query evaluation. Nevertheless, weakly smart plans can be
useful: For example, if a data provider wants to hide private information, like
the phone number of a given person, they do not want to leak it in any way, not

Query Rewriting On Path Views Without Integrity Constraints

even among other results. Thus, they will want to design their functions in such
a way that no weakly smart plan exists for this speci�c query.

Every smart plan is also a weakly smart plan. Some queries will admit only
weakly smart plans and no smart plans, mainly because the variable that one
has to �lter on is not an output variable.

AnnaThe Guardian 0123
worksAt phone

Economy Section

h
ea
d
O
f

getSection getPhone

getCompany

JamesThe Guardian 0123
worksAt phone

Economy Section

h
ea
d
O
f

getSection getPhone

Anna

wo
rks

Atget
Co
mp

an
y

?
phone

Fig. 2: A non-smart execution plan for the query phone(Anna,x). Left: a database
where the plan answers the query. Right: a database where the un�ltered plan
has results, but the �ltered plan does not answer the query.

Smart plans versus equivalent plans. Consider again the plans π1 (smart)
and π2 (not-smart) above. Both plans assume the existence of a unary inclusion
dependency. The di�erence is that in addition, π2 relies on an additional role
inclusion constraint. Is it thus su�cient to assume unary inclusion dependencies
between all pairs of relations, and apply the algorithm in [12] to �nd equivalent
rewritings? The answer is no: Figure 2 shows a plan that is equivalent if the
necessary unary inclusion dependencies hold. However, the plan is not smart. On
the database instance shown on the right-hand side, the un�ltered plan returns
a non-empty set of results that does not answer the query.
Problem. After having motivated and de�ned our notion of smart plans, we
are now ready to state our problem: Given an atomic query, and a set of path
functions, we want to enumerate all smart plans.

5 Characterizing Smart Plans

5.1 Web Service Functions

We now turn to generating smart plans. As previously stated, our approach can
�nd smart plans only under a certain condition. This condition has to do with
the way Web services work. Assume that for a given person, a function returns
the employer and the address of the working place:

getCompanyInfo(x, y, z)← worksAt(x, y), locatedIn(y, z)

J. Romero et al.

Now assume that, for some person, the address of the employer is not in the
database. In that case, the call will not fail. Rather, it will return only the em-
ployer y, and return a null-value for the address z. It is as if the atom locatedIn(y,
z) were optional. To model this phenomenon, we introduce the notion of
sub-functions: Given a path function f : r1(x0, x1), r2(x1, x2), . . . rn(xn−1, xn),
the sub-function for an output variable xi is the function fi(x0, ..., xi) ←
r1(x0, x1), . . . ri(xi−1, xi).

Example 5.1. The sub-functions of the function getCompanyInfo are
f1(x, y) ← worksAt(x, y), which is associated to y, and f2(x, y, z) ←
worksAt(x, y), locatedIn(y, z), which is associated to z.

We can now express the Optional Edge Semantics:

De�nition 5.2 (Optional Edge Semantics). We say that we are under the
optional edge semantics if, for any path function f , a sub-function of f has
exactly the same binding for its output variables as f .

The optional edge semantics mirrors the way real Web services work. Its main
di�erence to the standard semantics is that it is not possible to use a function
to �lter out query results. For example, it is not possible to use the function get-
CompanyInfo to retrieve only those people who work at a company. The function
will retrieve companies with addresses and companies without addresses, and
we can �nd out the companies without addresses only by skimming through the
results after the call. This contrasts with the standard semantics of parametrised
queries (as used, e.g., in [12,8,9]), which do not return a result if any of their
variables cannot be bound.

This has a very practical consequence: As we shall see, smart plans under
the optional edge semantics have a very particular shape.

5.2 Preliminary De�nitions

a c1 c2 c3c4
u s tr

f1

f2
f3

f4

Fig. 3: A bounded plan

Our main intuition is that smart plans under the optional edge semantics
walk forward until a turning point. From then on, they �walk back� to the input
constant and query (see again Figure 1). As a more complex example, consider
the atomic query q(x)← r(a, x) and the database shown in Figure 3. The plan
f1, f2, f3, f4 is shown in blue. As we can see, the plan walks �forward� and then

Query Rewriting On Path Views Without Integrity Constraints

�backward� again. Intuitively, the �forward path� makes sure that certain facts
exist in the database (if the facts do not exist, the plan delivers no answer, and
is thus trivially smart). If these facts exist, then all functions on the �backward
path� are guaranteed to deliver results. Thus, if a has an r-relation, the plan is
guaranteed to deliver its object. Let us now make this intuition more formal.

We �rst observe (and prove in the technical report) that the semantics of
any �lter-free execution plan can be reduced to a path query. The path query of
Figure 3 is:

q(a, x)←u(a, y1), s(y1, y2), t(y2, y3), t−(y3, y2), s−(y2, y1),
s(y1, y2), s

−(y2, y1), u
−(y1, y0), r(y0, x)

Now, any �lter-free path query can be written unambiguously as the sequence
of its relations � the skeleton. In the example, the skeleton is:

u.s.t.t−.s−.s.s−.u−.r

In particular, the skeleton of an atomic query q(x) ← r(a, x) is just r. Given
a skeleton r1.r2...rn, we write r1...rn(a) for the set of all answers of the query
when a is given as input. For path functions, we write the name of the function
as a shorthand for the skeleton of the semantics of the function. For example, in
Figure 3, we have f1(a) = {c3}, and f1f2f3f4(a) = {c4}. We now introduce two
notions to formalise the �forward and backward� movement:

De�nition 5.3 (Forward and Backward Step). Given a sequence of rela-
tions r0...rn and a position 0 ≤ i ≤ n, a forward step consists of the relation
ri, together with the updated position i + 1. Given position 1 ≤ i ≤ n + 1, a
backward step consists of the relation r−i−1, together with the updated position
i− 1.

De�nition 5.4 (Walk). A walk to a position k (0 ≤ k ≤ n) through a se-
quence of relations r0...rn consists of a sequence of steps (forward or backward)
in r0...rn, so that the �rst step starts at position n + 1, every step starts at
the updated position of the previous step, and the last step leads to the updated
position k.

If we do not mention k, we consider that k = 0, i.e., we cross the sequence of
relations entirely.

Example 5.5. In Figure 3, a possible walk through r−ust is t−s−ss−u−r. This
walk goes from c3 to c2 to c1, then to c2, and back through c1, c, c4 (as indicated
by the blue arrows).

We can now formalise the notion of the forward and backward path:

De�nition 5.6 (Bounded plan). A bounded path for a set of relations R and
a query q(x) ← r(a, x) is a path query P , followed by a walk through r−P . A
bounded plan for a set of path functions F is a non-redundant execution plan
whose semantics are a bounded path. We call P the forward path and the walk
though r−P the backward path.

J. Romero et al.

Example 5.7. In Figure 3, f1f2f3f4 is a bounded path, where the forward path
is f1, and the backward path f2f3f4 is a walk through r−f1.

5.3 Characterising Smart Plans

Our notion of bounded plans is based purely on the notion of skeletons, and
does not make use of �lters. This is not a problem, because smart plans depend
on constraint-free plans. Furthermore, we show in the technical report that we
can restrict ourselves to execution plans whose semantics is a path query. This
allows for the following theorems (proven in the technical report):

Theorem 5.8 (Correctness). Let q(x)← r(a, x) be an atomic query, F a set of
path functions and Fsub the set of sub-functions of F . Let πa be a non-redundant
bounded execution plan over the Fsub such that its semantics is a path query.
Then πa is weakly smart.

Theorem 5.9 (Completeness). Let q(x)← r(a, x) be an atomic query, F a set
of path functions and Fsub the set of sub-functions of F . Let πa be a weakly smart
plan over Fsub such that its semantics is a path query. Then πa is bounded.

We have thus found a way to recognise weakly smart plans without executing
them. Extending this characterisation from weakly smart plans to fully smart
plans consists mainly of adding a �lter. The technical report gives more technical
details.

6 Generating Smart Plans

We have shown that weakly smart plans are precisely the bounded plans. We will
now turn to generating such plans. Let us �rst introduce the notion of minimal
plans.

6.1 Minimal Smart Plans

In line with related work [12], we will not generate redundant plans. These
contain more function calls, and cannot deliver more results than non-redundant
plans. More precisely, we will focus on minimal plans:

De�nition 6.1 (Minimal Smart Plan). Let πa(x) be a non-redundant ex-
ecution plan organised in a sequence c0, c1, . . . , ck of calls, such that the input
of c0 is the constant a, every other call ci takes as input an output variable
of the previous call ci−1, and the output of the plan is in the call ck. πa is a
minimal (weakly) smart plan if it is a (weakly) smart plan and there exists no
other (weakly) smart plan π′a(x) composed of a sub-sequence ci1 , ..., cin (with
0 ≤ i1 < ... < in ≤ k).

Query Rewriting On Path Views Without Integrity Constraints

Example 6.2. Let us consider the two functions f1(x, y) = r(x, y) and
f2(y, z) = r−(y, t).r(t, z). For the query q(x) ← r(a, x), the plan πa(x) =
f1(a, y), f2(y, x) is obviously weakly smart. It is also non-redundant. However,
it is not minimal. This is because π′a(x) = f1(a, x) is also weakly smart, and is
composed of a sub-sequence of calls of πa.

In general, it is not useful to consider non-minimal plans because they are just
longer but cannot yield more results. On the contrary, a non-minimal plan can
have fewer results than its minimal version, because the additional calls can
�lter out results. The notion of minimality would make sense also in the case
of equivalent rewritings. However, in that case, the notion would impact just
the number of function calls and not the results of the plan, since equivalent
rewritings deliver the same results by de�nition. In the case of smart plans, as
we will see, the notion of minimality allows us to consider only a �nite number
of execution plans and thus to have an algorithm that terminates.

6.2 Bounding and Generating the Weakly Smart Plans

We can enumerate all minimal weakly smart plans because their number is lim-
ited. We show in the technical report the following theorem:

Theorem 6.3 (Bound on Plans). Given a set of relations R, a query q(x) ←
r(a, x), r ∈ R, and a set of path function de�nitions F , there can be no more

than M ! minimal smart plans, where M = |F|2k and k is the maximal number of
atoms in a function. Besides, there exists an algorithm to enumerate all minimal
smart plans.

This bound is very pessimistic: In practice, the plans are very constrained and
thus, the complete exploration is quite fast, as we will show in Section 7.

The intuition of the theorem is as follows: Let us consider a bounded path
with a forward and a backward path. For each position i, we consider a state that
represents the functions crossing the position i (we also consider function starting
and ending there). We notice that, as the plan is minimal, there cannot be two
functions starting at position i (otherwise the calls between these functions would
be useless). This fact limits the size of the state to 2k functions (where k is the
maximal size of a function, the 2 is due to the existence of both a forward and
backward path). Finally, we notice that a state cannot appear at two di�erent
positions; otherwise, the plan would not be minimal (all function calls between
the repetition are useless). Thus, the algorithm we propose explores the space
of states in a �nite time, and yields all minimal smart plans. At each step of
the search, we explore the adjacent nodes that are consistent with the current
state. In practice, these transitions are very constrained, and so the complexity
is rarely exponential (as we will see in the experiments).

6.3 Generating the Weakly Smart Plans

Theorem 6.3 allows us to devise an algorithm that enumerates all minimal weakly
smart plans. For simplicity, let us �rst assume that no function de�nition contains

J. Romero et al.

a loop, i.e., no function contains two consecutive relations of the form rr−. This
means that a function cannot be both on a forward and backward direction. We
will later see how to remove this assumption. Algorithm 1 takes as input a query
q and a set of function de�nitions F . It �rst checks whether the query can be
answered trivially by a single function (Line 1). If that is the case, the plan is
printed (Line 2). Then, the algorithm sets out to �nd more complex plans. To
avoid exploring states twice, it keeps a history of the explored states in a stack
H (Line 3). The algorithm �nds all non-trivial functions f that could be used
to answer q. These are the functions whose short notation ends in q (Line 4).
For each of these functions, the algorithm considers all possible functions f ′ that
could start the plan (Line 5). For this, f ′ has to be consistent with f , i.e., the
functions have to share the same relations. The pair of f and f ′ constitute the
�rst state of the plan. Our algorithm then starts a depth-�rst search from that
�rst state (Line 6). For this purpose, it calls the function search with the current
state, the state history, and the set of functions. In the current state, a marker
(a star) designates the forward path function.

Algorithm 1: FindMinimalWeakSmartPlans

Data: Query q(a)← r(a, x), set of path function de�nitions and all their
sub-functions F

Result: Prints minimal weakly smart plans
1 if ∃f = r ∈ F then

2 print(f)

3 H ← Stack()
4 foreach f = r1...rn.r ∈ F do

5 foreach f ′ ∈ F consistent with r−n ...r−1 do

6 search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F)

Algorithm 2 executes a depth-�rst search on the space of states. It �rst
checks whether the current state has already been explored (Line 1). If that is
the case, the method just returns. Otherwise, the algorithm creates the new state
S′ (Line 3). For this purpose, it considers all positioned functions in the forward
direction (Lines 5-7). If any of these functions ends, the end counter is increased
(Line 6). Otherwise, we advance the positioned function by one position. The (∗)
means that if the positioned function happens to be the designated forward path
function, then the advanced positioned function has to be marked as such, too.
We then apply the procedure to the backwards-pointing functions (Lines 8-11).

Once that is done, there are several cases: If all functions ended, we have
a plan (Line 12). In that case, we can stop exploring because no minimal plan
can include an existing plan. Next, the algorithm considers the case where one
function ended, and one function started (Line 13). If the function that ended
were the designated forward path function, then we would have to add one more
forward function. However, then the plan would contain two functions that start

Query Rewriting On Path Views Without Integrity Constraints

at the current state. Since this is not permitted, we just do not do anything
(Line 14), and the execution jumps to Line 29. If the function that ended was
some other function, then the ending and the starting function can form part
of a valid plan. No other function can start or end at the current state, and
hence we just move to the next state (Line 15). Next, the algorithm considers
the case where one function starts and no function ends (Line 16). In that case,
it has to add another backward function. It tries out all functions (Line 17-19)
and checks whether adding the function to the current state is consistent (as in
Algorithm 1). If that is the case, the algorithm calls itself recursively with the
new state (Line 19). Lines 20-23 do the same for a function that ended. Here
again, the (∗) means that if f was the designated forward path function, then
the new function has to be marked as such. Finally, the algorithm considers the
case where no function ended, and no function started (Line 24). In that case, we
can just move on to the next state (Line 25). We can also add a pair of a starting
function and an ending function. Lines 26-28 try out all possible combinations
of a starting function and an ending function and call the method recursively. If
none of the previous cases applies, then end > 1 and start > 1. This means that
the current plan cannot be minimal. In that case, the method pops the current
state from the stack (Line 29) and returns.

Theorem 6.4 (Algorithm). Algorithm 1 is correct and complete, terminates on

all inputs, and runs in time O(M !), where M = |F|2k and k is the maximal
number of atoms in a function.

The worst-case runtime of O(M !) is unlikely to appear in practice. Indeed, the
number of possible functions that we can append to the current state in Lines
19, 23, 28 is severely reduced by the constraint that they must coincide on
their relations with the functions that are already in the state. In practice, very
few functions have this property. Furthermore, we can signi�cantly improve the
bound if we are interested in �nding only a single weakly smart plan:

Theorem 6.5. Given an atomic query and a set of path function de�nitions
F , we can �nd a single weakly smart plan in O(|F|2k), where k is the maximal
number of atoms in a function.

Functions with loops. If there is a function that contains a loop of the form
r.r−, then Algorithm 2 has to be adapted as follows: First, when neither functions
are starting nor ending (Lines 24-28), we can also add a function that contains a
loop. Let f = r1...rir

−
i ...rn be such a function. Then the �rst part r1...ri becomes

the backward path, and the second part r−i ...rn becomes the forward path in
Line 27.

When a function ends (Lines 20-23), we could also add a function with a loop.
Let f = r1...rir

−
i rn be such a function. The �rst part r1...ri will create a for-

ward state 〈r1...ri, 1, forward〉. The second part, r−i ...rn will create the backward
state 〈r−i ...rn, |r1...ri|, backward〉. The consistency check has to be adapted ac-
cordingly. The case when a function starts (Lines 16-19) is handled analogously.
Theorems 6.4 and 6.5 remain valid, because the overall number of states is still
bounded as before.

J. Romero et al.

Algorithm 2: Search

Data: A state S with a designated forward path function, a set of states H, a
set of path functions F

Result: Prints minimal weakly smart plans
1 if S ∈ H then return
2 H.push(S)
3 S′ ← ∅
4 end← 0
5 foreach 〈r1...rn, i, forward〉 ∈ S do

6 if i+ 1 > n then end++

7 else S′ ← S′ ∪ {〈r1...rn, i+ 1, forward〉(∗)}
8 start← 0
9 foreach 〈r1...rn, i, backward〉 ∈ S do

10 if i = 1 then start++
11 else S′ ← S′ ∪ {〈r1...rn, i− 1, backward〉}
12 if S′ = ∅ then print(H)
13 else if start = 1 ∧ end = 1 then

14 if the designated function ended then pass
15 else search(S′, H,F)
16 else if start = 1 ∧ end = 0 then

17 foreach f ∈ F do

18 S′′ ← S′ ∪ {〈f, |f |, backward〉}
19 if S′′ is consistent then search(S′′, H,F)

20 else if start = 0 ∧ end = 1 then

21 foreach f ∈ F do

22 S′′ ← S′ ∪ {〈f, 1, forward〉(∗)}
23 if S′′ is consistent then search(S′′, H,F)

24 else if start = 0 ∧ end = 0 then

25 search(S′, H,F)
26 foreach f, f ′ ∈ F do

27 S′′ ← S′ ∪ {〈f, 1, forward〉, 〈f ′, |f ′|, backward〉}
28 if S′′ is consistent then search(S′′, H,F)

29 H.pop()

7 Experiments

We have implemented the Susie Algorithm [9] (more details in the technical
report), the equivalent rewriting approach [12] (using Pyformlang [11]), as well
as our method (Section 6.2) in Python. The code is available on Github4. We
conduct two series of experiments � one on synthetic data, and one on real Web
services. All our experiments are run on a laptop with Linux, 1 CPU with four
cores at 2.5GHz, and 16 GB RAM.

4 https://github.com/Aunsiels/smart_plans

https://github.com/Aunsiels/smart_plans

Query Rewriting On Path Views Without Integrity Constraints

7.1 Synthetic Functions

In our �rst set of experiments, we use the methodology introduced by [12] to sim-
ulate random functions. We consider a set of arti�cial relations R = {r1, ..., rn},
and randomly generated path functions up to length 3, where all variables are
existential except the last one. Then we try to �nd a smart plan for each query
of the form q(x)← r(a, x), r ∈ R.

In our �rst experiment, we limit the number of functions to 30 and vary the
number n of relations. All the algorithms run in less than 2 seconds in each setting
for each query. Figure 4a shows which percentage of the queries the algorithms
answer. As expected, when increasing the number of relations, the percentage
of answered queries decreases, as it becomes harder to combine functions. The
di�erence between the curve for weakly smart plans and the curve for smart
plans shows that it was not always possible to �lter the results to get exactly
the answer of the query. Weakly smart plans can answer more queries but at
the expense of delivering only a super-set of the query answers. In general, we
observe that our approach can always answer strictly more queries than Susie
and the equivalent rewriting approach.

5 10 15

0

20

40

60

80

100

Smart Plans

Weak Smart Plans

Susie Plans

Equivalent Rewritings

Number of Relations

%
 o

f
A

n
sw

er
ed

 Q
u
er

ie
s

(a)

10 20 30 40

0

20

40

60

80

100

Smart Plans

Weak Smart Plans

Susie Plans

Equivalent Rewritings

Number of Functions

%
 o

f
A

n
sw

er
ed

 Q
u
er

ie
s

(b)

Fig. 4: Percentage of answered queries

In our next experiment, we �x the number of relations to 10 and vary the
number of functions. Figure 4b shows the results. As we increase the number of
functions, we increase the number of possible function combinations. Therefore,
the percentage of answered queries increases for all approaches. As before, our
algorithm outperforms the other methods by a wide margin. The reason is that
Susie cannot �nd all smart plans (see the technical report for more details).
Equivalent rewritings, on the other hand, can �nd only those plans that are
equivalent to the query on all databases � which are very few in the absence of
constraints.

J. Romero et al.

getDeathDate(x, y, z)← hasId−(x, y) ∧ diedOnDate(y, z)
getSinger(x, y, z, t)← hasRelease−(x, y) ∧ released−(y, z) ∧ hasId(z, t)
getLanguage(x, y, z, t)← hasId(x, y) ∧ released(y, z) ∧ language(z, t)
getTitles(x, y, z, t)← hasId−(x, y) ∧ wrote−(y, z) ∧ title(z, t)
getPublicationDate(x, y, z)← hasIsbn−(x, y) ∧ publishedOnDate(y, z)

Table 1: Examples of real functions (3 of MusicBrainz, 1 of ISBNdb, 1 of Li-
braryThing).

Web Service Functions Relations Susie Eq. Rewritings Smart Plans

MusicBrainz (+IE) 23 42 48% (32%) 48% (32%) 48% (35%)
LastFM (+IE) 17 30 50% (30%) 50% (30%) 50% (32%)
LibraryThing (+IE) 19 32 44% (27%) 44% (27%) 44% (35%)
Abe Books (+IE) 9 8 75% (14%) 63% (11%) 75% (14%)
ISBNdb (+IE) 14 20 65% (23%) 50% (18%) 65% (23%)
Movie DB (+IE) 12 18 56% (19%) 56% (19%) 56% (19%)
UNION with IE 74 82 52% 50% 54%

Table 2: Percentage of queries with smart plans (numbers in parenthesis repre-
sent the results with IE).

7.2 Real-World Web Services

In our second series of experiments, we apply the methods to real-world Web ser-
vices. We use the functions provided by [12,9]. These are the functions of the Web
services of Abe Books, ISBNDB, LibraryThing, MusicBrainz, and MovieDB. Be-
sides, as these Web services do not contain many existential variables, we added
the set of functions based on information extraction techniques (IE) from [9].

Table 2 shows the number of functions and the number of relations for each
Web service. Table 1 gives examples of functions. Some of them are recursive.
For example, MusicBrainz allows querying for the albums that are related to a
given album. All functions are given in the same schema. Hence, in an additional
setting, we consider the union of all functions from all Web services.

Note that our goal is not to call the functions. Instead, our goal is to deter-
mine whether a smart plan exists � before any functions have to be called.

For each Web service, we considered all queries of the form q(x)← r(a, x) and
q(x) ← r−(a, x), where r is a relation used in the function de�nitions of that
Web service. We ran the Susie algorithm, the equivalent rewriting algorithm,
and our algorithm for each of these queries. The run-time is always less than 2
seconds for each query. Table 2 shows the ratio of queries for which we could �nd
smart plans. We �rst observe that our approach can always answer at least as
many queries as the other approaches can answer. Furthermore, there are cases
where our approach can answer strictly more queries than Susie.
The advantage of our algorithm is not that it beats Susie by some per-
centage points on some Web services. Instead, the crucial advantage

http://abebooks.com
http://isbndb.com/
http://www.librarything.com/
http://musicbrainz.org/
https://www.themoviedb.org

Query Rewriting On Path Views Without Integrity Constraints

Query Plan

hasTrackNumber getReleaseInfoByTitle, getReleaseInfoById

hasIdCollaborator getArtistInfoByName, getCollaboratorIdbyId,getCollaboratorsById

publishedByTitle getBookInfoByTitle, getBookInfoById

Table 3: Example Plans (2 of MusicBrainz, 1 of ABEBooks).

of our algorithm is the guarantee that the results are complete. If our
algorithm does not �nd a plan for a given query, it means that there cannot exist
a smart plan for that query. Thus, even if Susie and our algorithm can answer
the same number of queries on AbeBooks, only our algorithm can guarantee that
the other queries cannot be answered at all. Thus, only our algorithm gives a
complete description of the possible queries of a Web service.

Rather short execution plans can answer some queries. Table 3 shows a few
examples. However, a substantial percentage of queries cannot be answered at all.
In MusicBrainz, for example, it is not possible to answer produced(a, x) (i.e., to
know which albums a producer produced), hasChild−(a,x) (to know the parents
of a person), and marriedOnDate−(a, x) (to know who got married on a given
day). These observations show that the Web services maintain control over the
data, and do not allow exhaustive requests.

8 Conclusion

In this paper, we have introduced the concept of smart execution plans for Web
service functions. These are plans that are guaranteed to deliver the answers
to the query if they deliver results at all. We have formalised the notion of
smart plans, and we have given a correct and complete algorithm to compute
smart plans. Our experiments have demonstrated that our approach can be
applied to real-world Web services. All experimental data, as well as all code, is
available at the URL given in Section 7. We hope that our work can help Web
service providers to design their functions, and users to query the services more
e�ciently.

J. Romero et al.

References

1. Aebeloe, C., Montoya, G., Hose, K.: A decentralized architecture for sharing and
querying semantic data. In: ESWC (2019)

2. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from Proofs:
The Interpolation-based Approach to Query Reformulation. Synthesis Lectures on
Data Management, Morgan & Claypool (2016)

3. Buron, M., Goasdoué, F., Manolescu, I., Mugnier, M.L.: Obi-wan: Ontology-based
rdf integration of heterogeneous data. Proc. VLDB Endow. 13(12), 2933�2936 (Aug
2020). https://doi.org/10.14778/3415478.3415512, https://doi.org/10.14778/

3415478.3415512

4. Calì, A., Martinenghi, D.: Querying data under access limitations. In: ICDE (2008)
5. Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:

PODS (1997)
6. Halevy, A.Y.: Answering queries using views: A survey. In: VLDB J. (2001)
7. Nash, A., Ludäscher, B.: Processing unions of conjunctive queries with negation

under limited access patterns. In: EDBT (2004)
8. Preda, N., Kasneci, G., Suchanek, F.M., Neumann, T., Yuan, W., Weikum, G.: Ac-

tive Knowledge : Dynamically Enriching RDF Knowledge Bases by Web Services.
In: SIGMOD (2010)

9. Preda, N., Suchanek, F.M., Yuan, W., Weikum, G.: SUSIE: Search Using Services
and Information Extraction. In: ICDE (2013)

10. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with
binding patterns. In: PODS (1995)

11. Romero, J.: Pyformlang: An educational library for formal language manipulation.
In: SIGCSE. Springer International Publishing (2021)

12. Romero, J., Preda, N., Amarilli, A., Suchanek, F.: Equivalent rewritings on path
views with binding patterns. In: The Semantic Web. pp. 446�462. Springer Inter-
national Publishing, Cham (2020), extended version with proofs: https://arxiv.
org/abs/2003.07316

13. Romero, J., Preda, N., Suchanek, F.: Query rewriting on path views without in-
tegrity constraints. In: Datamod (2020), extended version with proofs: https:

//arxiv.org/abs/2010.03527

14. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over
web services. In: VLDB (2006)

15. Thakkar, S., Ambite, J.L., Knoblock, C.A.: Composing, optimizing, and executing
plans for bioinformatics web services. In: VLDB J. (2005)

https://doi.org/10.14778/3415478.3415512
https://doi.org/10.14778/3415478.3415512
https://doi.org/10.14778/3415478.3415512
https://arxiv.org/abs/2003.07316
https://arxiv.org/abs/2003.07316
https://arxiv.org/abs/2010.03527
https://arxiv.org/abs/2010.03527

	Query Rewriting On Path Views Without Integrity Constraints

