Extracting Complex Information from Natural Language Text: A Survey - IMT - Institut Mines-Télécom
Autre Publication Scientifique CEUR Workshop Proceedings Année : 2020

Extracting Complex Information from Natural Language Text: A Survey

Résumé

Information Extraction is the art of extracting structured information from natural language text, and it has come a long way in recent years. Many systems focus on binary relationships between two entities-a subject and an object. However, most natural language text contains complex information such as beliefs, causality, anteriority, or relationships that span several sentences. In this paper, we survey existing approaches at this frontier, and outline promising directions of future work.
Fichier principal
Vignette du fichier
semantic-journalism-2020.pdf (762.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03102913 , version 1 (07-01-2021)

Identifiants

  • HAL Id : hal-03102913 , version 1

Citer

Emna Mechket, Fabian Suchanek. Extracting Complex Information from Natural Language Text: A Survey. Workshop on Semantic and knowledge graph advances for journalism, 2020. ⟨hal-03102913⟩
152 Consultations
172 Téléchargements

Partager

More