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Abstract

In pattern recognition, a random label Y is to be predicted based upon observ-
ing a random vector X valued in Rd with d ≥ 1 by means of a classification
rule with minimum probability of error. In a wide variety of applications, ranging
from finance/insurance to environmental sciences through teletraffic data analysis
for instance, extreme (i.e. very large) observations X are of crucial importance,
while contributing in a negligible manner to the (empirical) error however, simply
because of their rarity. As a consequence, empirical risk minimizers generally
perform very poorly in extreme regions. It is the purpose of this paper to de-
velop a general framework for classification in the extremes. Precisely, under
non-parametric heavy-tail assumptions for the class distributions, we prove that
a natural and asymptotic notion of risk, accounting for predictive performance in
extreme regions of the input space, can be defined and show that minimizers of an
empirical version of a non-asymptotic approximant of this dedicated risk, based
on a fraction of the largest observations, lead to classification rules with good
generalization capacity, by means of maximal deviation inequalities in low proba-
bility regions. Beyond theoretical results, numerical experiments are presented in
order to illustrate the relevance of the approach developed.

1 Introduction

Because it covers a wide range of practical applications and its probabilistic theory can be straight-
forwardly extended to some extent to various other prediction problems, binary classification can
be considered as the flagship problem in statistical learning. In the standard setup, (X,Y ) is a
random pair defined on a certain probability space with (unknown) joint probability distribution
P , where the (output) r.v. Y is a binary label, taking its values in {−1,+1} say, and X mod-
els some information, valued in Rd and hopefully useful to predict Y . In this context, the goal
pursued is generally to build, from a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)} com-
posed of n ≥ 1 i.i.d. realizations of (X,Y ), a classifier g : Rd → {−1,+1} minimizing the
probability of error LP (g) = P{Y 6= g(X)}. The Empirical Risk Minimization paradigm (ERM
in abbreviated form, see e.g. [6]) suggests considering solutions gn of the minimization problem
ming∈G L̂n(g), where L̂n(g) is a statistical estimate of the risk L(g). In general the empirical
version L̂n(g) = (1/n)

∑n
i=1 1{Yi 6= g(Xi)} is considered, denoting by 1{E} the indicator func-

tion of any event E . This amounts to replacing P in LP with the empirical distribution of the
(Xi, Yi)’s. The class G of predictive rules is supposed to be rich enough to contain a reasonable
approximant of the minimizer of LP , i.e. the Bayes classifier g∗(x) = 21{η(x) ≥ 1/2}− 1, where
η(X) = P{Y = 1 | X} denotes the posterior probability.

Because extreme observations X , i.e. observations whose norm ‖X‖ exceeds some large threshold
t > 0, are rare and thus underrepresented in the training dataset Dn classification errors in these
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regions of the input space may have a negligible impact on the global prediction error of ĝn. Notice
incidentally that the threshold t may depend on n, since ‘large’ should be naturally understood as
large w.r.t the vast majority of data previously observed. Using the total probability formula, one
may indeed write

LP (g) = P{‖X‖ > t}P{Y 6= g(X) | ‖X‖ > t}+ P{‖X‖ ≤ t}P{Y 6= g(X) | ‖X‖ ≤ t}. (1)

Hence, due to the extremely small order of magnitude of P{‖X‖ > t} and of its empirical coun-
terpart, there is no guarantee that the standard ERM strategy produces an optimal classifier on the
extreme region {x : ‖x‖ > t}. In other words the quantity P{Y 6= ĝn(X) | ‖X‖ > t} may not
be nearly optimal, whereas in certain practical applications (e.g. finance, insurance, environmental
sciences, aeronautics safety), accurate prediction in extreme regions is crucial.

The purpose of the subsequent analysis is to investigate the problem of building a classifier such that
the first term of the decomposition (1) is asymptotically minimum as t → +∞. We thus consider
the conditional probability of error, which quantity is next referred to as the classification risk above
level t, given by

Lt(g) := LPt(g) = P{Y 6= g(X) | ‖X‖ > t}, (2)
denoting by Pt the conditional distribution of (X,Y ) given ‖X‖ > t. In this paper, we address the
issue of learning a classifier gn whose risk Lt(gn) is asymptotically minimum as t → ∞ with high
probability. In order to develop a framework showing that a variant of the ERM principle tailored
to this statistical learning problem leads to predictive rules with good generalization capacities,
(non-parametric) distributional assumptions related to the tail behavior of the class distributions
F+ and F−, the conditional distributions of the input r.v. X given Y = +/ − 1, are required.
Precisely, we assume that they are both multivariate regularly varying, which correspond to a large
non-parametric class of (heavy-tailed) distributions, widely used in applications where the impact
of extreme observations should be enhanced, or at least not neglected. Hence, under appropriate
non-parametric assumptions on F+ and F−, as well as on the tail behavior of η(x), we prove that
ming Lt(g) converges to a quantity denoted by L∗∞ and referred to as the asymptotic risk in the
extremes, as t→∞. It is also shown that this limit can be interpreted as the minimum classification
error related to a (non observable) random pair (X∞, Y∞), whose distribution P∞ corresponds to the
limit of the conditional distribution of (X,Y ) given ‖X‖ > t, for an appropriate normalization of
X , as t→∞. With respect to the goal set above we next investigate the performance of minimizer
ĝn,τ of an empirical version of the risk LPtτ , where tτ is the (1 − τ) quantile of the r.v. ‖X‖
and τ � 1. The computation of ĝn,τ involves the bnτc input observations with largest norm, and
the minimization is performed over a collection of classifiers of finite VC dimension. Based on
a variant of the VC inequality tailored to low probability regions, rate bounds for the deviation
Lt(ĝn,τ ) − L∗∞ are established, of order OP(1/

√
nτ) namely. These theoretical results are also

illustrated by preliminary experiments based on synthetic data.

The rest of the paper is organized as follows. Multivariate extreme value theory (MEVT) notions
involved in the framework we develop are described in section 2, together with the probabilistic
setup we consider for classification in the extremes. A notion of risk tailored to this statistical
learning task is also introduced therein. Section 3 investigates how to extend the ERM principle in
this situation. In particular, probability bounds proving the generalization ability of minimizers of a
non-asymptotic approximant of the risk previously introduced are established. Illustrative numerical
results are displayed in section 4, while several concluding remarks are collected in section 5. Some
technical details and proofs are deferred to the Supplementary Material.

2 Probabilistic Framework - Preliminary Results

We start off with recalling concepts pertaining to MEVT and next develop a general framework
in order to formulate the problem of binary classification in the extremes in a rigorous manner.
For completeness, additional details about regular variation and vague convergence are given in the
supplementary material (Appendix A).

2.1 Regularly Varying Random Vector

By definition, heavy-tail phenomena are those which are ruled by very large values, occurring with
a far from negligible probability and with significant impact on the system under study. When the
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phenomenon of interest is described by the distribution of a univariate random variable, the theory of
regularly varying functions provides the appropriate mathematical framework for the study of heavy-
tailed distributions. One may refer to [13] for an excellent account of the theory of regularly varying
functions and its application to the study of heavy-tailed distributions. For examples of works where
such assumptions are considered in the context of statistical learning, see e.g. [8, 3, 14, 12, 1] or
[10]. Let α > 0, a random variable X is said to be regularly varying with tail index α if

P {X > tx | X > t} −−−→
t→∞

x−α, x > 1.

This is the case if and only if there exists a function b : R+ → R∗+ with b(t) → ∞ such that for
all x > 0, the quantity tP {X/b(t) > x} converges to some limit h(x) as t → ∞. Then b may
be chosen as b(t) = t1/α and h(x) = cx−α for some c > 0. Based on this characterization, the
heavy-tail model can be extended to the multivariate setup. Consider a d-dimensional random vector
X = (X(1), . . . , X(d)) taking its values in Rd+. Assume that all the X(j) are regularly varying with
index α > 0. Then the random vector X is said to be regularly varying with tail index α if there
exists a non null positive Radon measure µ on the punctured space E = [0, ∞]d\{0} and a function
b(t)→∞ such that for all Borel set A ⊂ E such that 0 /∈ ∂A and µ(∂A) = 0,

tP {X/b(t) ∈ A} −−−→
t→∞

µ(A).

In such a case, the so-called exponent measure µ fulfills the homogeneity property µ(tC) =
t−αµ(C) for all t > 0 and any Borel set C ⊂ E. This suggests a decomposition of µ into a
radial component and an angular component Φ. For all x = (x1, . . . , xd) ∈ Rd+, set

R(x) = ‖x‖ ,

Θ(x) =

(
x1
R(x)

, . . . ,
xd
R(x)

)
∈ S,

where S is the positive orthant of the unit sphere in Rd for the chosen norm ‖ · ‖. The choice of the
norm is unimportant as all norms are equivalent in Rd. Define an angular measure Φ on S as

Φ(B) = µ{rθ : θ ∈ B, r ≥ 1}, B ⊂ S,measurable.

The angular measure Φ is finite, and the conditional distribution of (R(X)/t,Θ(X)) given that
R(X) > t converges as t → ∞ to a limit which admits the following product decomposition: for
r ≥ 1 and B ⊂ S such that Φ(∂B) = 0,

lim
t→∞

P {R(X)/t > r, Θ(X) ∈ B | R(X) > t} = c µ{x : R(x) > r,Θ(x) ∈ B}

= c r−α Φ(B),

where c = µ{x : R(x) > 1}−1 = Φ(S)−1 is a normalizing constant. Thus cΦ may be viewed as
the limiting distribution of Θ(X) given that R(X) is large.

Remark 1 It is assumed above that all marginal distributions are tail equivalent to the Pareto
distribution with index α. In practice, the tails of the marginals may be different and it may
be convenient to work with marginally standardized variables, that is, to separate the margins
Fj(xj) = P{X(j) ≤ xj} from the dependence structure in the description of the joint dis-
tribution of X . Consider the standardized variables V (j) = 1/(1 − Fj(X

(j))) ∈ [1,∞] and
V = (V (1), . . . , V (d)). Replacing X by V permits to take α = 1 and b(t) = t.

2.2 Classification in the Extremes - Assumptions, Criterion and Optimal Elements

We place ourselves in the binary classification framework recalled in the introduction. For simplicity,
we suppose that X takes its values in the positive orthant Rd+. The general aim is to build from
training data in the extreme region (i.e. data points (Xi, Yi) such that ‖Xi‖ > tn for a large threshold
value tn > 0) a classifier gn(x) with risk Ltn(gn) defined in (2) being asymptotically minimum as
tn → ∞. In this purpose, we introduce general assumptions guaranteeing that the minimum risk
Lt(g

∗) above level t has a limit as t → ∞. Throughout the article, we assume that the class
distributions F+ and F− are heavy-tailed with same index α = 1.
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Assumption 1 For all σ ∈ {−, +}, the conditional distribution of X given Y = σ1 is regularly
varying with index 1 and angular measure Φσ(dθ) (respectively, exponent measure µσ(dx)): for
A ⊂ [0,∞]d \ {0} a measurable set such that 0 /∈ ∂A and µ(∂A) 6= 0,

tP
{
t−1X ∈ A

∣∣ Y = σ 1
}
−−−→
t→∞

µσ(A), σ ∈ {−,+},

and for B ⊂ S a measurable set,

Φσ(B) = µσ{x ∈ Rd+ : R(x) > 1,Θ(x) ∈ B}, σ ∈ {−,+}.

Under the hypothesis above, X’s marginal distribution, given by F = pF+ + (1 − p)F−, where
p = P {Y = +1} > 0, is heavy-tailed as well with index 1. Indeed, we have:

tP
{
t−1X ∈ A

}
−−−→
t→∞

µ(A) := pµ+(A) + (1− p)µ−(A).

And similarly

Φ(B) := pΦ+(B) + (1− p)Φ−(B).

Observe also that the limiting class balance can be expressed using the latter asymptotic measures.
Indeed, let Ω = {x ∈ Rd+ : ‖x‖ ≤ 1} denote the positive orthant of the unit ball and let Ωc denote
its complementary set in Rd+. We have:

pt = P {Y = +1 | ‖X‖ > t} =
tP {‖X‖ > t | Y = 1} p

tP {‖X‖ > t}
−−−→
t→∞

p
µ+ (Ωc)

µ (Ωc)
= p

Φ+(S)

Φ(S)
def
= p∞.

(3)

Remark 2 (ON ASSUMPTION 1) We point out that only the situation where the supposedly heavy-
tailed class distributions F+ and F− have the same tail index is of interest. Suppose for instance
that the tail index α+ of F+ is strictly larger than that of F−, α−, that is F− has heavier tail than
F+. In such a case F is still regularly varying with index min{α+, α−} and pt → 0. In this case,
one may straightforwardly see that the classifier predicting always −1 on {x ∈ Rd+ : ‖x‖ > t} is
optimal as t increases to infinity.

Remark 3 (ON ASSUMPTION 1 (BIS)) As noticed in Remark 1, assuming that α = 1 is not restric-
tive when the marginal distributions are known. In practice however, they must be estimated. Due
to space limitations, in the present analysis, we shall neglect the estimation error arising from their
estimation. Relaxing this assumption, as made in e.g. [9], will be the subject of future work.

Asymptotic criterion for classification in the extremes. The goal pursued is to construct a clas-
sifier gn, based on the training examples Dn, minimizing the asymptotic risk in the extremes given
by

L∞(g) = lim sup
t→∞

Lt(g). (4)

We also set L∗∞ = infg measurable L∞(g). It is immediate that any classifier which coincides with the
Bayes classifier g∗ on the region tΩc = {x ∈ Rd+ : ‖x‖ > t} is optimal w.r.t. the distribution Pt. In
particular g∗ minimizes Lt and the associated risk is

L∗t := Lt(g
∗) = E [min{η(X), 1− η(X)} | ‖X‖ > t] , t > 0. (5)

Thus, for all classifier g, Lt(g) ≥ Lt(g
∗), and taking the limit superior shows that g∗ minimizes

L∞, that is L∗∞ = L∞(g∗).

Optimality. The objective formulated above can be connected with a standard binary classification
problem, related to a random pair (X∞, Y∞) taking its values in the limit space Ωc×{−1,+1}, see
Theorem 1 below. Let P {Y∞ = +1} = p∞ as in (3) and define the distribution of X∞ given that
Y∞ = σ1, σ ∈ {−,+} as µσ(Ωc)−1µσ( · ). Then for A ⊂ Ωc, using (3),

P {X∞ ∈ A, Y∞ = +1} =
p∞µ+(A)

µ+(Ωc)
=
pµ+(A)

µ(Ωc)
=
p limt tP {X ∈ tA | Y = +1}

limt tP {X ∈ tΩc}
= lim

t→∞
P {X ∈ tA, Y = +1 | ‖X‖ > t} .
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We denote by P∞ the joint distribution of (X∞, Y∞) thus defined. As shall be seen below, under
appropriate and natural assumptions, classifiers with minimum asymptotic risk in the extremes are
in 1-to-1 correspondence with solutions of the binary classification problem related to (X∞, Y∞).
Let ρ be a common dominating measure for Φ−,Φ+ on S (ρ does not need to be the Lebesgue
measure, take e.g. ρ = Φ+ + Φ−). Then denote by ϕ+, ϕ− respectively the densities of Φ+,Φ−
w.r.t. ρ. By homogeneity of µ+, µ−, the conditional distribution of Y∞ given X∞ = x is

η∞(x)
def
= P {Y∞ = 1 | X∞ = x} =

p∞ϕ+(Θ(x))/Φ+(S)

p∞ϕ+(Θ(x))/Φ+(S) + (1− p∞)ϕ−(Θ(x))/Φ−(S)

=
pϕ+(Θ(x))

pϕ+(Θ(x)) + (1− p)ϕ−(Θ(x))
.

Notice that η∞ is independent of the chosen reference measure ρ and that η∞ is constant along rays,
that is η∞(tx) = η∞(x) for (t, x) such that min(‖tx‖, ‖x‖) ≥ 1. The optimal classifier for the
random pair (X∞, Y∞) with respect to the classical risk LP∞ is clearly

g∗∞(x) = 21{η∞(x) ≥ 1/2} − 1.

Again g∗∞ is constant along rays on Ωc and is thus a function of Θ(x) only. We abusively denote
η∞(x) = η∞(Θ(x)). The minimum classification error is

L∗P∞ = LP∞(g∗∞) = E [min {η∞(Θ∞), 1− η∞(Θ∞)}] , (6)

where Θ∞ = Θ(X∞). More generally, observe that any class GS of classifiers g : θ ∈ S 7→ g(θ) ∈
{−1,+1} defines a class of classifiers on Rd+, x ∈ Rd+ 7→ g(Θ(x)), that shall still be denoted by GS
for simplicity. The next result claims that, under the regularity hypothesis stated below, the classifier
g∗∞ is optimal for the asymptotic risk in the extremes, that is L∞(g∗∞) = infg L∞(g). We shall also
prove that L∞(g∗∞) = L∗P∞ .

Assumption 2 (UNIFORM CONVERGENCE ON THE SPHERE OF η(tx)) The limiting regression
function η∞ is continuous on S and

sup
θ∈S
|η(Θ(tθ))− η∞(θ)| −−−→

t→∞
0

Remark 4 (ON ASSUMPTION 2) By invariance of η∞ along rays, Assumption 2 is equivalent to

sup
{x∈Rd+:‖x‖≥t}

|η(x)− η∞(x)| −−−→
t→∞

0.

Assumption 2 is satisfied whenever the probability densities f+, f− of F+, F− are continuous, reg-
ularly varying with limit functions q+, q−, and when the convergence is uniform, that is if

lim
t→∞

sup
x∈S
|td+1fσ(tx)− qσ(x)| = 0, σ ∈ {+,−}. (7)

In such a case q+, q− are respectively the densities of µ+, µ− with respect to the Lebesgue measure
and are continuous, which implies the continuity of ϕ+, ϕ−. The latter uniform convergence as-
sumption is introduced in [5] and is used e.g. in [2] in the context of minimum level sets estimation.

Theorem 1 (OPTIMAL CLASSIFIERS IN THE EXTREMES) Under Assumptions 1 and 2,

L∗t −−−→
t→∞

L∗P∞ . (8)

Hence, we have: L∗∞ = L∗P∞ . In addition, the classifier g∗∞ minimizes the asymptotic risk in the
extremes:

inf
g measurable

L∞(g) = L∞(g∗∞) = E {min(η∞(Θ∞), 1− η∞(Θ∞))} .

Refer to the Supplementary Material for the technical proof. Theorem 1 gives us the form of the
optimal classifier in the extremes g∗∞(x) = g∗∞(Θ(x)), which depends only on the angular compo-
nent Θ(x), not the norm R(x). This naturally leads to applying the ERM principle to a collection of
classifiers of the form g(x) = g(Θ(x)) on the domain {x ∈ Rd+ : ‖x‖ > t} for t > 0 large enough.
The next section provides statistical guarantees for this approach.
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3 Empirical Risk Minimization in the Extremes

Consider a class GS of classifiers g : θ ∈ S 7→ g(θ) ∈ {−1,+1} on the sphere S. It also defines a
collection of classifiers on Rd+, namely {g(Θ(x)) : g ∈ GS}, which we denote by GS for simplicity.
Sorting the training observations by decreasing order of magnitude, we introduce the order statistics
‖X(1)‖ > . . . > ‖X(n)‖ and we denote by Y(i) the corresponding sorted labels. Fix a small fraction
τ > 0 of extreme observations, and let tτ be the quantile at level (1− τ) of the r.v. ‖X‖: P{‖X‖ >
tτ} = τ . Set k = bnτc and consider the empirical risk

L̂k(g) =
1

k

k∑
i=1

1{Y(i) 6= g(Θ(X(i)))} = LP̂k(g), (9)

where P̂k denotes the empirical distribution of the truncated training sample {(Xi, Yi) : ‖Xi‖ ≥
‖Xk‖, i ∈ {1, . . . , n}}, the statistical version of the conditional distribution Ptτ . We now
investigate the performance in terms of asymptotic risk in the extremes L∞ of the solutions of the
minimization problem

min
g∈GS

L̂k(g). (10)

The practical issue of designing efficient algorithms for solving (10) is beyond the scope of this
paper. Focus is here on the study of the learning principle that consists in assigning to any very
large input value x the likeliest label based on the direction Θ(x) it defines only (the construction
is summarized in Algorithm 1 below). The following result provides an upper bound for the excess
of classification error in the domain tτΩc of solutions of (10). Its proof, which relies on a maximal
deviation inequality tailored to low probability regions, is given in the Supplementary Material.

Theorem 2 Suppose that the class GS is of finite VC dimension VGS < +∞. Let ĝk be any solution
of (10). Recall k = bnτc. Then, for δ ∈ (0, 1), ∀n ≥ 1, we have with probability larger than 1− δ:

Ltτ (ĝk)− L∗tτ ≤
1√
k

(√
2(1− τ) log(2/δ) + C

√
VGS log(1/δ)

)
+

1

k

(
5 + 2 log(1/δ) +

√
log(1/δ)(C

√
VGS +

√
2)
)

+

{
inf
g∈GS

Ltτ (g)− L∗tτ

}
,

where C is a constant independent from n, τ and δ.

Remark 5 (ON MODEL SELECTION) Selecting an appropriate model class GS is a crucial issue
in machine-learning. Following in the footsteps of structured risk minimization, one may use a VC
bound for E[supg∈GS |L̂k(g) − E[L̂k(g)]|] as a complexity regularization term to penalize in an
additive fashion the empirical risk (9). Considering a collection of such models, oracle inequalities
guaranteeing the quasi-optimality of the rule minimizing the penalized empirical risk can be then
classically established by means of a slight modification of the argument of Theorem 2’s proof, see
e.g. Chapter 18 in [6].

The upper bound stated above shows that the learning rate is of order OP(1/
√
k), where k is the

actual size of the training data set used to perform approximate empirical risk minimization in the
extremes. As revealed by the corollary below, this strategy permits to build a consistent sequence
of classifiers for the L∞-risk, when the fraction τ = τn decays at an appropriate rate (provided that
the model bias can be neglected of course).

Corollary 1 Suppose that the assumptions of Theorems 1-2 are fulfilled. In addition, assume that
the model bias asymptotically vanishes as τ → 0, i.e.

inf
g∈GS

Ltτ (g)− L∗tτ −→ 0 as τ → 0.

Then, as soon as k → +∞ as n→∞, the sequence of classifiers (ĝk) is consistent in the extremes,
meaning that we have the convergence in probability:

L∞ (ĝk)→ L∗∞ as n→∞.
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Algorithm 1 (ERM in the extremes)

Input Training dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, collection GS of classifiers on
the sphere, size k ≤ n of the training set composed of extreme observations

1 Standardization. Standardize the input vector by applying the rank-transformation: ∀i ∈
{1, . . . , n}, V̂i = T̂ (Xi), where

T̂ (x) =
(

1/
(

1− F̂j(xj)
))

j=1, ..., d
,

for all x = (x1, . . . , xd) ∈ Rd.

2 Truncation. Sort the training input observations by decreasing order of magnitude

‖V̂(1)‖ ≥ . . . ≥ ‖V̂(n)‖,

and consider the set of extreme training points{
(V̂(1), Y(1)), . . . , (V̂(k), Y(k))

}
.

3 Optimization. Compute a solution ĝk(θ) of the minimization problem

min
g∈GS

1

k

k∑
i=1

1
{
Y(i) 6= g

(
Θ(V̂(i))

)}

Output The classifier ĝk
(

Θ
(
T̂ (x)

))
, applicable on the region {x : ‖T̂ (x)‖ > ‖V̂(k)‖}.

Remark 6 (Choice of k) Determining the best value of k is a typical challenge of Extreme Value
analysis. This is typically a bias/variance trade-off, too large values introduce a bias by taking into
account observations which are not large enough, so that their distribution deviates significantly
from the limit distribution of extremes. On the other hand, too small values obviously increase the
variance of the classifier. See e.g.[8] or[9] and the reference therein for a discussion. In practice a
possible default choice is k =

√
n, otherwise cross-validation can be performed.

4 Illustrative Numerical Experiments

The purpose of our experiments is to provide insights into the performance of the classifier ĝk on
extreme regions constructed via Algorithm 1.The training set is ordered as in Step 1 of Algorithm 1.
For a chosen k, let t = ‖T̂ (X train

(k) )‖, the L1 norm is used throughout our experiments. The extreme

test set T is the subset of test points such that ‖T̂ (X test
i )‖ > t. To approximate of the asymptotic

risk in the extremes L∞(ĝk) and illustrate the generalization ability of the proposed classifier in the
extreme region, we consider decreasing subsets of T . Namely denoting ntest = |T |, we keep only
the bκntestc largest instances of T in terms on ‖T̂ (X test

i )‖, for decreasing values of κ ∈ (0, 1]. This
experimental framework is summarized in Figure 1, where λt = ‖T̂ (X test

(bκntestc))‖ ≥ t.

We consider two different classification algorithms for Step 3 in Algorithm 1, namely random forest
(RF) and k-nearest neighbors (k-NN), which correspond to two different classes GS of classifiers.
For each class GS , the performance of ĝk (which considers only the direction Θ(T̂ (x)) of both
training and testing data, in other words classifies the projected datasets onto the unit sphere (see
Figure 2 ) is compared with that of the classical version of the algorithm (RF or k-NN) taking as input
the same training data but without the standardization and truncation steps neither the projection
onto the unit sphere. Figures 4 and 5 summarize the results obtained using RF respectively with a
multivariate simulated dataset and with a real world dataset. The simulated dataset is generated from
a logistic distribution as described in [15]. The positive and negative instances are generated using
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Figure 1: Train set (dotted area) and test set (col-
ored area).
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Figure 2: Colored cones correspond to a given label
from the classifier on the simplex.

two different dependency parameters. An example of dataset thus obtained is displayed in Figure 3.
We report the results obtained with 5 · 103 points for each label for the train set and 5 · 104 points
for each label for the test set. k = 100 and κ ∈ [1, 0.3]. the number of trees for both random forests
(in the regular setting and in the setting of Algorithm 1) is set to 200. The number of neighbors for
both k-NN’s is set to 5.
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Figure 3: Toy dataset generated from a multivariate logistic distribution projected on R2.

The real dataset known as Ecoli dataset, introduced in [11], deals with protein localization and
contains 336 instances and 8 features. The Supplementary Material gathers additional details con-
cerning the datasets and the tuning of RF and k-NN in our experiments, as well as additional results
obtained with the above described datasets and with a simulated dataset from a different distribution.
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Figure 4: Logistic data - test loss of RF on the
simplex and regular RF depending on the multi-
plicative factor κ.
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Figure 5: Real data - test loss of RF on the sim-
plex and regular RF depending on the multiplica-
tive factor κ.

Figure 4 shows the evolutions of the Hamming losses with decreasing values of κ ∈ [0.3, 1]. The
boxplots display the losses obtained with 10 independently simulated datasets. For the experiment
on the Ecoli dataset (Figure 5), one third of the dataset is used as a test set and the rest corresponds
to the train set. k = 100 and κ ∈ [0.3, 1] (considering smaller values of κ was prevented by data
scarcity). The boxplots display the results for different (random) partitions of the data into a train
and a test set. In both examples, the loss of the regular classifier is worse (and even increases) when
κ decreases whereas the classifier resulting from the proposed approach is better and has a better
extrapolation ability.

8



5 Conclusion

In various applications (e.g. safety/security, finance, insurance, environmental sciences), it is of
prime importance to predict the response Y of a system when it is impacted by shocks, correspond-
ing to extremely large input values X . In this paper, we have developed a rigorous probabilistic
framework for binary classification in extreme regions, relying on the (nonparametric) theory of
regularly varying random vectors, and proved the accuracy of the ERM approach in this context,
when the risk functional is computed from extreme observations only. The present contribution may
open a new line of research, insofar as progress can be naturally expected in the design of algorithmic
learning methods tailored to extreme points (or their projection onto the unit sphere) and statistical
issues such as estimation of the minimum risk in the extremes, L∗∞, remain to be addressed.

References
[1] C. Brownlees, E. Joly, and G. Lugosi. Empirical risk minimization for heavy-tailed losses.

Ann. Statist., 43(6):2507–2536, 2015.

[2] J.J. Cai, J.H.J. Einmahl, and L. De Haan. Estimation of extreme risk regions under multivariate
regular variation. The Annals of Statistics, pages 1803–1826, 2011.

[3] A. Carpentier and M. Valko. Extreme bandits. In Advances in Neural Information Processing
Systems 27, pages 1089–1097. Curran Associates, Inc., 2014.

[4] S. Coles and J.A Tawn. Modeling extreme multivariate events. JR Statist. Soc. B, 53:377–392,
1991.

[5] L. De Haan and S. Resnick. On regular variation of probability densities. Stochastic processes
and their applications, 25:83–93, 1987.

[6] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Applica-
tions of mathematics : stochastic modelling and applied probability. U.S. Government Printing
Office, 1996.
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A Regular Variation and vague convergence

A Borelian function U : R+ → R+ is said to be regularly varying at infinity if there exists a function
h(x) such that

lim
t→∞

U(tx)

U(t)
= h(x), ∀x > 0.

In such a case the function h is necessarily of the form h(x) = xρ for some ρ ∈ R. We denote
U ∈ RVρ. Now let X be a random variable with cdf F and survival function F̄ = 1 − F . The
random variable X is said to be heavy tailed with tail index α > 0 if F̄ ∈ RV−α. In addition, the
heavy-tail property can be classically formulated in terms of vague convergence to a homogeneous
Radon measure. Indeed, the random variable X is heavy-tailed with index α if and only if there
exists a sequence bn > 0 with bn →∞, such that

nP {X/bn ∈ ·}
v−−−−→

n→∞
µα(·) in M+(0, ∞],

where v−→ denotes vague convergence, µα(x, ∞]/µα(1, ∞] = x−α and M+(0, ∞] is the set of
nonnegative Radon measures on [0, ∞]\{0}. Then the sequence bn may be chosen as bn = F−1(1−
1/n), where F−1(u) = inf{t : F (t) ≥ u} denotes F ’s generalized inverse, or bn = n1/α.

We recall that vague convergence of a sequence of Radon measures νn on a Locally Compact,
Second Countable, Hausdorff space E is defined in terms of convergence of integrals of continuous
functions with compact support. Namely, νn

v−→ ν in M+(E) if and only if for any such function f ,∫
E
f dνn −−−−→

n→∞

∫
E
f dν. The statements of Section 2.1 are based on following version of the

Portmanteau theorem for vague convergence: νn
v−→ ν if and only if for all relatively compact set

A ⊂ E such that ν(∂A) = 0, νn(A) −−−−→
n→∞

ν(A).

B Technical proofs

Proof of Theorem 1

Letting P denote the law of X , in view of expression (6) for L∗P∞ ,

Lt(g
∗)− L∗P∞ = Lt(g

∗)− E [min{η∞(X∞), 1− η∞(X∞)}]

≤
t
∫
{‖x‖>t}min{η(x), 1− η(x)} −min{η∞(x), 1− η∞(x)} dP (x)

tP {‖X‖ > t}

+

(
t
∫
{‖x‖>t}min(η∞, 1− η∞) dP

tP {‖X‖ > t}
−

∫
{‖x‖>1}min(η∞, 1− η∞) dµ

µ(Ωc)

)
:= A+B

The first term is controlled by Assumption 2. Indeed
A ≤ sup

r≥t
sup
θ∈S
|η(rθ)− η∞(θ)|

which goes to 0 as t → ∞ under Assumption 2. Now regular variation of F means that for any
continuous function h with compact support in [0,∞]d \ {0}, (that is with support bounded away
from 0), tE

{
h(t−1X)

}
→
∫
hdµ, which implies, using the continuity assumption on η∞, that

B → 0 as well.

We now turn to the second assertion of the theorem. Since L∗∞ = L∞(g∗), any classifier g̃ such that
lim sup
t→∞

{Lt(g̃)− Lt(g∗)} = 0 (11)

minimizes L∞ as well. We shall thus prove that (11) holds for g̃ = g∗∞. For any classifier of the
kind g(x) = 21{s(x) > 1/2} − 1 where s is a scoring function, we have

Lt(g) =

∫
{‖x‖>t} η(x)1{s(x) < 1/2}+ (1− η(x))1{s(x) > 1/2}}dP (x)

P {‖X‖ > t}
= E {(2η(X)− 1)1{s(X) < 1/2} | ‖X‖ > t}+ E {1− η(X) | ‖X‖ > t} ,
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thus

Lt(g
∗
∞)− Lt(g∗) = E {(2η(X)− 1) (1{η∞(X) < 1/2} − 1{η(X) < 1/2}) | ‖X‖ > t} .

Let 0 < ε < 1/2. We may write

Lt(g
∗
∞)− Lt(g∗) =

1

tP {‖x‖ > t}
(A+B + C),

with

A = t

∫
‖x‖>t,η∞(x)<1/2−ε

(2η(x)− 1) (1− 1 {η(x) < 1/2}) dP (x) ,

B = t

∫
‖x‖>t,η∞(x)>1/2+ε

(2η(x)− 1) (−1 {η(x) < 1/2}) dP (x) ,

C = t

∫
‖x‖>t,|η∞(x)−1/2|≤ε

(2η(x)− 1) (1{η∞(x) < 1/2} − 1{η(x) < 1/2}) dP (x) .

For t0 > 0 such that sup‖x‖>t0 |η(x) − η∞(x)| < ε/2 (see Remark 4), the integrands in A and B
are zero. On the other hand,

|C| ≤ 2ε ∗ 2tP {‖X‖ > t}

Thus for t > t0, Lt(g∗∞)− Lt(g∗) < 4ε. Since ε is arbitrarily small, the proof is complete.

Proof of Theorem 2

The proof relies on the classical bias/variance risk decomposition which takes the following form
for the risk above level t:

Ltτ − L∗tτ ≤ 2 sup
g∈GS

|L̂k(g)− Ltτ (g)|+ inf
g∈GS

Ltτ (g)− L∗tτ . (12)

The statement of the theorem then immediately derives from the uniform bound on the deviations of
L̂k of the class GS stated in Theorem 3 below.

Theorem 3 In the setting of Theorem 2, for all δ ∈ (0, 1), we have with probability 1− δ:

sup
g∈GS

∣∣L̂k(g)− Ltτ (g)
∣∣ ≤ 1√

k

(√
2(1− τ) log(2/δ) + C

√
VGS log(1/δ)

)
+

1

k

(
5 + 2 log(1/δ) +

√
log(1/δ)(C

√
VGS +

√
2)
)

where C is a constant independent of n, τ, δ.

PROOF. [Proof of Theorem 3] Set k = bnτc throughout. Introduce the pseudo-empirical risk

L̃k =
1

k

n∑
1

1{g(Xi) 6= Yi, ‖Xi‖ ≥ tτ}.

Notice that L̃k is not observed since tτ is unknown: it serves a useful intermediate quantity in the
following excess risk decomposition:

sup
g∈GS

∣∣L̂k(g)− Ltτ (g)
∣∣ ≤ sup

g∈GS

∣∣L̂k(g)− L̃k(g)
∣∣︸ ︷︷ ︸

A

+ sup
g∈GS

∣∣L̃k(g)− Ltτ (g)
∣∣︸ ︷︷ ︸

B

(13)

The remainder of the proof consists in controlling the first term A in the r.h.s. of (13) via the
Bernstein inequality while the second term B requires a call to a VC inequality for low probability
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regions. As for the first term,

A ≤ 1

k

∣∣∣ n∑
1

1{g(Xi) 6= Yi} (1{‖Xi‖ ≥ X(k)} − 1{‖Xi‖ ≥ tτ})
∣∣∣

≤ 1

k

n∑
1

|1{‖Xi‖ ≥ ‖X(k)‖} − 1{‖Xi‖ ≥ tτ}|

=
1

k

k∑
1

|1− 1{‖X(i)‖ ≥ tτ}|+
1

k

n∑
k+1

|1{‖X(i)‖ ≥ tτ}|

=

{
1
k

∑n
k+1 1{‖X(i)‖ ≥ tτ} if ‖X(k)‖ ≥ tτ

1
k

∑k
1 1{‖X(i)‖ < tτ} otherwise

=

{
1
k

∑n
1 1{‖X(i)‖ ≥ tτ} − k

k if ‖X(k)‖ ≥ tτ
1
k

∑n
1 1{‖X(i)‖ < tτ} − n−k

k otherwise

=

∣∣∣∣∣1k
n∑
1

1{‖Xi‖ ≥ tτ} − 1

∣∣∣∣∣
≤ |Sn − nτ |

k
+

1

k

where Sn =
∑n

1 Wi and Wi = 1{‖Xi‖ > tτ}. Since E {Wi} = nτ , Bernstein inequality implies,
for y > 0, P {|Sn − nτ |/k > y} ≤ 2 exp{−(y2k2/2)/(nτ(1−τ)+yk/3)} := δ. Solving the latter
bound for y yields y = 1

k

(
1
3 log(2/δ) +

√
(1/3 log(2/δ))2 + 2nτ(1− τ) log(2/δ)

)
. Simplifying

the latter bound using that for a, b > 0,
√
a+ b ≤

√
a +
√
b, and that nτ ≤ k + 1, we obtain that

with probability 1− δ,

A ≤
√

2

k
(1− τ) log(2/δ) +

1

k

(
2

3
log(2/δ) +

√
2(1− τ) log(2/δ) + 1

)
(14)

We now turn to the second term (B) in (13). Write

B ≤ n

k
sup
g∈GS

∣∣∣∣ 1n∑1{g(Xi) 6= Yi, ‖Xi‖ ≥ tτ} − P {g(X) 6= Y, ‖X‖ ≥ tτ}
∣∣∣∣︸ ︷︷ ︸

B1

+

∣∣∣∣1τ − n

k

∣∣∣∣P {g(X) 6= Y, ‖X‖ ≥ tτ}︸ ︷︷ ︸
B2

First,

B2 ≤
∣∣∣∣1τ − n

k

∣∣∣∣ τ = |(k − nτ)/k| ≤ 1/k. (15)

Turning to B1, from Theorem 1 in[7], we have that for any class of sets A on an input space Z with
finite VC dimension VA, if (Zi)i≤n are i.i.d. copies of a r.v. Z, then

sup
A∈A

∣∣∣P {Z ∈ A} − 1

n

n∑
i=1

1{Zi ∈ A}
∣∣∣ ≤ C(√p√VA

n
log

1

δ
+

1

n
log

1

δ

)
(16)

where p = P
{
Z ∈

⋃
A∈AA

}
and C is an absolute constant.

By setting Z = (X,Y ), A = {Ag : g ∈ GS} where Ag =
{

(x, y), g(x) 6= y, ‖x‖ > tτ
}

, so that
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p = τ , Equation (16) becomes:

B2 ≤
n

k
sup
g∈GS

∣∣∣∣P {Z ∈ Ag} − 1

n

∑
1{Zi ∈ Ag}

∣∣∣∣
≤ n

k
C

(
√
τ

√
VGS
n

log(1/δ) + 1/n log(1/δ)

)

= C

(√
VGSnτ

k2
log(1/δ) +

1

k
log(1/δ)

)

≤ C

(√
VGS
k

log(1/δ) +
1

k

(
log(1/δ) +

√
VGS log(1/δ)

))
(17)

Combining equations (14), (17) and (15), we obtain

sup
g∈GS

∣∣L̂k(g)− Ltτ (g)
∣∣ ≤√2

k
(1− τ) log(2/δ) +

1

k

(
2

3
log(2/δ) +

√
2(1− τ) log(2/δ) + 1

)
+

1

k
+ C

(√
VGS
k

log(1/δ) +
1

k

(
log(1/δ) +

√
VGS log(1/δ)

))

≤ 1√
k

(√
2(1− τ) log(2/δ)C

√
VGS log(1/δ)

)
+

1

k

(
5 + 2 log(1/δ) +

√
log(1/δ)(C

√
VGS +

√
2)
)

C Numerical experiments

C.1 Synthetic data from the Clover distribution

The Clover distribution introduced in [2] has the following density

f(x, y) =


3

10π r
4
0(1 + r60)

−3
2

(
5 + 4(x2+y2)2−32x2y2

r0(x2+y2)−
3
2

)
x2 + y2 < r0

3
10π

( 9(x2+y2)2−32x2y2

r0(x2+y2)−
3
2

)
x2 + y2 ≥ r0

with r0 = 1.248

Without loss of generality, only the points within the positive orthant are kept. Points labeled−1 are
rotated by an angle θ in the counterclockwise direction. Figure 6 provides an example of 2D points
from both distributions with θ = π

4 . the number of trees for both random forests (in the regular
setting and in the setting of Algorithm 1) is set to 200. The number of neighbors for both k-NN’s is
set to 5.

0 1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 labeled +1
labeled -1

Figure 6: Labeled dataset generated from a Clover distribution and its θ-rotated version.

Figures 7 and 8 illustrate once again the conclusions from Section 4.
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Figure 7: Clover data - test loss of random forest
on the simplex and regular random forest depend-
ing on the multiplicative factor κ.

0
1.

0
1.

0
0.

95
0.

95 0.
9

0.
9

0.
85

0.
85 0.

8
0.

8
0.

75
0.

75 0.
7

0.
7

0.
65

0.
65 0.

6
0.

6
0.

55
0.

55 0.
5

0.
5

0.
45

0.
45 0.

4
0.

4
0.

35
0.

35 0.
3

0.
3

Values of the multiplicative factor

0.2

0.3

0.4

0.5

0.6

Ha
m

m
in

g 
Lo

ss

Regular k-NN
k-NN on the Simplex

Figure 8: Clover data - test loss of k-NN on the
simplex and regular k-NN depending on the mul-
tiplicative factor κ.

C.2 Synthetic data from the Logistic distribution

The multivariate logistic model is a widely used model in the context of extreme value analysis, see
e.g. [4] or [15] for efficient simulation algorithms. The logistic distribution in Rd with parameter
δ ∈ (0, 1] has cumulative distribution function

F (x) = exp
{
−
( d∑
i=1

x
−1
δ
j

)δ}
, x ∈ (0,∞)d.

For small values of δ, extremes tend to occur simultaneously in all direction, that is, the angular
measure concentrates around the center of the positive orthant of the unit sphere. On the other hand,
for δ close to 1, extremes tend to concentrate near the axes, that is only one component at a time
is likely to be large. The positive and negative instances are respectively generated according to a
logistic distribution with parameter δ+ = 0.1 and δ− = 0.5, in dimension d = 4. Ten datasets are
simulated. Each one is composed of a train set and a test set containing respectively 104 and 105

instances. k the number of points used for training the classifier in Algorithm 1) is set to 100. The
multiplicative factor κ is made to vary between 1 and 0.3. Figure 9 displays evolutions of boxplots
of Hamming losses depending on the multiplicative factor κ: each box summarizes the distribution
of the losses obtained with the 10 considered datasets. It is analogue to Figure 4 using k-NN instead
of RF, from which similar conclusions can be drawn.
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Figure 9: Logistic data - test loss of k-NN on the simplex and regular k-NN depending on the multiplicative
factor κ.

C.3 Real-world data: Ecoli dataset

The Ecoli dataset contains 336 instances. There are 8 features: 7 numerical features and 1 cor-
responding to a sequence name. In our experimental framework the feature corresponding to the
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sequence name is dropped: we only work with the other features. The label to be predicted cor-
responds to the protein localization site among the 8 different localizations possible. In our exper-
iments the labeling is simplified: data labeled im are set to 1, all instances labeled differently are
set to −1. The classification problem is thus turned into a binary one. Figure 10 is the analogue of
Figure 5 using k-NN instead of RF, from which similar conclusions can be drawn.
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Figure 10: Real data - test loss of regular k-NN depending on the multiplicative factor κ.

Remark 7 (On the truncation step) In all experiments, the value of k is set to 100. Finding k, the
number of extreme observations involved in the computation of the empirical risk (9), is beyond the
scope of this paper though one could expect better results by improving the selection of k.
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