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Résumé

Nous nous intéressons dans cet article à la recherche d’information dans
les réseaux sociaux, en particulier les réseaux de partage de marque-pages
Internet (social tagging systems) comme delicious. Nous considérons que les
requêtes sont formulées par des membres du réseau, et qu’elles portent sur
des ressources partagées et classées selon le principe de la folksonomie, par
des mots clés (tags). Etant donné, la taille gigantesque de certains réseaux,
il est nécessaire de proposer des solutions efficaces, rapides et qui passent
à l’échelle. La solution proposée dans cet article exploite les liens entre les
membres du réseau pour déduire le degré de proximité entre l’auteur d’une
requête et les autres membres du réseau. Ces poids servent à guider l’al-
gorithme de recherche d’information vers les ressources supposées être les
plus pertinentes pour l’auteur de la requête. Ceci est fait en ligne et sans
calculs préalables. Les tests menés sur des jeux de données réels montrent
l’efficacité de notre algorithme.

Mots clés : top-k algorithms, information retrieval, social network, folksono-
mies

1 Introduction
Unprecedented volumes of data are now at everyone’s fingertips on the World

Wide Web. The ability to query them efficiently and effectively, by performant
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retrieval and ranking algorithms, has largely contributed to the rapid growth of the
Web, making it simply irreplaceable in our every day life.

A new dynamics to this development has been recently brought by the social
Web, applications that are centered around users, their relationships and their data.
Indeed, user-generated content is becoming a significant and highly qualitative
portion of the Web. To illustrate, the most visited Web site today is a social one.
This calls for adapted, efficient retrieval techniques, which can go beyond a classic
Web search paradigm where data is decoupled from the users querying it.

An important class of social applications are the collaborative tagging sites,
also known as folksonomies, with popular examples including Del.icio.us, Stum-
bleUpon or Flickr. Their general setting is the following :

– users form a social network, which may reflect proximity, similarity, friend-
ship, closeness, etc,

– items (e.g., document, URLs, photos, etc) are tagged by users with key-
words, for purposes such as description and classification, or to facilitate
later retrieval,

– users search for items having certain keywords (i.e., tags) or they are re-
commended items, e.g., based on proximity at the level of tags.

Folksonomies, and social applications in general, can offer an entirely new pers-
pective to how one searches and accesses information. The main reason for this is
that users can (and often) play a role at both ends of the information flow, as pro-
ducers and also as seekers of information. Consequently, finding the most relevant
items that are tagged by some keywords should be done in a network-aware man-
ner. In particular, items that are tagged by the users who are closer to the seeker
should be given more weight than the items that are tagged by more distant users.

We consider in this paper the problem of top-k retrieval in collaborative tag-
ging systems. We investigate this problem with a focus on efficiency, targeting
techniques that have the potential to scale to current applications on the Web.
(Note that the most popular ones have user bases of the order of millions and
huge repositories of data ; today’s most accessed social Web application, which
also provides tagging and searching functionalities, has more than half a billion
registered users.)

We associate with the notion of social network a rather general interpretation,
as a user graph whose edges are labeled by social scores, which give a measure
of the proximity or similarity between two users. These are then exploitable in
searches, as they say how much weight one’s tagging actions should have in the
result build-up. For example, even for tagging applications where an explicit so-
cial network is not present or is not exploitable, one may use the tagging history
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FIGURE 1 – A folksonomy and its social network.

of users to build a network based on similarity in tagging and items of interest.
While we focus mainly on folksonomies, we believe that these represent a good
abstraction for other types of social applications, to which our techniques could
directly apply.

The core problem for top-k retrieval raised in our setting is the following :
computing scores of top-k candidate items by iterating not only through the most
relevant documents with respect to the query, but also (or mostly) by looking at
the closest users and their tagged items (the term “closest” depends on certain
model assumptions and will be clarified shortly).

Example 1 Consider the collaborative tagging configuration of Figure 1. Users
have associated lists of tagged documents and they are interconnected by social
links. Each link is labeled by its (social) score, assumed to be in the [0, 1] interval.
Let us consider user u1 in the role of the seeker. The user graph is not complete,
as the figure shows, and only two users have an explicit social score with respect
to u1. For the remaining ones, u4, . . . , u8, only an implicit social score could
be computed from the existing links if a precise measure of their relevance with
respect to u1’s queries is necessary in the top-k retrieval.

Let us assume that u1 looks for the top 3 documents that are tagged with both
t1 and t2. Looking at u1’s immediate neighbors and their respective documents,
intuitively, D5 should have a higher score than D3, given that the former is tagged
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by a more relevant user (u1, whose social score is the maximal one). If we expand
the search to the entire social graph, the score of D3 may however benefit from
the fact that other users, such as u4 or even u8, also tagged it with t1 or t2.
Furthermore, documents such as D4 and D2 may also be relevant for the top 3
result, even though they were tagged only by users who are indirectly linked to u1.

Under certain assumptions to be clarified shortly, the top 3 documents for u1’s
query will be, in descending score order, D3, D2 and D4. The rest of the paper
will present the underlying model and the algorithm that allows us to compute this
answer.

Classic top-k retrieval algorithms, such as Fagin’s threshold algorithm [8] and
the no random access (NRA) algorithm, rely on precomputed inverted-index lists
with exact scores for each query term (in our setting, a term is a tag). Revisiting the
setting in Figure 1, we would have two per-tag inverted lists ILt1 = {D3 : 4, D2 :
4, D4 : 2, D5 : 1, D1 : 1} and ILt2 = {D3 : 4, D4 : 3, D1 : 2, D5 : 1, D2 : 1},
which give the number of times a document has been tagged with the given tag.

When user proximity is an additional ingredient in the top-k retrieval process,
a direct adaptation of the threshold algorithm and variants in the network-aware
setting would need precomputed inverted-index lists for each user-tag pair. For
instance, if we interpret explicit links in the user graph as friendship, ignoring
the link scores, and only tagging by direct friends matters, u1’s lists would be
ILu1,t1 = {D2 : 2, D3 : 1, D5 : 1} and ILu1,t2 = {D3 : 1, D1 : 1, D5 : 1}.
Other 14 such lists would be required and, clearly, this would have prohibitive
space and computing costs in a real-world setting. The work presented in [1] is
the first to address this issue, considering the problem of network-aware search
in collaborative tagging sites, though by a simplified flavor. More precisely, the
authors consider an extension to classic top-k retrieval in which user proximity is
seen as a binary function (0−1 proximity) : only users who are directly connected
to the seeker can influence the top-k result. This introduces two strong simplifying
restrictions : (i) only documents tagged by the seeker’s friends should be relevant
in the search, and (ii) all the friends of a given seeker are equally important.

The base solution of [1] is to keep for each tag-item pair, instead of the detai-
led lists per user-tag pair, only an upper-bound value on the number of taggers :
the maximal number of taggers from any user’s neighborhood. For instance, the
upper-bound for (t1, D2) would be 2, since for any user there are at most two
neighbors who tagged D2 with t1. This is called the GLOBAL UPPER-BOUND

strategy. A more refined version, which trades space for efficiency, keeps such
upper-bound values within clusters of users, instead of the network as a whole.
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The main drawback of [1]’s approach is that it cannot apply under a more general
social search interpretation, in which a tagger’s importance for the top-k result
depends on how strongly she is related to the seeker (without necessarily being a
direct friend thereof).

In [14], the network-aware retrieval problem for collaborative tagging is consi-
dered under a general interpretation, the one we also adopt in this paper. In consi-
ders that even users who are only indirectly connected to the seeker can be relevant
for the top-k result. Their CONTEXTMERGE algorithm follows the intuition that
the users closest to the seeker will contribute more to the score of an item, thus
maximizing the chance that the item will remain in the final top-k. The authors
describe a hybrid approach in which, at each step, the algorithm chooses either to
look at the documents tagged by the closest unseen user or at the tag-document
inverted-index lists (a seeker agnostic choice). In order to obtain the next (unseen)
closest user at any given step, the algorithm precomputes in advance the proxi-
mity value for all possible pairs of users. These values are then stored in ranked
lists (one list per user), and a simple pointer increment allows to obtain the next
relevant user.

Example 2 Consider the network of Figure 1. With respect to seeker u1, the list
of users ranked by their proximity would be

{u2 : 1, u5 : 0.8, u4 : 0.64, u6 : 0.6, u7 : 0.44, u8 : 0.3, u3 : 0.2},

when proximity for two users is computed by the maximal product of scores over
paths linking them.

The main drawback of [14] is scalability. Clearly, precomputing a weighted tran-
sitive closure over the entire network has very high costs in terms of space and
computation in even moderate-size social networks. More importantly, keeping
these proximity lists up to date when they reflect tagging similarity 1 (as advoca-
ted in [14]), would simply be unfeasible in real-world settings, which are highly
dynamic. (We revisit these considerations in Section 4.)

Main contributions. We propose an algorithm for top-k answering in collabora-
tive tagging, which has the potential to scale to current applications and beyond.
We first consider a key aspect of the problem : accessing efficiently the closest
users for a given seeker. We describe how this can be done on the fly (without any

1. For top-k search by tags, tagging similarity may indeed be a more pertinent proximity mea-
sure than friendship.

5



pre-computations) for several possible choices of proximity computation in a so-
cial network, arguably the most natural ones. The interest in doing this is twofold :

– we can iterate over the relevant users in more efficient manner, since a ty-
pical network can easily fit in main-memory ; this can spare the potentially
huge disk volumes required by [14]’s algorithm (see Section 4), while also
having the potential to run faster.

– when the social network depends on the tagging history, we can keep up-to-
date the network and, by it, all the proximity values at any given moment,
with very little overhead.

Based on this, our top-k algorithm is sound and complete, and exhibits the same
behavior as the one from previous literature. For further efficiency, we analyze in
more depth this behavior on a Del.icio.us dataset and identify promising direc-
tions for settings where trading completeness is acceptable.

Other related work. The topic of search in a social setting has received increased
attention lately. Studies and models of personalization of social tagging sites can
be found in [15, 9, 7, 16]. Other studies have found that including social know-
ledge in scoring models can improve search and recommendation algorithms.
In [5], personalization based on a similarity network is shown to outperform other
personalization approaches and the non-personalized social search. A study on a
last.fm dataset in [10] has found that incorporating social knowledge in a graph
model system improves the retrieval recall of music track recommendation algo-
rithms. The scoring model used in [14] is revisited in [17]. There, a textual rele-
vance and a social influence score are combined in the overall scoring of items,
the latter being calculated as the inverse of the shortest path between the seeker
and the document publishers. An architecture for social data management is given
in [2, 3], along with a framework for information discovery and presentation in
social content sites.

The rest of the paper is organized as follows. In Section 2 we formalize the top-
k retrieval problem in collaborative tagging applications. We describe a key aspect
of our approach, the on-the-fly computation of proximity in Section 2.1. We then
describe our top-k algorithm, in an exclusively social form, in Section 3 (the des-
cription of the algorithm for the general case can be found in the technical report).
We discuss performance and scalability issues in Section 4. We conclude by pro-
viding in Section 5 some insight on the behavior of the algorithm on a Del.ico.us
dataset, which motivates potential directions for efficiency by approximation.
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2 General setting
We consider a social setting in which we have a set of items (these could be

text documents, URL, photos, etc)

I = {i1, i2, . . . , im},

each tagged with one or more distinctive tags from a dictionary of tags T =
{t1, t2, . . . , tl} by one or more users from U = {u1, . . . , un}. We assume that the
users form an undirected weighted graph G = (U , E, σ) called the social network.
In G, each node represents a user and σ is a function that associates to each edge
e = (u1, u2) a value in (0, 1], called the proximity (or social score) between users
u1 and u2.

Given a seeker user s, a keyword query Q = (t1, ..., tr) (composed of a set of
r distinct tags) and an integer value k, the top-k retrieval problem is to compute
the (possibly ranked) list of the k items having the highest scores with respect to
the seeker and query.

Extending the model for social tagging systems presented in [1], we also as-
sume the following two relations for tags :

– tagging : Tagged(v, i, t) : says that a user v tagged the item i with tag t,
– tag proximity : SimTag(t1, t2, λ) : says that tags t1 and t2 are similar, with

similarity value λ ∈ (0, 1).
We assume that a user can tag a given item with a given tag at most once. We
first model for a user, item and tag triple (u, i, t) the score of item i for the given
seeker u and tag t. This is denoted score(i | u, t). Throughout this paper we use a
“social” scoring function similar to the one of [14], which amounts to a simplified
form of BM25, as follows :

score(i | u, t) = (p+ 1)fr(i | u, t)
p+ fr(i | u, t)

× idf(t), (2.1)

where fr(i | u, t) is the overall term frequency of item i given the seeker u and
tag t, idf(t) is the inverse document frequency for tag t, and p is an application
dependent parameter.

The inverse frequency is defined in fairly standard manner as follows :

idf(t) = log
|I| − |{i | Tagged(v, i, t)}|+ 0.5

|{i | Tagged(v, i, t)}|+ 0.5
. (2.2)
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The overall term frequency function fr(i | u, t) is defined as a combination of a
network-dependent component and a document-dependent one, as follows :

fr(i | u, t) = α× tf(t, i) + (1− α)× sf(i | u, t). (2.3)

The former component, tf(t, i), is the term frequency of t in i, i.e., the number
of times i was tagged with t. The latter component stands for social frequency, a
measure that depends on the seeker.

If we consider that each user brings her own weight (proximity) to the score
of an item, we can define the measure of social frequency as follows :

sf(i | u, t) =
∑

v∈{v | Tagged(v,i,t))}

σ(u, v). (2.4)

Alternatively, we might assume that only the most relevant user with respect to
the seeker should determine the social frequency score of an item, thus having the
following possible definition :

sf(i | u, t) = tft(i)×maxv∈{v | Tagged(v,i,t)}σ(u, v) (2.5)

Then, given a query q as a set of tags (t1, . . . , tr), the overall score of i for seeker
u and query q,

score(i | u, q) = g(score(i | u, t1), . . . , score(i | u, tr)),

is obtained using a monotone aggregate function g over the individual scores for
each tag. In this paper, the aggregation function g is assumed to be a summation,
g =

∑
tj∈Q scoretj(i, u).

Extended proximity. The above scoring model takes into account only the
neighborhood of the seeker (the users directly connected to her). But this can
be extended to deal also with users that are indirectly connected to the seeker
(friends-of-friends and beyond). We denote by σ+ an extended proximity, which
should be computable from σ for any pair of users connected by a path in the net-
work. Now, σ+ can replace σ in the two definitions of social frequency we consi-
der before (Equations (2.4) and (2.5)), yielding an overall item scoring scheme
that depends on the entire network instead of only the seeker’s vicinity. We dis-
cuss shortly possible alternatives for σ+ by means of aggregating σ values along
paths in the graph. In the rest of this paper, when we talk about proximity we refer
to the extended one.
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For a given seeker u, by her proximity vector we denote the list of users with
non-zero proximity with respect to u, ordered in descending order of these proxi-
mity values.

Remark 1. In Equation (2.3), the α parameter allows to tune the relative im-
portance of the social component with respect to classic term frequency. When
α is valued 1, the score becomes network-independent. On the other hand, when
α is valued 0 the score depends exclusively on the social network. We will des-
cribe in this paper only the top-k retrieval algorithm for this particular case, its
generalization to arbitrary α values is given in the technical report.

Remark 2. Note that a network in which all the user pairs have a proximity
score of 1 amounts to the classical document retrieval setting (i.e., the result is
independent of the user asking the query).

Remark 3. Tag similarity can be integrated into Equation 2.4, e.g., , by setting
a threshold τ such that when SimTag(t, t′, λ), with λ above τ , and Tagged(v, i, t′),
we also add σ(u, v) to
sf(i | u, t). For the sake of simplicity this is ignored in the description of our
approach, but remains an integral part of the model.

2.1 Possible definitions for σ+

We describe in this section a key aspect of our algorithm for top-k search,
namely on-the-fly computation of proximity values with respect to a seeker s. The
issue here is to facilitate at any given step the retrieval of the most relevant unseen
user u in the network, along with her proximity value σ+(s, u). This user will
have the potential to contribute the most to the partial scores of items that are still
candidates for the top-k result, by Equations (2.4) and (3.1).

We start by considering possible definitions for σ+, drawing inspiration from
studies in the area of trust propagation for belief statements.

Candidate 1. Experiments on trust propagation in the Epinions network (for
computing a final belief in a statement) [13] or in P2P networks show that (i)
multiplying the weights on a given path between u and v, and (ii) choosing the
maximum value over all the possible paths, gives the best results (measured in
terms of precision and recall) for predicting beliefs. We can adapt this to our sce-
nario by assuming that belief refers to tagging with a tag t. We thus aggregate the
weights on a path p = (u1, . . . , ul) (with a slight abuse of notation) as

σ+(p) =
∏
i

σ(ui, ui+1).
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For seeker u1 in our running example, we gave in the previous section the proxi-
mity values and the ordering of the network under this candidate for σ+.

Candidate 2. A possible drawback of Candidate 1 for proximity aggregation is
that values may decrease quite rapidly by multiplication. A σ+ function that avoids
this could be obtained by replacing multiplication over a path with minimal, as
follows :

σ+(p) = min{σ(ui, ui+1)}.

Under this candidate for σ+, the values with respect to seeker u1 would be the
following :

{u2 : 1, u5 : 0.8, u4 : 0.8, u7 : 0.7, u8 : 0.7, u6 : 0.6, u3 : 0.2}.

Candidate 3. Another possible definition for σ+ we consider relies on an ag-
gregation over a path that penalizes long paths, i.e., distant users, as follows :

σ+(p) = 2
−

∑
i

1
σ(ui,ui+1) .

Under this candidate for σ+, the rounded values with respect to seeker u1 would
be the following :

{u2 : 0.5, u5 : 0.21, u4 : 0.08, u6 : 0.06, u7 : 0.03, u3 : 0.03, u8 : 0.01}.

Using any of the three candidate definitions for weight aggregation over one path,
we then define σ+ for any pair of user who are connected in the network by taking
the maximal weight over all their connecting paths. More formally, we define
σ+(s, u) as

σ+(s, u) = maxp{σ+(p) | s p u}. (2.6)

Note that when the first candidate (multiplication) is used, we reach the same
aggregation scheme as in [13], which is also the one employed in [14] in the
context of top-k network aware search.

Example 3 For our running example, if we use Candidate 1 in Equation (2.6) and
we assume that the seeker is u1, for α = 0 (hence exclusively social relevance),
by Equation 2.3 we obtain the following values for social frequency : SF(u1,t1) =
{D2 : 2.44, D3 : 1.58, D4 : 1.08, D5 : 1, D1 : 0.6} and SF(u1,t2) = {D3 :
1.88, D4 : 1.1, D5 : 1, D1 : 0.84, D2 : 0.6}.

We argue next that to all these possible flavors for computing user proximity a
greedy approach is applicable. This will allow us to browse the network of users
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on the fly, at query time, visiting them in the order of their proximity with respect
to the seeker. More precisely, in style similar to Dijkstra’s algorithm [6], we will
maintain a max-priority queue whose top element will be at any moment the most
relevant unvisited user 2. A user is visited when her tagged items are taken into
account in the top-k result computation, as described in the following sections
(this can occur at most once).

At each step advancing in the network, the top of the queue is extracted (vi-
sited) and its unvisited neighbours (adjacent nodes) are added to the queue (if
not already present) and are relaxed . Let ⊙ denote the aggregation function over
a path (one among the three candidates). Relaxation updates the best proximity
score of these nodes, as follows :

Algorithm 1 Relaxation
if σ+(s, u)⊙ σ(u, v) > σ+(s, v) then
σ+(s, v) = σ+(s, u)⊙ σ(u, v))
v.previous = u

end if

We can prove that this greedy approach allows us to visit the nodes of the
network in decreasing order of their proximity with respect to the seeker. This is
because the following property holds for all three candidates for σ+ :

Property 1 Given a social network G and a seeker user s, for any other user v in
G that is connected to s we have

σ+(s, v) ≥ σ+(s, v.previous).

We describe in the following section how this greedy procedure for iterating over
the network is exploited in our top-k social retrieval algorithm.

3 Top-k algorithm for α = 0

As the focus of this paper is on the “social” aspects of our technique, we
detail here our top-k algorithm for the special case when the parameter α is 0
(its extension the arbitrary α values is given in a companion technical report). As

2. Dijkstra’s classic algorithm [6] computes single-source shortest paths in a weighted graph
without negative edges.
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usual, we assume that for each tag t there is an inverted-index list giving the items
i tagged by it, in descending order of the term frequencies tf(t, i). Also, for each
user u and tag t, there is a precomputed projection over the Tagged relation for
them, giving the list of items tagged by u with t (no particular order is assumed).

For α = 0 , the term frequency tf(t, i) of an item is no longer relevant : how
often an item i was tagged with a given tag t does not matter, it only matters which
users tagged i with t. From Equation (3.1), the score for one tag now becomes the
following :

score(i | u, t) = (p+ 1)sf(i | u, t)
p+ sf(i | u, t)

× idf(t). (3.1)

We mainly detail the computation of social frequency, sf(i | u, t), as it is the key
parameter in the ranking of items. Since by α = 0 we do not use metrics that are
tag-only dependent, it is no longer necessary to treat each tag of the query as a
distinct dimension and to visit each in round-robin style (as done in the threshold
algorithm or in CONTEXTMERGE). We can simply get at each step, for the cur-
rently visited user, all the items that were tagged by her with query terms. We call
this approach “user-at-a-time”.

For each tj ∈ Q, by max_users(i, tj) we denote the maximal number of yet
unvisited users who may have tagged item i with tag tj . This value is initially set
to the maximal term frequency of tj over all items, max_tf(tj), value which is
available at the head of the inverted-index list of tj .

Each time we visit a user u who tagged item i with tj we can update sf(i | s, tj)
by adding σ+(s, u) to it and we can remove 1 from max_users(i, tj). When the
latter reaches 0, the score of i w.r.t. tj , sf(i | s, tj), will be final. This also gives
us a possible termination condition, as discussed in the following.

At any moment in the process, the optimistic overall score for an item i that has
been already seen, MAX_SCORE(i, q), will be estimated using as social frequency
for each tag tj of the query the following value :

sf(i | s, tj) + top(H)×max_users(i, tj),

while the pessimistic overall score MIN_SCORE(i, q), is estimated by the assump-
tion that the current social frequencies, sf(i | s, tj), will be the final ones. For the
top-k candidate items, we keep a list D of all items, sorted in descending order by
their minimal possible scores, MIN_SCORE(i, q), as given before.

An upper-bound score of the yet unseen documents,
MAX_SCORE_UNSEEN, can be estimated as follows

MAX_SCORE_UNSEEN = top(H)×maxtf (tj).
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When both MAX_SCORE_UNSEEN and the maximal optimistic score of items that
are already in D but not in its top-k are less than the pessimistic score of the last
element in the current top-k of D (denoted D[k]), then the run of the algorithm
can terminate, as we are guaranteed that the top-k can no longer change. (Note
however that at this point the top-k items may have only partial scores. If a ranked
answer is needed then the process of visiting users should continue.)

Algorithm 2 Top-k algorithm for α = 0

Require: seeker s, query Q = (t1, . . . , tr)
1: for all nodes v, tags tj , items i do
2: σ+(s, v) = −∞
3: sf(i | s, qj) = 0
4: end for
5: σ+(s, s) = 0 ; D = ∅
6: H ← max-priority queue of nodes u (sorted by σ+(s, u))
7: while H ̸= ∅ do
8: u=EXTRACT_MAX(H) ;
9: for all i and tj s.t Tagged(u, i, tj) do

10: sf(i | s, tj)← sf(i | s, tj) + σ+(s, u)
11: if i ∈ D then
12: max_users(i, tj)← max_users(i, tj)− 1
13: else
14: add i to D
15: max_users(i, tj)← max_tf(tj)− 1
16: end if
17: end for
18: for all users v s.t. σ(u, v) ∈ E do
19: RELAX(u,v)
20: end for
21: if MIN_SCORE(D[k], q) > maxl>k(MAX_SCORE(D[l], q) AND

MIN_SCORE(D[k], q) > MAX_SCORE_UNSEEN then
22: break
23: end if
24: end while
25: return D[1], . . . , D[k]

We can prove the following property :

Property 2 Given a social network G and a seeker user s, Algorithm 2 visits the
users of the network in decreasing order of their σ+ values with respect to s.
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As a corollary of the above property we have that Algorithm 2 visit the users who
may be relevant for a query in the same order as the CONTEXTMERGE algorithm
of [14] in the case when α = 0.

4 Scaling and performance
We argue in this section that, in a real-world setting, our algorithm outper-

forms the one from existing literature both in terms of memory requirements and
execution time.

Let us consider, as an illustrating example, one of the most popular folksono-
mies, Del.icio.us, which currently has probably around 107 users. (Twice less than
that was reported in 2008 for Del.icio.us ; the image tagging system Flickr has a
user base of comparable size.) Unsurprisingly, this social network is quite sparse,
with an average degree of about 100. If a similar graph configuration would be
maintained when weights (the σ function) are associated to the edges of the net-
work (e.g., based on tagging proximity or some other measure) the size of an index
that would precompute the extended proximity value for each pair of connected
users in the network (the σ+ function) would be roughly of 700 terabytes (i.e.,
(107)2 × 7 bytes, considering that 3 bytes are necessary for an user Id and 4 bytes
are necessary for the float value of proximity). On the other hand, the weighted
graph alone would require memory space of roughly 7 gigabytes (as 107×100×7
bytes), and could easily fit in the RAM space of an average commodity worksta-
tion. Furthermore, existing techniques for network compression [4] might allow
us to reduce the space required to store the network by a factor of 10 − 15 while
still supporting efficient updates and random access on compressed data.

The difference in memory requirements for the two alternatives becomes much
more drastic when assuming a user base of the order of Facebook’s social network,
which currently consists of roughly 5 × 108 users (and is still growing at a fast
pace). Precomputed lists for extended proximity go up to about 400 petabytes of
memory space, while the network itself requires only about 400 gigabytes. The
space needed to store the network can further decrease to fit RAM capacity that
moderate commodity servers can provide today, if considering the compression
techniques mentioned previously.

We next discuss the time performance aspects, which are however less impor-
tant in our view, compared with the memory and updatability advantages that our
algorithm presents.

Let n denote the number of users and let e denote the number of edges in the
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disk RA disk SA RAM access
CONTEXTMERGE 1 n (|Q| − 1)× n

Our algorithm 0 0 O(n lg n+ e) + (|Q| − 1)× n+ n+ e

TABLE 1 – Comparison of computational costs for processing a query Q.

network. We assume without loss of generality that the query consists of a single
tag (when the query has multiple tags, all dimensions can share the results of a
single σ+ computation).

For our algorithm, let us assume that the social network resides in main me-
mory, e.g., by means of adjacency lists : for each vertex, we have a list of its
neighbours and their associated weights (we can safely assume the list comes pre-
sorted descending by weight). For one top-k query execution, we will need at
most n + e operations to visit the entire network (we are guaranteed to take each
vertex only once). For the proximity computation we can use a Fibonacci-heap
based max-priority queue, since our graph is likely to be very sparse [12]. Each
insertion into the heap takes O(1) amortized time, each extraction takes O(lg n)
and each increase of a key (a relaxation step) takes O(lg n), for an overall queue
complexity of O(n lg n+ e).

CONTEXTMERGE requires no computations for proximity at query time. Ho-
wever, it uses disk accesses to read the precomputed proximity values : one ran-
dom access to locate the seeker’s list and n sequential disk accesses to read this
list. (It suffices to do this just for one query term, and then keep and access a
shared copy of this list in main memory.)

If we value the time taken by a memory access as 1 and the time taken by a se-
quential disk access as t (usually about five orders of magnitude slower than RAM
access), with minor simplifications, we have that our algorithm has the potential
to perform better than CONTEXTMERGE when the following holds :

t > lg n+
e

n
.

Put otherwise, the sparseness of the network should be as follows :

e < n× (t− lg n).

A summary of this comparison on execution time is presented in Table 1. Note
that in this analysis we omitted initialization costs : the overhead necessary for
CONTEXTMERGE to compute the σ+ values for all possible user pairs and the
overhead to load in main-memory the social network, for our algorithm.
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5 Further improving efficiency
We conclude by giving in this section some considerations on improving effi-

ciency when approximate top-k answers are accepted.
The algorithm described in the previous section is sound and complete, and

requires no precomputed information on proximity. The downside to this is that,
in practice, it may visit too many users and their documents before being able to
conclude that the top-k answer can no longer change. Note that to test termination,
we used the tightest possible conditions (which might indeed be met in a social
tagging configuration), when no additional knowledge on the values of the proxi-
mity vector for a given seeker is available (this was also the assumption in [14]’s
CONTEXTMERGE algorithm).

But if one has certain information on how the values in a proximity vector
variate from the most relevant user to the least relevant one, this would enable us
to use more refined termination conditions. Extensive experiments on Del.icio.us
data show that in average the last top-k change occurs in general sooner, hence
there is a clear opportunity to improve the running time by stopping the visit
of the network earlier. Equally important, we found that proximity vectors (their
sequences of values) can be tightly approximated by power laws. For more details
on these experimental results we refer the reader to the technical report.

Hence one possible direction for reducing the number of visited users is to pre-
compute and materialize for each seeker a power law approximation of its proxi-
mity vector. This would allow us to use a more accurate estimation for the remai-
ning (unseen) users, instead of uniformly associating them the score of top(H).
Though this may obviously introduce approximations in the final result, it present
two main advantages :

– negligible memory consumption : only a power law description for each
seeker is required, so these could well fit in the RAM space,

– robustness in dynamic networks : even when the network is quite dynamic,
and even when the social graph depends on tagging actions (e.g., reflects
tagging similarity), the power law approximation of the proximity vector is
much less subject to significant change under a reasonable number of up-
dates. It would thus be sufficient to adjust these power law approximations
only periodically.
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