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Abstract—The analyses of cellular network performance based
on stochastic geometry generally ignore the traffic dynamics
in the network. This restricts the proper evaluation and di-
mensioning of the network from the perspective of a mobile
operator. To address the effect of dynamic traffic, recently, the
mean cell approach has been introduced, which approximates
the average network load by the zero cell load. However, this
is not a realistic characterization of the network load, since a
zero cell is statistically larger than a random cell drawn from
the population of cells, i.e., a typical cell. In this paper, we
analyze the load of a noise-limited network characterized by high
signal to noise ratio (SNR). The noise-limited assumption can be
applied to a variety of scenarios, e.g., millimeter wave networks
with efficient interference management mechanisms. First, we
provide an analytical framework to obtain the cumulative density
function of the load of the typical cell. Then, we obtain two
approximations of the average load of the typical cell. We show
that our study provides a more realistic characterization of the
average load of the network as compared to the mean cell
approach. Moreover, the prescribed closed form approximation
is more tractable than the mean cell approach.

I. INTRODUCTION

Stochastic geometry has emerged as an important tool for
modeling and analyzing large scale wireless cellular net-
works [1], wherein the performance is typically character-
ized by studying metrics such as signal to interference plus
noise ratio (SINR) coverage probability and user throughput.
To effectively model the user throughput and to efficiently
dimension a cellular network from the operators’ perspective,
the characterization of the cell load is necessary. The existing
literature in stochastic geometry models the cell load by
considering the average number of associated full buffer users,
uniformly distributed over the cell area, see e.g., [1], [2]. This
is not realistic since it ignores the effect of dynamic traffic
on the user distribution: users with low data rate tend to stay
longer in the system, and as a result, the user distribution
becomes inhomogeneous in space.

However, studying dynamic traffic using elements of queu-
ing theory in stochastic geometry based analyses is still an
open problem [1]. In this regard, Blaszczyszyn et al. [3], have
introduced the mean cell approach which avoids extensive
simulations by approximating the spatial SINR distribution of
a cell with the SINR distribution of the typical user. Thus,
in essence, the mean cell approach characterizes the load of
the cell containing the typical user, i.e., the zero cell [4].
Although this approach enables to model the cell load, it
may lead to intractable expressions consisting of multiple
integrals for evaluation of the SINR coverage probability.

Moreover, a characterization of the load of the zero cell is
not a reliable metric for evaluating the network wide load
distribution since the zero cell is statistically larger than a
random cell drawn from the population of cells, i.e., a typical
cell. To understand this intuitively, one can assume a random
sample point and select the cell containing the point. By
stationarity, the distribution of this cell coincides with that of
the zero cell. Since the sample point tends to fall with greater
probability into larger cells, the zero cell tends to be larger than
the typical cell. In this paper, for the case of noise-limited
networks, we provide approximations for the network load
by characterizing the load of the typical cell. This provides a
more realistic characterization of the network load. This noise-
limited assumption can be applied to a variety of contexts. For
example, in millimeter wave (mm-wave) networks that utilize
directional antennas and advanced interference management
mechanisms, the performance tends to be noise-limited. Singh
et.al [5] have shown the validity of the noise-limited network
assumption in mm-wave mesh networks. Furthermore, this
noise-limited scenario enables us to visualize our results in
light of the seminal work of Bonald et al. [6] who derived the
cell load expressions for a single cell with dynamic traffic.

The contribution of this paper is as follows. We obtain a
closed form expression for the cumulative density function
(CDF) of the load of the typical cell in a noise-limited network
by considering dynamic traffic. We use it to obtain the fraction
of stable cells for a given deployment density of small cells.
Then, we obtain a single integral based approximation, and
a closed form expression, for the average load of the typical
cell. We show that the first approximation models the cell load
from a network perspective more accurately than the mean
cell approach. Whereas, the closed form expression provides
a faster and more tractable alternative to calculate the network
load, since it does not require evaluation of integrals.

The rest of the paper is organized as follows. In Section
II we introduce the single tier network and the associated
parameters. In Section III, we present our main results on
the CDF and the average of the load of the typical cell of
the network. In Section IV, we present the results on the
stable fraction of the network and we show the accuracy
of our derived approximations with respect to Monte-Carlo
simulations. Finally, the paper concludes in Section V.

II. SYSTEM MODEL

We consider a single-tier cellular network equipped with
advanced interference management algorithms, so that the user



performance is noise-limited.
The positions of the base stations (BS) are modeled as points

of a Poisson point process (PPP) φ with intensity λ [m−2].
The BSs operate with a transmit power Pt, and the product
of the gains of the antennas at the transmitter and the receiver
is G0. We consider a fast fading that is Rayleigh distributed
with variance equal to one. Furthermore, we assume a path
loss model where the power at the origin received from a BS
located at a distance r is given by Pr = K · Pt · h ·G0 · r−α,
where K is the path loss coefficient, h is the exponentially
distributed fading power, and α is the path loss exponent. Thus,
the average SNR can be written as K·Pt·G0·r−α

N0·B = ξr−α, where
ξ = K·Pt·G0

N0·B is the average SNR at 1 m. N0 and B are the
noise power density and the operating bandwidth, respectively.

In this network, we assume that the users arrive in the
system, download a file, and leave the system. Any new
download by the same user is considered as a new user. The
arrival process of the new users is Poisson distributed with
an intensity λU [users ·s−1·m−2] and these new users are
uniformly distributed over the network area A. The average file
size is σ [bits/user]. When there are n users simultaneously
served by a BS, the available resources are equally shared
between them in a Round Robin fashion. Accordingly, we
define the traffic density w in the network as w = λU · σ
[bits·s−1·m−2]. Note that, while the user arrivals are uniform
in space, as the space-time process evolves, users farther
from the serving BSs, i.e., characterized by lower data rates,
stay longer in the system, resulting in an inhomogeneous
distribution of active users in the network.

III. CHARACTERIZATION OF THE NETWORK LOAD

A. Static vs Dynamic Load
Before proceeding to our main results, it is necessary to

discuss the distinction of dynamic cell-load characterization
as compared to the approaches that model the cell load as
simply the average number of associated users to a BS [7].
For this we compare the downlink user throughput using the
two approaches to study the difference. First, in our system
model, we calculate the dynamic cell load using the study of
Bonald et.al. [6], say ρ̄. Then use it to calculate the downlink
user throughput Rdyn, which is given by [6]:

Rdyn = w
1− ρ̄
ρ̄
·A, (1)

where, the area of the typical cell A is approximated as A = 1
λ ,

and the average number of active users in the dynamic traffic
model [3] is: N = ρ̄

1−ρ̄ To compare Rdyn with that obtained
using the analyses in the existing literature [2], [7], we assume
that the users are located homogeneously in each cell of the
network following a PPP with an average of N users per cell.
Using this assumption, we carry out simulations to obtain the
downlink user throughput TPPP as:

RPPP = En
[
B

n
log2 (1 + SINR)

]
, (2)

where the expectation is taken with respect to the number
of users in each cell (n), which is Poisson distributed with
mean N , as well as the SINR of each user in each cell. The

Figure 1: Throughput comparison of mean cell approach with
PPP distributed users.

difference between Rdyn and RPPP is highlighted in Fig. 1.
Even though the average number of users in both cases are
same, as the space-time process with dynamic traffic evolves,
the user distribution is no longer homogeneous in space which
is not taken into account in existing studies.

B. Preliminaries

In case of single-tier random cellular networks, the cell of
a BS is given by the Poisson-Voronoi (PV) partition of the
space [4]. In the R2 plane, the PV region of a BS located at
x0 ∈ φ is: A = {y : ||y − x0|| < ||y − xi||;∀xi ∈ φ\{x0}}.

The mosaic of the cells formed for all such x0 from a PPP
is called a PV network. To investigate the geometry-dependent
characteristics of the cells (e.g., the cell load), in a stationary
random PV network, it is imperative to define the notion of
the ‘average’ cell. Thus, we recall the following definitions
that provide a characterization of the average cell.

Definition 1. The zero cell or the Crofton cell of the PV
network is defined as the cell containing a given fixed point
in its interior [4].

Definition 2. The typical cell of a PV network is defined as a
cell selected at random within a large region of the network
with equal chances for each cell to be picked [4]. Thereafter,
the network is translated so that the center of the typical cell
becomes the origin.

The zero cell versus typical-cell approaches of modeling the
network performance corresponds to the evaluation from the
perspectives of the user and the network operator, respectively.
Hence, for the case of analyzing the network load, the zero cell
perspective is not an accurate way of characterization. In what
follows, we first define the load of the typical-cell and then,
discuss how the load of the zero cell is generally obtained.
Then we present our analysis to characterize the load of the
typical cell and hence the average network load.

1) Average Load of the Typical Cell: The load of the typical
cell in the network can be calculated as:

ρ =

∫
A

w

C(s)
ds, (3)

where C(s) is the rate that a user located at s receives in
the typical cell A, calculated using the Shannon formula. The
random variable ρ characterizes the load of the cell centered
at x0, and depends on the shape and size of A.

The average load of the typical cell is then calculated by
taking the expected values of loads for different realizations
of the PPP itself: ρ̄ = E[ρ],



2) Mean Cell Approximation: In case of PV cells, the
average load of the typical cell is generally difficult to evaluate
because the shape and size of the typical cells is random.
However, by using the ergodicity of the PPP, the area of the
typical cell can be approximated as 1

λ [7]. Then, by assuming
the network to be noise-limited, the average load can be
approximated using the mean cell approach [3], as:

ρ̄MC =

∫
T

w

Bλ log2(1 + T )
p(T )dT, (4)

where the expectation is taken with respect to the signal to
noise ratio (SNR) (T ) variations averaged over the fast fading,
and p(T ) = −dPC(T )

dT is the probability density function (pdf)
of the SNR of the typical user obtained by differentiating the
SNR coverage probability, PC(T ). Thus, the cell load can be
calculated numerically, given the SNR distribution.

However in the mean cell approach, as the expectation
is taken with respect to the SNR variations of the typical
user, it calculates the expected load of the zero cell which
is statistically larger than the typical cell [4]. Thus, the mean
cell approach, always overestimates the load of the typical cell.
In the next sections, we propose a new approximation, which
is both more accurate and more tractable. First, we derive the
CDF of the cell load of the typical cell using the distribution of
its area. Then, we obtain a single-integral based and a closed
form approximation for the average load of the typical cell.

C. Distribution of the Area of the Typical Cell
The reduced area of a PV cell is defined as [4] :

s = A/E[A], (5)

where A is the area of the typical cell, and E [·] is the
expectation operator. The pdf of the reduced area of the typical
PV cell in two dimensions is given by [8]:

fs(x) =
343

15

√
7

2π
x5/2 exp

(
−7

2
x

)
. (6)

Using this, we can obtain the CDF of the area as given below.

Lemma 1. The CDF of the area of the typical PV cell for a
PPP with intensity λ is given by:

FA(x) =
343

15

√
7

2π

(
2

7

)7/2

γinc

(
7λx

2
,

7

2

)
, (7)

where γinc(·) is the lower incomplete gamma function given
by: γinc(x, a) =

∫ x
0
ta−1 exp(−t)dt.

Proof. The CDF can be easily derived using the relation (5)
and integrating (6).

D. Distribution of the Load of the Typical Cell
For obtaining the CDF of the load of the typical cell, we

assume that the shape of PV cells is circular. Although in a real
PV network, almost surely no circular cells occur, our results
show that the circular assumption does not greatly deteriorate
the derived approximation. Accordingly, the load of a typical
cell (3) with area A is approximated as [6]:

ρTC(A) ≈ ρAP (A) =

∫ 2π

0

∫ √A
π

0

wr

Bλ log2 (1 + ξr−2)
drdθ.

Theorem 1. The distribution of the load of the typical cell, ρ
is given by:

Fρ(l) = FA

(
π

(
1

ξ
exp

(
−α

2
Ei−1

(
− l

K ′

)))−2
α

)
(8)

where K ′ = 4wπ ln(2)ξ
α2Bλ ξ

2
α and the symbol Ei−1(x) is the

inverse of the exponential integral. For the special case of
α = 2, it is approximated as:

Fρ(l) ≈ FA

ξπ
(

1 + exp
(
− l
K1

))
exp

(
− l
K1

)
 , (9)

where K1 = wπ ln(2)ξ
Bλ .

Proof. According to our assumption of high SNR for dense
networks, we can approximate 1+ξr−α as ξr−α. Substituting
ln (ξr−α) = y, we have:

ρAP (A) = K ′
∫ ∞

ln
(
ξ(π/A)

α
2

) exp(−y)

y
dy

= K ′E1

(
2

α
ln

(
ξ
( π
A

)α
2

))
, (10)

where, K ′ = 4wπ ln(2)ξ
α2Bλ ξ

2
α and E1(·) is the exponential integral

function [9]. The CDF is then simply obtained by some
algebraic manipulations of the expression P(ρAP (A) ≤ l).
For the special case of α = 2, the CDF of the approximated
load of the typical cell ρAP (A) is derived as:

P(ρAP (A) ≤ l) = P
(
− ln

(
ξπA−1

)
≤ Ei−1

(
− l

K1

))
,

where, the symbol Ei−1(x) is given by Ei(x) = −E1(−x). Al-
though an explicit expression for Ei−1(.) does not exist, Pecina
[10] provided piece-wise functions to approximate Ei−1(x)
for different ranges of x. The asymptotic approximation for
−1
K1
→ 0 is [10]:

Ei−1

(
− l

K1

)
≈

exp
(
− l
K1

)
1 + exp

(
− l
K1

) .
In our analysis, we assume Pt = 30 dBm, a noise density

of -174 dBm/Hz, and B = 1 GHz. The path loss coefficient
K is derived from the Umi model for data transmission [11].
As the load l varies from 0 ≤ l ≤ 1, for G0 = 20 dB, and
λ = 1e − 5 m−2, we have 0 ≤ l

K1
≤ 1e − 8. Thus, our

asymptotic approximation is valid. Using this approximation
completes the proof.

E. Proposed Approximations for the Average Load of the
Typical Cell

Using the distribution of the area of the typical cell (7) and
(10) we obtain the following approximation of the average
load:

ρ̄AP =

∫ ∞
0

K ′E1

(
2

α
ln

(
ξ
( π
A

)α
2

))
fA(A)dA, (11)



ρ̄′AP =

∫ ∞
0

λ
2π ln(2)ξ

B
F1(A)

343

15

√
7

2π
(Aλ)5/2 exp

(
−7

2
Aλ

)
dA (12)

where, F1(A) =


exp(− ln( ξπA )) ln

(
G0

ln( ξπA )
+G0+(1−G0)β(ln( ξπA ))

)

G0+(1−G0) exp

(
− ln( ξπA )

1−G0

) ; A ≤ πξ
exp(1)

−γ − ln
(
− ln

(
ξπ
A

))
+
(
− ln

(
ξπ
A

))
− (− ln( ξπA ))

2

8
; A > πξ

exp(1)

where fA(x) = dFA(x)
dx . Since solving (11) is tedious, we

provide two results to approximate the average load of the
typical cell for the special case of α = 21. In Section IV, we
will highlight the advantage of each approximation.

1) Exponential Integral (EI) based Approximation:

Theorem 2. The average load of the typical cell can be
approximated as (12).

Proof. We rely on an approximation of the exponential inte-
gral provided by Barry et. al. [9]:

E1(x) =
exp(−x) ln

(
K2

x +K2 + (1−K2)β(x)
)

K2 + (1−K2) exp
(
−x

1−K2

) , (13)

where, K2 = exp(−γ) = 0.56, β(x) = 1− 1
(h(x)+bx)2 ,

h(x) =
1

1 + x
√
x

+
0.46x

√
31
26

1 + 0.43x
√

31
26

, b ≈ 1.04207,

and γ is the Euler’s constant. This interpolated version of the
exponential integral provides a good approximation for 1 ≤
x ≤ 50. This corresponds to the range

πξ

exp(50)
≤ A ≤ πξ

exp(1)
. (14)

For the region of A greater than this range, we use the
asymptotic expansion of E1(x) as:

E1(x) = −γ − ln(x) + x− x2

8
+ ... (15)

For practical ranges of cell sizes, the lower bound in (14)
always holds (e.g., with G0 = 0 dB, the lower bound on the
area is A ≥ 2e− 8). Now, substituting (10) in (11) and using
(13) and (15) to evaluate the integral, completes the proof.

2) Closed Form (CF) Approximation: Substituting
ln
(
ξπ
A

)
= t, the approximated average load of the typical

cell (11) becomes:

ρ̄AP = χ2

∫ ∞
−∞

E1(t) exp

(
−7

2
t

)
F2(t)dt, (16)

where χ2 = wπ ln(2)ξ
λB (ξπλ)3.5 and F2(t) =

exp
(
− 7λξπ

2 exp(−t)
)

.
Now, a closed form solution to this integral does not exist.

However, in what follows, we derive an approximate closed

1For dense deployments, the serving BS is generally in line of sight (LOS)
which has a path-loss exponent close to 2 for sub-6GHz [12] and mm-
wave [11] transmissions.

form solution for the average load of the typical cell, which
we show to be very accurate in Section IV.

Theorem 3. The average load of the typical cell is approxi-
mated by the closed form expression:

ρ̄′′AP = χ2 (I1(t2)− I1(t1) + (y1 − 1)I2(t2)− y1I2(t1))

where,
I1(x) =

(
2
7

)2 (
E1(4.5x)− (1 + 3.5x)e−3.5xE1(x)+(

7
9

)
exp(−4.5x)

)
I2(x) = 2

7

[
E1 (4.5x)− e−3.5xE1(x)

]
,

and, t1 = − ln
(
− 2

7λξπ ln (0.1)
)
, t2 = − ln

(
− 2

7λξπ ln (0.9)
)

and, y1 = 0.9t1−0.1t2
t1−t2 .

Proof. We can approximate F2(t), with a piece-wise defined
ramp and step function as follows:

F̃2(t) =


0; t ≤ t1,

0.8t
t2−t1 + y1; t1 < t ≤ t2,
1; t > t2

(17)

where t1 and t2 are the points corresponding to 10 and 90
percentile values of F2(t), and y1 is the intercept. In the next
section, we will show that this approximation provides accu-
rate results for the average cell load. With the approximation
of (17) in (16), we have:

ρ̄AP = χ2

(∫ t2

t1

E1(x)e3.5x

(
0.8

t2 − t1
x+ y1

)
dx+∫ ∞

t2

E1(x)e−3.5xdx

)
Geller and Ng [13] provided closed form expressions for both
of the above integral types, which we employ to obtain the
closed form for the average cell load.

IV. SIMULATION RESULTS

A. CDF of the Load and Stable Fraction of the Network

To validate the approximation of the CDF of the cell load,
we compute the stable fraction of the network, which is de-
fined as the fraction of non-overloaded cells. Mathematically,
this is the probability that the load of the typical cell is less
than 1. In Fig. 2 we compare the stable fraction of the network
for a file size of σ = 100 Mb, and a user arrival rate of
λU = 100 km−2, obtained with the approximation of the CDF
derived in Theorem 1 and the one computed from Monte-Carlo
simulations of the PPP. This provides dimensioning rules for
the operator in terms of the minimum deployment density of
BSs required to achieve a given stable fraction. For example,
with a directive antenna gain of G0 = 20 dB and for a load
target of 0.5, the operator must deploy at least 50 BSs km−2.
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Figure 2: Stable fraction of the network.

We also observe that the closed-form CDF provides a
good approximation of the numerical values, specially for a
larger antenna gain (G0 = 20 dB). Accordingly, the circular
assumption of the cell shape is not detrimental for evaluating
the performance of the network.

B. Accuracy of the EI Approximation of the Network Load

In Fig. 3, we compare the average load of the typical cell,
computed with the EI approximation (Theorem 2), the CF
expression (Theorem 3), and that obtained using the mean cell
approach with the network load calculated using Monte-Carlo
simulations. For the Monte-Carlo simulations, we find the
average cell load in one realization of the PPP φ, for a given
λ, λU , and σ and then we perform the same calculations and
average over 1000 PPP realizations. As seen in the figure, the
EI approximation provides a more accurate characterization of
the network load than the mean cell approach. The mean cell
approach always overestimates the actual load, because, the
zero cell is, on average, larger than the typical cell, resulting
in higher load. Therefore, from the perspective of an operator,
we provide a more realistic, and hence reliable method to
characterize the network load and to dimension the network.
As an example, for σ = 100 Mb, and λU = 0.01 users per
second, the EI approximation accurately estimates that the
operator must deploy 10 BS less (120 as compared to 130)
than that prescribed by the mean cell approach.

C. Advantages of the CF Approximation of the Network Load

As we see in Fig. 3, the CF approximation provides the
loosest approximation to the network load; however, it does
not require numerical evaluation of integrals. Moreover, we see
that for higher file sizes (σ = 100 Mb) and denser deployment
of small cells (λ ≥ 1e− 4 m−2), even the CF approximation
provides an excellent approximation of the network load.

From a practical perspective, it provides a fast method of
accurately estimating the network load without the need of
running extensive simulations, which can become infeasible.
Particularly, recall that BS locations are Poisson distributed.
For every realization of BS locations, SNR distribution should
be computed by drawing all required random variables. More-
over, a dynamic traffic of users arriving in the system, down-
loading a file, and leaving should be simulated for a sufficient
duration to reach the mixing time of the Markov process.
This procedure should be repeated for every set of possible
parameters if we want to characterize the network load. At
last cell overloading may be undetectable as any simulation
has a finite duration. For all these reasons, the analytical model
presented in this analysis is necessary to provide very quick
results and interesting insights to the system.
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Figure 3: Analytical approximation accuracy, G0 = 36 dB.

V. CONCLUSION

The realistic assessment of the mobile network performance
need to take dynamic traffic into account in order to char-
acterize the network load, which is still an open problem.
Towards this end, we have derived a simple approximation
for the CDF of the cell load of the typical cell in a noise-
limited network, which is characterized by high SINR and low
inter-cell interference. Furthermore, we have obtained a single
approximation-based expression and a closed-form expression
for the average load of the network by using the distribution
of the area of the typical cell. Our derivations present a more
realistic characterization of the cell load, as compared to the
recently introduced mean cell approach, since we consider
the typical cell of the network rather than the zero cell. The
analysis provides a tractable and accurate characterization for
the cell load that can be utilized, e.g., for evaluating the user
throughput and dimensioning 5G networks. However, accurate
characterization of the dynamic network load in case of an
interference prone network is not straightforward. This will
be addressed in a future work.
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