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Abstract. Knowledge bases (KBs) such as DBpedia, Wikidata, and
YAGO contain a huge number of entities and facts. Several recent works
induce rules or calculate statistics on these KBs. Most of these methods
are based on the assumption that the data is a representative sample
of the studied universe. Unfortunately, KBs are biased because they are
built from crowdsourcing and opportunistic agglomeration of available
databases. This paper aims at approximating the representativeness of a
relation within a knowledge base. For this, we use the generalized Ben-
ford’s law, which indicates the distribution expected by the facts of a
relation. We then compute the minimum number of facts that have to
be added in order to make the KB representative of the real world. Ex-
periments show that our unsupervised method applies to a large number
of relations. For numerical relations where ground truths exist, the esti-
mated representativeness proves to be a reliable indicator.

1 Introduction

One of the undisputed successes of the Semantic Web is the construction of
huge knowledge bases (KBs). Several recent works use these KBs to derive new
knowledge by calculating statistics or deducing rules from the data [7,26,27,29].
For instance, according to DBpedia, 99% of the places in Yemen have a popula-
tion of more than 1,000 inhabitants. Thus, we could conclude that Yemeni cities
usually have more than 1,000 inhabitants. But is that true in the real world?

Naturally, the reliability of such conclusions depends on the quality of the
knowledge base [34] namely its correctness (accuracy of the facts) and its com-
pleteness. It is well known that KBs are highly incomplete. This is usually not a
problem in statistics and in machine learning, where it is rare to have a complete
description of the universe under study. Most approaches work on a sample of
the data. In such cases, it is crucial that this sample is representative of the
entire universe (or at least, that the bias of this sample is known). For example,
it is not a problem if the KB contains only half of the cities of Yemen, if their
distribution across different sizes corresponds roughly to the distribution in the
real world. Figure 1 illustrates this: there is an ideal knowledge base K∗ divided



into two classes A and B that correspond respectively to the places with less
than 1,000 inhabitants and other places. The KB K1 is more complete than the
KB K2. However, K2 better reflects the distribution between the two classes.
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Fig. 1. Completeness vs Representativeness

Unfortunately, it is not clear whether the data in KBs is representative of the
real world. For example, several large KBs, such as DBpedia [2] or YAGO [28],
extract their data from Wikipedia. Wikipedia, in turn, is a crowdsourced dataset.
In crowdsourcing, contributers tend to state the information that interests them
most. As a result, Wikipedia exhibits some cultural biases [6,33]. Inevitably,
these biases are reflected in the KBs. For instance, 3,922 entities in DBpedia
concern the American company “Disney”, which is almost as much as the 4,493
entities concerning Yemen (a country with more than 26 million inhabitants).
Wikidata [32], likewise, is the result of crowdsourcing, and may exhibit similar
biases. In particular, it is likely that countries such as Yemen are less evenly
covered than places such as France – due to the population of contributors. Even
if the information in these KBs is correct [13], it is not necessarily representative.
If we knew how representative a certain KB is, then we could know whether it is
reasonable or not to exploit it for deriving statistics. Such an indication should,
for example, prevent us from drawing hasty conclusions about the distribution of
the population in the cities of Yemen. But, how to estimate whether a knowledge
base is representative or not?

This paper proposes to study the representativeness of knowledge bases by
help of the generalized Benford’s law. This parameterized law indicates the fre-
quency distribution expected by the first significant digit in many real-world
numerical datasets. We use this law as a gold standard to estimate how much
data is missing in the KB. More specifically, our contributions are as follows:

– We present a method to calculate a lower bound for the number of missing
facts for a relation to be representative. This method works in a supervised
context (where the relation is known to satisfy the generalized Benford’s
law), and in an unsupervised context (where the parameter of the law has
to be deduced from the data).

– We prove that, under certain assumptions, the calculated lower bounds are
correct both in the supervised and the unsupervised context.



– We show with experiments on real KBs that our method is effective for
supervised contexts as well as for unsupervised contexts. The unsupervised
method, in particular, can audit 63% of DBpedia’s facts.

This paper is structured as follows. Section 2 reviews some related work. Sec-
tion 3 introduces the basic notions of representativeness. In Section 4, we propose
our method for approximating representativeness based on the generalized Ben-
ford’s law. Section 5 provides experimental results. We conclude in Section 6.

2 Related Work

To the best of our knowledge, the representativeness of knowledge bases with
respect to the real world has not yet been studied. Nevertheless, as mentioned
in the introduction, this problem is related to the completeness of KBs.
Completeness. Several recent works have studied the completeness of KBs [25,34].
Some works propose to manually add information about the completeness re-
lations [8]. Other approaches mine rules on the data [12] (e.g., people usually
live in the city where they work) and propose to add this information where it
is missing. For this purpose, the work of [12] makes the Partial Completeness
Assumption (PCA): It assumes that, if the KB contains at least one object for
a given relation and a given subject, then it contains all of the objects for this
context. The PCA has been shown to be reasonably accurate in practice [12].
Newer approaches for rule mining take into account the cardinality of the rela-
tions, if it is known [30]. Other work aims to determine more generally whether
all objects of a certain relation for a certain subject are present in the KB [11].
For this, the approach uses oracles, such as the PCA and the popularity of the
subject in Wikipedia. Again other work [1,14,17,31] mines class descriptions.
Such approaches are able to determine that a certain attribute is obligatory for
a class – and then allow estimating the number of missing facts per class.

All of these approaches are concerned with completeness in terms of facts
with respect to the present entities. Our approach, in contrast, also considers
the facts of entities that are missing. Furthermore, none of the above works
studies the representativeness of the KB, i.e., whether or not the distribution of
entities in the KB corresponds to the distribution in the real world.
Representative sample. Completeness is an important notion for estimating the
quality of a knowledge base, but it is not necessarily the best indicator when
one wants to measure the quality of a distribution. In statistics, several resam-
pling techniques [9] exist to estimate the quality of a sample (median, variance,
quantile), in particular by analyzing the evolution of a measure on a subsample
or by permuting labels. None of these techniques can be used to check whether
a single sample is representative, if the ground truth is unknown – as it is the
case in our scenario.
Benford’s law. When the data is complete, Benford’s law [4] is regularly used
to detect inconsistencies within the data [22]. If the distribution of the first
significant digit of some numerical dataset does not satisfy Benford’s law, then



the data is assumed to be faulty. For this reason, Benford’s law is regularly
used to detect frauds in various kind of data: in accounts [23], in elections [19],
or in wastewater treatment plant discharge data [3]. However, in all of these
cases, Benford’s law is used only to estimate the correctness of the data – not
its completeness. The work cannot be used, e.g., to decide how many facts are
missing in a KB, or whether a KB is representative of the real world.

3 Preliminaries

3.1 Representativeness of knowledge bases

For our purposes, a knowledge base (KB) over a set of relations R and a set of
constants C (representing entities and literals) is a set of facts K ⊆ R×C×C. We
write facts as r(s, o) ∈ K, where r is the relation, s is the subject, and o is the
object. The set of facts for the relation r in K is denoted by K|r = {r(s, o) ∈ K}.
Given a relation r, r−1(o, s) ∈ K means that r(s, o) ∈ K where r−1 is the inverse
relation of r.

In line with the other work in the area [11,17,18,21,24], we denote with K∗

a hypothetical ideal KB, which contains all facts of the real world. Then, the
completeness (also called recall) of K, denoted comp(K), is the proportion of
facts of K∗ present in K: comp(K) = |K ∩ K∗|/|K∗|. For our work, we will make
the following assumption:

Assumption 1 (Correctness) Given a knowledge base K, we assume that all
facts of K are correct i.e., K ⊆ K∗.

The correctness assumption is a strong assumption. It has been investigated
in [28,34]. In our work, we use it mainly for our theoretical model. Our experi-
ments will show that our method delivers good results even with some amount
of noise in the data. Let us now introduce the notion of a uniform-sampling
invariant measure. A measure µ maps a knowledge base K to a frequency vector
(f1, . . . , fn) ∈ Rn

≥0 where each component fi is the number of observations of the
ith characteristic in K. Given a non-zero frequency vector F = (f1, . . . , fn), fi
denotes the normalized ith component of F where fi = fi/

∑n
i=1 fi. We use the

mean absolute deviation (MAD) for comparing two non-zero frequency vectors
F = (f1, . . . , fn) and F ′ = (f ′

1, . . . , f
′
n):

MAD(F, F ′) =
1

n

n∑
i=1

∣∣∣fi − f ′
i

∣∣∣
F and F ′ are similar for ϵ ≪ 1 iff MAD(F, F ′) ≤ ϵ. In such case, we write
F ∼ϵ F ′, or simply F ∼ F ′. A measure µ is uniform-sampling invariant iff for
any uniform sample K′ from K such that |K′| ≫ 1, we have µ(K′) ∼ µ(K). For
instance, in Figure 1, counting the number of places with less than 1,000 inhabi-
tants (in part A) and more than 1,000 inhabitants (in part B) is a measure with
two characteristics (denoted by µA/B). The measure µA/B is uniform-sampling



invariant because whatever the uniform sample of a knowledge base K, the pro-
portion of cities with more (or less) than 1,000 inhabitants remains the same. In
the following, we consider only uniform-sampling invariant measures.

A knowledge base is representative if each measure returns a frequency vector
that is proportional to the frequency vector on K∗:
Definition 1 (Representative KB). A knowledge base K is representative of
K∗ iff µ(K) ∼ µ(K∗) for any uniform-sampling invariant measure µ.
If a knowledge base K is unrepresentative, there is at least one measure µ such
that µ(K) � µ(K∗). In this case, since all the facts of K are correct (Assump-
tion 1), it would be necessary to add new facts to the knowledge base to make it
representative for µ. Formally, this number of missing facts of K for the measure
µ, denoted by µ-miss(K), is defined as:

µ-miss(K) = min{|F | : F ⊆ K∗ ∧ µ(K ∪ F ) ∼ µ(K∗)}

The number of missing facts in K, denoted by miss(K), is the minimum number
of facts that have to be added to make the KB representative (whatever the
considered measure µ): miss(K) = maxµ µ-miss(K). The representativeness of
K estimates whether K is a representative sample of K∗:
Definition 2 (Representativeness). The representativeness of K, denoted
rep(K), is defined as:

rep(K) =
|K|

|K|+miss(K)

Interestingly, a KB can be representative without being complete. The represen-
tativeness of K is an upper bound of the completeness: rep(K) ≥ comp(K).

3.2 Problem statement
The goal of this paper is to approximate the representativeness of a relation r
in K (i.e., the representativeness of K|r) without having a reference knowledge
base K∗

|r (which is the most common case in a real-world scenario). This task is
ambitious because the calculation of the representativeness of a knowledge base
requires to know the distribution of any measure µ on an unknown knowledge
base K∗

|r. It is obviously not possible to know the distribution µ(K∗
|r) for any

measure. In order to calculate an approximation, we propose to use the following
observation, which holds for all measures µ:

µ-miss(K|r) ≤ miss(K|r)

This result (which follows from the definition of miss(K|r)) means that it is
possible to get a lower bound l of the number of missing facts miss(K|r), if some
distributions µi(K∗

|r) are known. Such a lower bound is useful for calculating an
upper bound of the representativeness and the completeness of the knowledge
base: |K|r|/(|K|r|+ l).

Given a knowledge base K and a relation r, we aim at estimating
the representativeness of the relation r in the knowledge base K by
finding a lower bound l such that l ≤ miss(K|r).



4 Our Approach

4.1 The generalized Benford’s law for KBs

The challenge is to find a set of measures whose distribution is known on the
ideal knowledge base K∗. To this end, we propose to rely on Benford’s law [4].
This law says that, in many natural datasets, the first significant digit of the
numbers is unevenly distributed: Around 30% of numbers will start with a “1”,
whereas only 5% of numbers will start with a “9”. This somehow surprising result
follows from the fact that many natural numbers follow a multiplicative growth
pattern. For example, a city of 1000 inhabitants may grow by 30% each year, thus
passing by the values of 1300, 1690, 2197, 2856, 3712, 4826, 6274, 8157, 10604.
These values already show a skewed distribution of the first digit, which will
repeat itself in the coming years. There are other reasons for such patterns, and
Benford’s law has since been observed not just for population sizes, but also for
prices, stock markets, death rates, lengths of rivers, and many other real-world
phenomena [4] – although not all [20]. Technically, Benford’s law is a statistical
frequency distribution on the first significant digit of a set of numbers, which
may or may not apply to a given dataset. In this paper, we use the generalized
Benford’s law [16], which is parametrized and can thus apply to more datasets.

Definition 3 (Generalized Benford’s Law [15]). A set of numbers is said
to satisfy a generalized Benford’s law (GBL) with exponent α ̸= 0 if the first
digit d ∈ [1..9] occurs with probability:

Bα
d =

(1 + d)α − dα

10α − 1
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Fig. 2. First significant digit distribution for population

The parameter α adds a great flexibility since the choice of this value makes
it possible to find Benford’s law (α → 0) and the uniform law (α = 1). Data



that follows a power law ax−k also follows the GBL approximately with α =
−1/k [15]. This is, e.g., the case for the out-degree of Web pages [5], with k = 2.6.

The GBL can be applied to KBs. Let us look at the relation pop, which links a
geographical place to its number of inhabitants (populationTotal in DBpedia,
P1082 in Wikidata, and hasNumberOfPeople in YAGO). Figure 2 shows the
distribution of first digits of this relation, drilled down to places in the world, in
France, and in Yemen. We see that the distribution in the KB roughly follows
the GBL. Interestingly, the GBL applies better to the French population than
to the Yemeni population. We will now take advantage of this information to
measure representativeness.

Technically, Figure 2 presents the frequency vector (f1, . . . , f9) of the first
digits of the relation pop. Of course, it is not possible to directly calculate the
ideal frequency vector (f∗

1 , . . . , f
∗
9 ) of K∗. However, in many cases, we know at

least the distribution of the ideal frequency vector (thanks to the GBL). If we
do not know the distribution, then our idea is to learn the exponent α of the
GBL from the observed vector. Once the ideal distribution has been determined,
we can use the difference between the observed distribution and the estimated
distribution to bound the number of missing facts (Figure 3).

K|r

K∗
|r

µr

µr

(f1, . . . , f9)

(f∗
1 , . . . , f

∗
9 )

direct comparison

unknown

≈ (Bα
1 , . . . , B

α
9 )

2. Learn α,
if unknown

3. Compute µr-miss(K|r)

1. Transform r into a measure µr

Fig. 3. Overview of the method

More precisely, we propose to proceed as follows:
1. Transforming a relation into a measure: Benford’s law can only work on

numerical datasets. Some relations (such as pop) are already numerical. Other
relations will have to be transformed into numerical datasets (Section 4.2).

2. Parameterizing the GBL: To use the GBL, we have to know the parameter
α. We distinguish two contexts. In a supervised context, the parameter α
is known upfront in the real world (as it is the case for the population).
Otherwise, in an unsupervised context, we learn the parameter α that best
fits the facts in K|r assuming it is close to the ideal parameter α∗ on K∗

|r
(Section 4.3).

3. Estimating the number of missing facts: As the knowledge base is
correct, only the addition of new facts would make the frequency vector
(f1, . . . , f9) coincide with the distribution of (Bα

1 , . . . , B
α
9 ) which is (approxi-



mately) proportional to (f∗
1 , . . . , f

∗
9 ). The objective of this last step is to calcu-

late the minimum number of facts to add so that (f1, . . . , f9) ∼ (Bα
1 , . . . , B

α
9 )

(Section 4.4).
In the following, when we consider a relation r, K implicitly refers to K|r.

4.2 Transforming relations into measures

We show in this section how to transform a relation r into a measure µr. The
key idea is to transform each relation r into a set of numbers Nr that is a kind
of digital signature. Then, we derive a measure µr that counts the frequency of
each number in Nr having d as first significant digit:

µr(K) = (#n : the first significant digit of n ∈ Nr(K) is equal to d)d∈[1..9]

In our example with the relation pop, the measure µpop counts the number of
places that have a population with d as first significant digit. Let us now gener-
alize this principle to two common types of relations:
– Numerical transformation: Given a numerical relation r, the numerical

transformation keeps all the numbers different from 0:

Nnum
r (K) = {number : r(s, number) ∈ K ∧ number ̸= 0}

Figure 2 illustrates this transformation for relation pop by showing the fre-
quency vector resulting from µpop.

– Counting transformation: Given a relation r, the counting transformation
returns for each object o how many facts it has:

N count
r (K) = {#s : r(s, o) ∈ K such that o is an object of a fact in K|r}

For example, for the relation starring, we can count the number of movies for
each actor. The left hand-side of Figure 4 illustrates the resulting frequency
vector. We choose to count the number of subjects rather than the number
of objects, because relations tend to have more subjects per object than vice
versa [12]. However, we can also count the number of objects per subject by
applying the above method to r−1. Figure 4 shows two other histograms,
one for the relation team (number of players per team) and for birthPlace
(number of births per place).

This list of transformations is not exhaustive. For instance, it would be possible
to count the number of days since today for a date (e.g. for the birth date
relation) or to consider the length of strings. Besides, it is possible to transform
the same relation in several ways. In this way, it is possible to obtain more
frequency vectors.

4.3 Parameterizing the generalized Benford’s law

The previous section has given us a measure µr that we can apply on the knowl-
edge base K to calculate a distribution. Now, we want to compare this distribu-
tion with the distribution on the ideal KB K∗. This requires knowledge of the
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Fig. 4. Examples of measures resulting from counting transformation

parameter α, which depends on the unknown distribution µr(K∗). We distinguish
two settings.
Supervised setting. In some cases, it is known that µr(K∗) follows the GBL in
the real world with a certain parameter α. For instance, the population of places,
the length of rivers, etc. conform to the GBL in the real world with an exponent
tending to 0 (see Table 2 below). In that case, the GBL is already parametrized.
Unsupervised setting. If it is not known whether µr(K∗) follows the GBL, or if
its parameter α is not known, we propose to estimate it from the KB. For this
purpose, we make the following assumption:

Assumption 2 (Transferability) Given a knowledge base K, we assume that
if K conforms to the GBL with exponent α, then the ideal knowledge base K∗

also conforms to the GBL with exponent α.

This assumption may seem strong. However, it is verified in several cases where
we have a ground truth available (see experiments in Section 5). The assumption
allows us to learn the parameter α that best fits the facts in K. Let us denote
by (f1, . . . , f9) the characteristic vector resulting from µr(K) i.e., fd is exactly
the number of occurrences in Nr(K) with d as first significant digit. Let us
denote N =

∑9
d=1 fd. To choose the right parameter α, we use the WLS measure

(probability weighted least square or Chi square statistics) as goodness-of-fit
measure [15]:

WLS(f1,...,f9)(α) =

9∑
d=1

(
Bα

d − fd
N

)2

Bα
d

Now, choosing the right parameter α means minimizing the WLS measure for
the frequency vector (f1, . . . , f9). For this, we use the gradient descent algorithm.
For instance, Figure 4 shows the gap between the GBL and Benford’s law for
the three relations. For starring, α is -1.156 (in DBpedia), -0.759 (in Wikidata)



and -0.750 (in YAGO). Once the parameter α has been obtained, we have to
assess whether the frequency vector µr(K) conforms to the generalized Benford’s
law. For this, we use the mean absolute deviation (MAD) defined in Section 3.1.
To know whether the GBL can be used according to the MAD estimator, we
distinguish four cases [16,22]: close conformity (C) when MAD ≤ 0.006, accept-
able conformity (AC) when 0.006 < MAD ≤ 0.012, marginal conformity (MC)
when 0.012 < MAD ≤ 0.015, and nonconformity (NC) otherwise. In our running
examples, the measure µpop gives rise to a nonconformity only for Yemeni places
in YAGO, because α = 0.351 and MAD(µpop(K), B0.351) equals 0.035 (> 0.015).
If a measure µr leads to a nonconformity, then it is not possible to apply the
GBL at all. In all other cases, we can estimate the number of missing facts for
the relation r as explained in the next section.

4.4 Estimating the number of missing facts

The purpose of this section is to estimate the number of missing facts for a
relation r, knowing that we have an approximation of the expected distribution
(Bα

1 , . . . , B
α
9 ) that is proportional to (f∗

1 , . . . , f
∗
9 ). We assume that all the facts of

the knowledge base K are correct (Assumption 1). Therefore, only the addition
of facts can bring the observed distribution of facts (f1, . . . , f9) closer to the
expected distribution (Bα

1 , . . . , B
α
9 ).

Numerical transformation. When a relation is numerical, the only way to have
a number with a given first significant digit is to add a new fact. Intuitively, it is
then enough to add facts for each of the digits where the measured frequency is
lower than the expected frequency. The following theorem formalizes this idea:

Theorem 1. Given a knowledge base K and a measure µnum
r such that

µnum
r (K∗) satisfies a generalized Bendford’s law with exponent α, the number

of missing facts for the relation r is:

µnum
r -miss(K) = max

d∈[1..9]

fd
Bα

d

−N

where (f1, . . . , f9) = µr(K) and N =
∑9

d=1 fd.

This follows from the fact that the expected distribution fd/(N+µnum
r -miss(K))

must be less than Bα
d for each digit d. Table 1 indicates the number of miss-

ing facts estimated for the relation pop with the unsupervised method, and
deduces an approximation of the representativeness. Interestingly, the approxi-
mation µnum

r -miss for Yemeni places of YAGO is very close to what we obtain in
a supervised context (where we know that α → 0) – even though the measure is
non-conform for that case. In the supervised context, we calculate that 181 facts
are missing, while our estimation tells us that 127 facts are missing. Whatever
the KB, our estimation of representativeness confirms our intuition mentioned
in the introduction: the population of Yemeni places is less well informed than
that of French ones.



Missing facts Representativeness
Measure DBpedia Wikidata YAGO DBpedia Wikidata YAGO
µnum

pop in World 15,789 13,720 44,223 0.954 0.961 0.895
µnum

pop in France 1,153 1,546 18,829 0.970 0.963 0.918
µnum

pop in Yemen 78 4,281 127 (NC) 0.829 0.888 0.577 (NC)
µcount

starring 51,179 10,370 2,703 0.892 0.989 0.979
µcount

team 41,484 3,373 463 0.980 0.997 0.999
µcount

birthPlace 38,664 25,691 470 0.971 0.986 0.998
Table 1. Representativeness of relations in three KBs (unsupervised context)

Counting transformation. For this transformation, the estimation of the number
of missing facts is more complicated, because the addition of a fact for an object
can change its first significant digit. For instance, if a number starting with 5 is
missing, an object with 5 facts has to be added. One can imagine to add 5 new
facts for a new object, to add four new facts for an object that has already 1
fact, to add 3 facts for an object that has already 2 facts, etc. We choose the
solution that minimizes the total number of added facts:

Theorem 2. Given a knowledge base K and a measure µcount
r such that

µcount
r (K∗) satisfies a generalized Bendford’s law with exponent α, the number

of missing facts for the relation r is:

µcount
r -miss(K) =

9∑
d=1

((Bα
d ×m)− fd)× d

where m = maxd∈[1..9]

∑
i≥d fi∑
i≥d Bα

i
and (f1, . . . , f9) = µr(K).

This follows from the fact that
∑

i≥d fi/m ≤
∑

i≥d B
α
i for each digit d. For the

unsupervised context, Table 1 indicates the number of missing facts estimated
for the relations starring/ team/ birthPlace with our method and deduces an
approximation of the representativeness.

Note that for the same relation r, under the two transformations leading
to µnum

r and µcount
r , the number of missing facts is bounded by the maximum

result: max{µnum
r -miss(K);µcount

r -miss(K)} ≤ miss(K). Under the same trans-
formation, the missing facts for two distinct relations r1 and r2 can be added
together: (µr1-miss(K)+µr2-miss(K)) ≤ miss(K). We will use these properties
in Section 5.3 for DBpedia analysis.

4.5 Limitations of our approach

Using Theorems 1 and 2, our approach approximates the representativeness of
some relation r in the knowledge base K by finding a lower bound µr-miss(K)
such that µr-miss(K) ≤ miss(K|r) as requested in Section 3.2. This approach



works only if Assumption 1 (Correctness) holds. For the unsupervised setting,
we also need Assumption 2 (Transferability).

Furthermore, for the GBL to be applicable, the set of numbers Nr has to meet
the following two conditions. First, the numbers of Nr have to be distributed
across several orders of magnitude: log10 max(Nr) − log10 min(Nr) ≥ 1. For
instance, the height of people does not meet this criterion because it is between
100 and 199 centimeters for most people. In that case, a numerical transformation
would lead to a lot of “1” and “2” as first significant digits. For the same reason, it
is also not possible to apply the counting transformation to an inverse functional
relation r because in that case, each object has only one subject (i.e., N count

r =
{1, 1, 1, . . . }) and then, its prevalence is 0. Second, the cardinality of Nr has to
be sufficiently high: |Nr| ≫ 1. If we do not have enough numbers in Nr, the
derived distributions µr(K) will not be reliable enough to learn the parameter
α. The next section will show where our method can be applied.

5 Experiments

These experiments answer the following three questions: Is the unsupervised
method reliable? Is the representativeness estimated by our method correct? Is
the GBL sufficiently effective to be useful for auditing a knowledge base?

All experimental data (the queries, the distributions, the experimental re-
sults, and details of the learning method), as well as the source code, are available
here: http://www.info.univ-tours.fr/~soulet/prototype/iswc18.

5.1 Verification of the transferability assumption

Assumption 2 (Transferability) is a central assumption in the unsupervised ap-
proach for learning the GBL parameter. Our first experiment aims to verify if
this assumption is true. For this, we compare the parameter α that we obtained
by the unsupervised approach to the parameter α of the real world. We found
seven relations under the numerical transformation that are known to verify
Benford’s law in the real world, and that exist in DBpedia and Wikidata. We
also found one relation under the counting transformation that exists in our
KBs and that is known to follow the GBL in the real world: the out-degree of
Wikipedia pages, where α = −1/2.6 = −0.385 [5].
Table 2 shows the results obtained for representativeness by Theorem 1 in both
supervised and unsupervised contexts. The last column indicates the GBL com-
pliance between the supervised and unsupervised case according to the MAD
test (Section 4.3). We see that the learned parameter conforms to the ground
truth in all cases: it is very close to zero and does not deviate to values that
would have a distorting impact (e.g., α > 2, or α > 5). For the out-degree of
Wikipedia pages, the learned parameter also corresponds well to the real param-
eter. In addition, the estimator of MAD always indicates a very good conformity
(≤ 0.012). This entails that the representativeness that we compute in the unsu-
pervised approach is very similar to the supervised value. In all cases except one,

http://www.info.univ-tours.fr/~soulet/prototype/iswc18


Sup. Unsup.
Relation KB α∗ Rep. α Rep. MAD(Bα, Bα∗

)

Population of places DBpedia 0.001 0.949 -0.020 0.954 C
Elevation of places DBpedia 0.001 0.750 -0.083 0.765 C
Area of places DBpedia 0.001 0.535 0.143 0.624 AC
Length of water streams DBpedia 0.001 0.887 0.001 0.887 C
Discharge of water streams DBpedia 0.001 0.938 -0.105 0.930 AC
Number of deaths Wikidata 0.001 0.909 -0.106 0.908 AC
Number of injured Wikidata 0.001 0.883 -0.119 0.875 AC
Out-degree of Wikipedia page DBpedia -0.385 0.999 -0.486 0.999 AC

Table 2. Conformity of the unsupervised method with the supervised one

there is less than 1% difference. Even for the least correct prediction (areaTotal)
the difference is at most 10%3.

Finally, we also applied the unsupervised method to numerical relations
whose numbers should not verify the GBL. In such a situation, the method
should have a MAD test that indicates a nonconformity (i.e. > 0.015). This is
indeed the case for the following relations: Wikipedia page ID (with MAD 0.029),
runtime of films (0.077) or albums (0.090), and weight of persons (0.070).

5.2 Validity of representativeness

In Section 3, we postulated that representativeness is an upper bound for com-
pleteness. To test this postulation, we simulate an unrepresentative KB as a
sample of a known KB. For this purpose, we use the number of inhabitants
of French cities from DBpedia as gold standard, because we know that these
numbers verify the GBL. We then apply three approaches to degrade this KB:

– Most-populated: We removes cities, starting from the least populated to
the most populated. This biased sample simulates a KB of Yemeni cities,
where only the most populated cities are present.

– Least-populated: We remove the most populated cities first. This approach
is the opposite of the previous one.

– Random: We randomly removes cities. The retained sample of facts is there-
fore uniformly drawn and it is representative of the original KB.

Our first step is to verify whether our samples conform to Benford’s law (Sec-
tion 4.3). This is indeed the case for 100% of samples for the most-populated
approach and the random approach, and for 99% of the samples for the least-
populated approach. This validates Assumption 2, and makes our approach ap-
plicable. Figure 5 plots the representativeness for the three approaches according
to the number of preserved cities in a supervised and unsupervised context. We
also plot the real completeness of the sample (w.r.t the original KB).
3 Different from α, the representativeness varies only between 0 and 1.
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Fig. 5. Impact of incompleteness on French cities using dbo:populationTotal

We observe that whatever the approach and the context, representativeness is
indeed an upper bound for completeness, as postulated. There is only a sin-
gle major violation at the point of around 34,000 cities for the most-populated
approach, which is due to a wrong approximation of the parameter α in that par-
ticular sample. Surprisingly, the representativeness is a very good approximation
of completeness for the most-populated and the least-populated approaches. In
the case of the supervised context, considering a sample C = K|pop with more
than 22,000 cities, the estimated number of cities (i.e., P = |C+µnum

pop -miss(C)|)
approximates the true number of cities in K∗ (i.e., T = |K∗

|pop|) with less than
5% error: |P − T |/P ≤ 0.05.

Finally, we observe that as long as the number of cities remains large enough
(i.e., greater than 2,500), the representativeness of the random approach is high
(around 0.95). This is expected for any large random sample from a complete
relation, because a random sample has to be representative in our sense.

5.3 Effectiveness of the GBL for a KB

We considered in DBpedia (France) all the relations with at least 100 facts.
We applied the numerical transformation and the counting transformation. We
removed all relations whose numbers are not distributed across several orders
of magnitude i.e., log10 max(Nr) − log10 min(Nr) < 1. Table 3 gives a general
overview of the resulting 2,920 relations: the number of considered relations, the
number of compliant relations (i.e., with MAD ≤ 0.015), the number of facts,
the proportion of facts in DBpedia, the estimated number of missing facts and
finally, the estimated representativeness. Clearly, the counting transformation
concerns more relations and facts than the numerical transformation. All in
all, our analysis covers about 63% of the facts in DBpedia and we estimate its
representativeness at 0.719. To make DBpedia’s current relations representative,
at least 46 million facts would have to be added.



Trans. # of rel. # of comp. rel. # of facts % of DBpedia Missing facts Rep.
Counting 2,920 1,461 117,349,802 0.633 45,869,202 0.719
Numerical 108 43 329,853 0.002 109,603 0.751
Total 2,920 1,487 117,461,855 0.634 45,972,923 0.719

Table 3. Overview of the representativeness of DBpedia (France)

6 Conclusion

In this paper, we have introduced the first method to analyze how representative
a knowledge base is for the real world. We believe that representativeness is a
dimension of data quality in its own right (along with correctness and complete-
ness), because it is essential for applying statistical or machine learning methods.
Our approach quantifies a minimum number of facts that must complement the
knowledge base in order to make it representative. Experiments on DBpedia
validate our proposal in a supervised and unsupervised context on several rela-
tions. Using our method, we estimate that at least 46 million facts are missing
for DBpedia to be a representative knowledge base. In future work, we would
like to take into account representativeness to correct the result of queries on
knowledge bases much like this has been done recently for completeness [10].
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