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ABSTRACT

Open information extraction approaches have led to the cre-
ation of large knowledge bases from the Web. The problem
with such methods is that their entities and relations are not
canonicalized, leading to redundant and ambiguous facts.
For example, they may store (Barack Obama, was born in,
Honolulu) and (Obama, place of birth, Honolulu). In this
paper, we present an approach based on machine learning
methods that can canonicalize such Open IE triples, by clus-
tering synonymous names and phrases.

We also provide a detailed discussion about the different
signals, features and design choices that influence the quality
of synonym resolution for noun phrases in Open IE KBs,
thus shedding light on the middle ground between “open”
and “closed” information extraction systems.

1. INTRODUCTION

Recent advances in information extraction (IE) have led
to the creation of large structured knowledge bases (KBs),
such as NELL [5], YAGO [29], Freebase [4], DBpedia [1],
Knowledge Vault [7], ReVerb [10], etc. These knowledge
bases contain millions of entities (such as people, organi-
zations, locations, or movies), and hundreds of millions of
facts about them (such as which actor acted in which movie,
which city is located in which country, etc.). This infor-
mation is usually stored in the form of (subject, predicate,
object) triples — a format known as RDF.

Techniques based on “Open IE” [3, 9], such as ReVerb [10],
allow the subjects and objects to be arbitrary noun phrases,
and the predicates to be arbitrary verb phrases. For exam-
ple, we may extract (D.C., is capital of, United States) and
(Washington, capital city of, U.S.). However, it is not clear
if these are talking about the same entities, or even about
the same predicate. This means that when we query the KB
for facts about an entity by one name, we cannot be sure
that we get all facts about the entity. Conversely, we cannot
be sure that all the facts we get are about the same entity.
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At the other extreme, techniques based on “closed IE” re-
quire that the subjects, predicates and objects are canonical,
i.e., that they have unique ids. This is the approach taken by
many KBs, such as YAGO, Freebase, DBpedia, and Knowl-
edge Vault. The disadvantage of this approach is that the
coverage is much lower than with Open IE. There are also
systems such as NELL, in which the predicates are from a
closed class, but the entity names are open.

In this paper, we present an approach that can take a large
“open” KB, such as produced by ReVerb or NELL, and con-
vert it into a canonicalized form, where entity and relation
names are mapped to canonical clusters. More precisely, our
contributions are as follows:

e We show how standard clustering techniques, with sim-
ple blocking strategies and similarity functions, give sur-
prisingly good results for entity clustering in both NELL
and Reverb data.

e We investigate an interesting interaction between the
way similarity functions are trained, and the way they
are used in blocking techniques.

e We show how to extend the AMIE approach [12], which
was previously proposed for mining Horn rules on KBs,
to learn high quality clusters of semantically equivalent
relations from Open IE triples.

2. RELATED WORK

2.1 Open Information Extraction

Open IE systems extract triples of the form (subject, predi-
cate, object) from natural language text. For example, given
the sentence “McCain fought hard against Obama, but fi-
nally lost the election”, an Open IE system will extract
two triples, (McCain, fought against, Obama) and (McCain,
lost, the election). Early systems [3, 31] typically restricted
the subject and object to noun phrases. These can be named
entities, such as Obama, but also common noun phrases,
such as the election. The predicate can be any sequence of
words that appear between the two arguments. This basic
approach can harvest a huge number of triples from Web
corpora. However, it will also extract uninformative triples,
such as (Hamas, claimed, responsibility) (where it is not
clear for what Hamas claimed responsibility).

The ReVerb approach [10] restricted the predicates to
lightweight verbal phrases, which greatly improved the pre-
cision of the triples. The Ollie approach [28] relaxed this
restriction by expanding the syntactic scope of relation
phrases to cover a much larger number of relation expres-
sions, and by adding context information such as attribu-



tion and clausal modifiers. Some approaches use dependency
parsing [31], or employ hand-crafted patterns on the parse
trees. ClauslE [6] can reason on the dependency trees, and
thus extract more robust triples.

All of these approaches have in common that their rela-
tionships are not canonicalized. The approaches cannot see
that was born in and ’s birth place is denote the same seman-
tic relationship. The approach used in the NELL project [5],
in contrast, works with a predefined set of relationships. It
will extract triples of the form (NP, relation, NP), where
the NP are noun phrases and relation is one of the prede-
fined relation names. Thus, NELL is not strictly speaking an
Open IE system. Still, it shares many properties of Open IE
systems. Most notably, all of the Open IE approaches, and
NELL, cannot extract canonical entities. They cannot see
that Barack Obama and President Obama are two names for
the same person. We discuss some solutions to this below.

2.2 Linking and clustering entities

One approach to resolving entity names is to try to map
them to an existing list of known entities, such as Wikipedia
or Freebase. This is known as entity linkage (or “Wikifica-
tion” if the target KB is Wikipedia). Typically each mention
generates a candidate list of entities (based on string match-
ing), and then this list is re-ranked using a machine learned
model. There are several kinds of models: some link each
entity mention in isolation using local features (e.g., [15]),
some jointly link sets of mentions within a page using local
features and global context (e.g., [26]), and some jointly link
mentions across sets of pages (e.g., [19]).

One problem with the above approaches is that many
pages may refer to new entities that are not already in a
KB. This is particularly true for tail entities (i.e., ones that
are not popular enough to have a Wikipedia entry), and/or
for new or emerging entities. The standard approach to this
is to allow each mention to either map to an entity on the
shortlist, or to a special NIL or OOKB (out-of-KB) entity
(see e.g., [17]). However, that still leaves the issue of how to
cluster these NIL values to create new entities.

The problem of clustering equivalent entities has been
widely studied, and is closely related to the problems of
cross-document entity resolution in the NLP community (see
e.g., [2, 30]) and record linkage in the DB community (see
e.g., [8]). Most methods use some variant of the following
basic technique: define (or learn) a pairwise similarity func-
tion for comparing two candidate entities, and then apply
hierarchical agglomerative clustering (HAC) to find the men-
tion clusters. For example, this approach was used in the
RESOLVER system of [32] to cluster the entities derived from
TextRunner’s Open IE triples. They defined the similarity
of two entities in terms of their string similarity, as well as
the similarity of their attribute values. We use a similar
technique in our paper; see Section 3 for the details.

We compare our technique to Concept Resolver [18],
a state-of-the-art system that clusters entity mentions on
NELL data. Concept Resolver operates in two phases.
The first phase performs disambiguation under the omne-
sense-per-category assumption. This assumption states that
within a given NELL category, noun phrases are unambigu-
ous. For example, Apple can be a company and a fruit, but
there cannot be two companies called Apple (nor two fruits).
We can infer the type of a particular noun phrase by the type
signature of the accompanying verb. For instance, for the

triple (Apple, hasCeo, Tim Cook), the domain of hasCeo
tells us that Apple refers to the company. This triple is then
rewritten as (Apple:company, hasCeo, Tim Cook:person).
The second phase clusters all these type-augmented men-
tions. For this, they use HAC with a machine learned simi-
larity metric, similar to our approach.

2.3 Clustering relations

There has been less work on clustering synonymous rela-
tions than on clustering synonymous entities. The database
community has studied schema alignment, but this usually
relies on knowing the type signature of the relations, which
are unavailable for Open IE triples.

The RESOLVER system [32] used HAC to cluster Open IE
relations in TextRunner data. They used the set of sub-
jects and objects associated with each relation to define a
feature vector; they then constructed a generative model
(known as the “Extracted Shared Property” model) to com-
pute the probability that two relations are equivalent, based
on counting the number of entity pairs that they had in com-
mon. Finally they used this similarity metric inside HAC.

The disadvantage of this approach is that it defines the
feature vector for a relation in terms of the raw string names
for the entities, and these can be very ambiguous. For ex-
ample, suppose the dataset contains the triples (Indian Air-
lines, is headquartered in, Mumbai) and (Indian Airlines,
has headquarters in, Bombay). We cannot determine that is
headquartered in is equivalent to has headquarters in unless
we know that Mumbai is equivalent to Bombay.

One solution to this is to jointly cluster the entities and
relations at the same time; this has been called “knowledge
graph identification” [25]. In this paper, we adopt a sim-
pler two-stage approach. We first perform entity linkage
on the triples, mapping the subject and object to a unique
id (e.g., both Bombay and Mumbai map to the Freebase
id /m/04vmp). We then pass these partially-disambiguated
triples to the AMIE rule mining system [13, 12], which can
discover equivalences between synonymous relations. We
then use these learned equivalences to create clusters of se-
mantically equivalent relations. See Section 4 for the details.

The PATTY system [23] uses pattern mining techniques
to find subsumption rules between syntactic patterns (e.g.,
daughter of T child of), extracted from a corpus. Like our
approach, PATTY links the arguments of phrases to a KB
(YAGO) to find subsumption rules. However, their goal is
to construct a taxonomy of verbal phrases, whereas we are
interested in finding equivalences between verbal phrases.

The WEBRE approach [22] can cluster verb phrases with
close meaning in the presence of ambiguity. For instance,
the verb phrase be part of holds different semantics in the
sentences “New York is part of the United States” (location
is part of location) and “Sun Microsystems is part of Oracle”
(company is part of company). WEBRE first disambiguates
the relational concepts, producing a set of typed relations
called type A relations (e.g. company is part of company).
Then, WEBRE performs synonym resolution on such con-
cepts. For this purpose, WEBRE uses both the Open IE
triples and the source text corpus to construct a hypernym
graph, an entity similarity graph and verb phrase similar-
ity graph. Such data structures are used to construct fea-
tures for a clustering implementation based on HAC. Our
approach also deals with ambiguous verbal phrases by en-
forcing type constraints on the arguments of the equivalence



mappings mined from the Open IE KB. However, unlike
WEBRE, our methods rely solely on the Open IE triples.

3. CANONICALIZING NOUN PHRASES
3.1 Mentions

Given an Open IE KB, our first goal is to canonicalize
its noun phrases. For simplicity, we concentrate here on
canonicalizing the subjects; the same approach can be used
to canonicalize the objects. We note that the same string
can have different meanings if it appears on two different
pages. For example, (Obama, won, an award) can refer to
Barack Obama or Michelle Obama, depending on where the
triple was found. We assume, however, that the same sub-
ject phrase on the same Web page will always refer to the
same entity. For example, a news article that uses Obama
to refer to the president may not use that word (without
other qualification) to refer to his wife. This is a common
assumption in linguistics [14].

With this in mind, we define a mention as a triple m =
(n,u, A) where n is a subject noun phrase such as Barack
Obama, u is the url of a Web document such as bbc.com
where the mention was found, and A is the set of attributes
about n that were extracted from w. Each attribute is a
predicate-object pair such as (was born in, Honolulu), or
(won, an award). Thus, a mention defines the profile of a
noun phrase n in a particular Web source w.

3.2 Clustering

Our goal is to partition the set of mentions, so that all
mentions in one partition refer to the same real-world entity.
This task can be seen as a clustering problem, where the
real number of clusters, i.e., the number of different entities
in the data, is unknown. To solve this problem, we use
Hierarchical Agglomerative Clustering (HAC) on the set of
mentions built from the Open IE triples.

In its general formulation, HAC has O(N3) time com-
plexity, where N is the number of mentions. This makes it
inadequate for large datasets. To alleviate this fact, we used
token blocking [24], a method that resembles the canopies
method introduced in [21]. This method first assigns each
mention to one or several groups, called canopies. One stan-
dard approach is to assign the noun phrases to canopies
based on the words that the noun phrases contain. For
example, a noun phrase President Obama will be assigned
to the canopy for President and to the canopy for Obama.
Then, standard HAC is applied within each canopy. This
partitions each canopy into a set of clusters. Finally, the
clusters that live in different canopies but share a mention
are merged. In the example, the cluster {Barack Obama,
President Obama} from the Obama canopy will be merged
with the cluster { President Obama, US President} from the
President canopy. This technique reduces the number of
pairwise comparisons required by the standard HAC imple-
mentation. Furthermore, it facilitates parallelism, because
each canopy can run HAC on a smaller subset of data.

Canopies can drastically affect the recall of the clustering
algorithm: If two mentions refer to the same real-world en-
tity, but are assigned to different canopies, then they might
never end up in the same cluster. For example, Mumbai and
Bombay will go to different canopies, and unless there is a
mention that connects them, they will remain in different
clusters. Thus, we face a trade-off, where assigning a men-

tion to a small number of canopies will improve efficiency
(decrease the runtime), but hurt recall and precision.

We propose the following solution to this problem, which
we call “object canopy expansion”. We assign two men-
tions m1 = (n1,w1,.A1) and ma = (n2, ws, A2) to the same
canopy, if (1) m1 and n2 share a word that is not a stop-
word, or if (2) there exist two objects 01 € Topject (A1), 02 €
Tobject (A2) that share a word. In this way, we can merge
Mumbai and Bombay, if, e.g., they both appear in triples
(Mumbas, is located in, the Republic of India) and (Bombay,
is a city in, India).

3.3 Similarity Functions

HAC requires a similarity function on the mentions. In
this paper, we study different similarity functions, with the
goal of determining which ones work best under which con-
ditions. Many of the functions use the Jaccard coefficient:

SnS'|
jaccard(S,S’) = ‘7
I (6.8)= 1509
Given two mentions m = (n,u, A) and m’ = (n’,u', A’), we
define the following similarity functions (called features):
Attribute Overlap. The attribute overlap is the Jaccard
coefficient of the set of attributes:

Fartr(m,m’) := jaccard(A, A"

Two attributes (p,0) € A, (p',0') € A’ are equal if p = p’
and 0 = 0'.

String Similarity. We use the Jaro-Winkler similarity be-
tween n and n’ as a feature

Fstrsim(m,m’) := jarowinkler(n,n’)

String Identity. As a special case of the string similarity
(and as a baseline), we consider the string identity:

1, ifn=n'

fstria(m,m') := {

0, else

IDF Token Overlap. If two noun phrases share a word,
they are more likely to be similar, but not if many other
mentions share that word. For example, the fact that Rhine
River and Ruhr River share the word River is not very sig-
nificant, because this word also appears in a plethora of
other river names. Therefore, we introduce a weighted word
overlap, in which a word is given more importance if it ap-
pears in fewer mentions. We follow the standard Inverse
Document Frequency (IDF) approach:

Zwew(n)ﬁw(n’) lOg(l + df(w))il
Zwéw(n)Uw(n’) lOg(l + df(w))71

Here, w(-) is the set of words of a string, excluding stop
words. df (w) is the frequency of the word in the collection
of all words that appear in the subjects and the objects of
the OpenlE triples.

Word Overlap. If two Web pages share many words, then
this can be an indication that two mentions on these pages
refer to the same entity. We define

fiiOl(m7 m/) =

Fwor(m,m') = jaccard (t(u), t(u'))

where ¢(-) is the set of the top 100 words on a page, ranked
in terms of TF-IDF [20].



Entity Overlap. Since words can be ambiguous, we also
experimented with an overlap of entities. We applied a stan-
dard entity linkage algorithm [11] on the pages, and identi-
fied the set e(u) of linked Freebase entities on the page wu.
Then we define

feot(m, m') = jaccard(e(u), e(u'))

Type Overlap. Shared types can be a signal for merging
two mentions. We used the results of the type induction
algorithm [27] on the verbal phrases of the attributes (as
provided by the authors of [27]), and define

Jrot(m,m') = jaccard(types(mprea (A)), types (mprea(A'))

So far, we have described how to compute the similarity
between two mentions. The similarity between two clusters
is calculated using the single linkage criterion [16], that is,
the maximum of the intercluster pairwise similarities. Our
experience suggests that the complete linkage criterion (the
policy that uses the minimum intercluster similarity) and
even the average linkage criteria are too conservative and
therefore lead to low clustering recall.

3.4 Combined Feature

In addition to the individual features, we also study a
combined feature, which is a logistic function:

1
Nn_ L
fml(mvm ) T 1+ e fsim(mm/)

Here, fsim(m,m’) is a linear combination of features:

N
fsim(m,m") = co + Z cifi(m,m’)
i=1
The fi,..., fv are the similarity functions discussed in Sec-
tion 3.3. Since the word overlap, the entity overlap, and the
type overlap require a lot of preprocessing, we also study
a simple combined feature that does not make use of these
advanced measures, called fs;,;. In both cases, the weights
¢; are determined by training a logistic regression classifier.

To train the combined similarity function, we need labeled
training data, i.e., a set of mention pairs that are labeled
as being equal or unequal. Such training data can be ob-
tained, for instance, from approaches that perform entity
disambiguation (Section 2.2), i.e., that map Open IE triple
subjects to entities in a KB. In our case (i.e., in the case of
ReVerb triples), half of the triples already have their sub-
jects mapped to Freebase entities [11]. We use these map-
pings for training, so that we can partition the remaining,
yet-unmapped, mentions into synonymous clusters.

To learn robust weights for our features, we have to make
sure that our training set contains hard cases, where the
same entity appears with different names, because other-
wise we will learn to put too much weight on just the string
similarity. To do this, we randomly sample 200 Freebase
entities that appear with different names in our triples. For
example, our set of entities contains the Greek poet Homer,
because he appears as Homer and as Homerus in our triples.
Every one of these names, in turn, can refer to several en-
tities (homonyms). For example, Homer does not just refer
to the Greek poet, but also to Homer Simpson, the cartoon
character from “The Simpsons”. Hence, we add to our set
also Homer Simpson, and all names that refer to Homer
Simpson. This results in 436 entities with 714 names in to-
tal. Next we collect all triples that contain one of these 714

names (in mapped form), and construct their mentions (us-
ing the provenance information in the Reverb triples). This
results in 43K mentions. From these mentions, we can con-
struct a training set of pairs of mentions that are labeled as
equal or unequal. We construct a set of 1137 pairs, balanced
between equal and unequal pairs. We also make sure that
each entity contributes with at least two examples, because
standard random sampling would penalize entities with few
mentions. This set of pairs is then used to train our weighted
similarity function. In Section 5.1, we compare this learned
similarity function to the baseline approaches.

3.5 Canonicalization

Given a cluster of synonym mentions m = (n,w, .A), the
canonicalization consists of selecting a representative noun
phrase n that will replace the other noun phrases in the
canonicalized KB. We propose a simple approach that selects
the noun phrase 7 with the highest number of different Web
sources u. In case of a tie, an alternative is to select the
longest noun phrase.

4. CANONICALIZING VERBAL PHRASES

In this section, we describe our approach for clustering
verbal phrases that have equivalent meaning. The basic idea
is to learn rules that predict when one phrase is semantically
equivalent to another, and then to perform clustering to en-
force transitivity of this relation.

4.1 A semi-canonicalized KB

Our approach to verbal phrase clustering requires that
the subjects and objects of the Open IE triples are already
clustered. There are two ways to achieve this. Either we
can use our noun phrase clustering algorithm of Section 3,
or we can make use of the existing mappings to Freebase. We
consider both approaches. In particular, for the latter case,
we take a subset of all the Reverb triples where the subject
was already mapped to Freebase (as provided in the data in
[11]), and where we can unambiguously map the object to
Freebase using a simple string matching technique.

With either of these techniques, we obtain a “semi-
canonicalized” KB, where the subjects and objects are fully
canonicalized, and the predicates are still uncanonicalized
verbal phrases (the “dual” of NELL). This KB may contain,
e.g., (Barack Obama, was born in, Honolulu) and (Barack
Obama, ’s birthplace is, Honolulu).

4.2 Rule Mining

Suppose we have the two Open IE relations r=was born
in and 7' =’s birthplace is. We would like to discover that
these are equivalent, i.e., that » C »’ and ' T r, where
r C r’ means that v’ subsumes (is more general than) r, i.e.,
Vz,y : r(z,y) = r'(z,y). Unfortunately not all triples with
r will necessarily appear with r’. Conversely, relations that
are very sparse may occur with the same subject and object
by chance, even though they are not equivalent. For exam-
ple, if we find (Woody Allen, married, Soon-Yi Previn) and
(Woody Allen, ’s stepdaughter, Soon-Yi Previn), we should
not deduce ’s stepdaughter — married, even if all triples with
the former verbal phrase appear with the latter. Therefore,
we resort to a soft approach for subsumption detection that
is based on statistical rule mining.



We decided to use the AMIE algorithm [13, 12], which can
learn Horn rules such as the following:

marriedTo(z, z) A livesIn(z,y) = livesIn(z,y)

The left-hand-side of such a rule is called the body, and we
abbreviate it by B. All variables are implicitly universally
quantified, so that Horn rules are a subset of first order logic
statements. A relation subsumption r C r’ can be expressed
as a Horn rule of the form r(z,y) = r'(x,y).

Learning such rules is called inductive logic programming.
This requires positive and negative examples. One could
take all facts that are absent in the KB as negative examples.
However, this violates the Open World Assumption made
by KBs. Instead, AMIE makes a more refined assumption
called the Partial Completeness Assumption (PCA), which
assumes that if we know any facts of relation r for a given
entity x, then we know all facts of this relation for z, so
missing edges are false, but if we do not know any facts of
type r for entity x, then we do not assume missing edges
are false. (In [7], PCA is called the “local closed world as-
sumption”.) For instance if a KB knows the nationality of
a person and a rule predicts a different nationality, this is
assumed as a negative example by the PCA. However, if no
nationality is known for the person, PCA does not use this
absence of information as counter-evidence.

For AMIE, the support of a rule is the number of positive

examples covered by the rule:
supp(é = r(z,y)) = #(x,y) : Iz1, ..., 2m : BA r(x,y)

Here, z1,...,2m are the free variables of the body, and
#(z,y) : Ais the number of pairs (x,y) that fulfill A. Based
on the PCA, AMIE defines the following confidence measure:

supp(B = r(z,y))

pcaconf(é = r(z,y)) :=

The PCA confidence normalizes the support of the rule
over the positive examples and the facts assumed as false
according to the PCA, thus taking into account that KBs
can be incomplete. Although the PCA does not hold for all
relations, [13] shows that it leads to high precision and recall
for rule mining.

We apply AMIE to our semi-canonicalized KB to mine
subsumption rules of the form r(z,y) = 7'(x,y). As
suggested in [12], we infer equivalence rules of the form
r(z,y) & r'(z,y) by merging subsumptions in both direc-
tions. We score each subsumption with the PCA confidence,
and score an equivalence with the minimum of the two sub-
sumption scores. The output of the AMIE system is a set
of equivalent verb phrases like be-named-after(z, y) < take-
its-name-from(z, y)

4.3 Phrase Clustering

The rule mining has given us a set of weighted equivalence
relations between verbal phrases. Since the equivalence rela-
tion is transitive, we iteratively merge equivalence mappings
with at least one verbal phrase in common. For instance,
given the equivalences

stand-for(z, y) < be-an-acronym-for(z, y)

be-short-for(z, y) < be-an-acronym-for(x, y)

refer-to(z, y) < be-short-for(z, y)
we merge the relations stand-for, be-an-acronym-for, short-
for and refer-to into a single cluster.

#(:C7y/) : 321,...,Zm,y/ : é/\r(x,y’)

4.4 Canonicalization

We propose to canonicalize clusters of verbal phrases by
mapping them to Freebase relations. To achieve this, we
resort to the ROSA approach [12]. First, we restrict our
set of triples to those that have a subject and an object
linked to Freebase. Then we join this set with Freebase,
so that we obtain a set with facts of the form vp(zx,y) and
fr(z,y). Here, x and y are Freebase entities, vp is a ver-
bal phrase and fr is a Freebase relation. Then, we run
AMIE on our coalesced KB in order to mine cross-ontology
equivalence rules of the form vp(z,y) < fr(z,y). The rule
bought(y, x) < acquiring_company(z,y) is an example. For
each cluster of Reverb verb phrases, we collected all the Free-
base relations implied by the verbal phrases in these equiva-
lences. In Section 5.2, we show that in some cases it is possi-
ble to map clusters unambiguously to Freebase. If a cluster
cannot be mapped to Freebase (e.g., because it represents
a novel relation that is not part of the Freebase schema),
a representative for the cluster can be chosen by selecting
either the verb phrase that appears in most equivalences, or
the phrase with the largest number of triples.

S. EXPERIMENTS

We conducted two groups of experiments, one to evaluate
different entity clustering features, and one to evaluate the
relation clustering.

5.1 Entity clustering

5.1.1 Evaluation metrics

To evaluate the quality of a clustering of mentions, we
assume each mention m can be mapped to a correspond-
ing entity e(m) from Freebase according to a gold standard
clustering E. Each cluster e € E contains all mentions that
map to the same entity. Given this, we can measure preci-
sion and recall of the clustering in 3 different ways, which
we call macro analysis, micro analysis and pairwise analysis.

We will explain these metrics using the example in Fig-
ure 1, which illustrates a set of |[M| = 7 mentions distributed
across |C| = 3 clusters. There are |E| = 3 Freebase entities,
all called “Homer”: the Greek poet, the cartoon character
Homer Simpson, and the author Homer Hickam. (Each en-
tity also has other aliases.)

Macro-analysis. We define the macro precision of the clus-
tering as the fraction of clusters that are pure, i.e., where all
the mentions in the cluster are linked to the same entity:
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Figure 1: An example of a clustering of N=7 men-

tions and a gold standard with 3 Freebase entities,
labeled in parentheses below the mentions.



Macro recall is calculated by swapping the roles of
the ground truth and the resulting clustering, i.e.,
recallmacro(C, E) = precisionmacro(F,C). This corre-
sponds to the fraction of Freebase entities that get assigned
to a unique cluster. In Figure 1, we can see that clusters
A and C are pure as they do not mix mentions of different
entities. Hence precisionmacro = >/3. Conversely, the car-
toon character and the author are pure entities because they
occur only in one cluster, therefore recallmacro = 2/3.

Micro analysis. Micro precision is defined as the pu-
rity [20] of the resulting clustering. This is computed by
assuming that the most frequent Freebase entity of the men-
tions in a cluster is the correct entity. That is, we compute

Z mazecr|cNe|
c€C

Precisionmicro(C, E)

where N is the number of mentions in the input. Macro
recall is symmetrically defined as recallmicro(C, E) =
precisionmicro(E, C). For example, in Figure 1, the most
frequent entity for clusters A and B is the poet (2 mentions
in each cluster) and for C is the author (2 mentions), so
the micro precision is /7. Analogously recallmicro = °/7
because the highest frequencies in a cluster for the entities
are: 2 times for the poet, 2 times for the author, and 1 time
for the cartoon character.

Pairwise analysis. In the pairwise evaluation, we measure
the precision and recall of individual pairwise merging de-
cisions. To be more precise, let us say that two mentions
from the same cluster produce a hit if they refer to the same
Freebase entity. We define the pairwise precision as

S ecc #hitse

precisionpairwise(C, ) = 27
cec #pairs.

#pairse = |c| x (|c] — 1)/2 is the total number of mention
pairs in a cluster. Likewise, we define recall as

ZCGC #hits.
ZeeE #pairse

In Figure 1, clusters A and C produce 1 hit out of 1 pairwise
decision, whereas cluster B produces 1 hit out of 3 pairwise
decisions. Hence the pairwise precision is % To compute
recallpairwise, We calculate the total number of pairwise de-
cisions in the gold standard E: #pairspoect + #pazrsuumw +
#pairscartoon = 6+ 1+ 0, s0 recallpairwise = /7.

In all cases, the F1 measure is defined as the harmonic

mean of precision and recall.

5.1.2  Clustering ReVerb

ReVerb! [10] is a state-of-the-art Open IE system that
was run on the Clueweb09 corpus®. It produced 3M triples.
Half of these triples have their subject linked to Freebase, as
in [11]. To evaluate the different clustering features, we built
a gold standard as follows: We sampled 150 Freebase entities
that appear with at least 2 names in our dataset, and col-
lected all their mentions in our triples. This resulted in 8.5K
mentions. We call this dataset Base. We then enrich this
dataset with all the mentions of homonym entities, as in Sec-
tion 3.4. We name this dataset Ambiguous. This results in
446 Freebase entities and 34K mentions. For both datasets,

recallpairwise(C, E) =
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we constructed a gold standard clustering by grouping those
mentions that are linked to the same Freebase entity.
Results on Base. We ran our implementation of HAC on
the 8.5K mentions (9.1K extractions) in the Base dataset.
On a Intel Core i7 (8 logical cores, 2.40 GHz) with 16 GB
of RAM, our implementation (using the full ML similarity
function, plus expanded canopies) created 157 clusters in
54.3 seconds (averaged across 3 runs). Our memory foot-
print reaches a peek of 5.7GB.

Next, we assess the quality of the different similarity fea-
tures introduced in Section 3.2. We show the results in
Table 1, using a confidence threshold that was chosen to
maximize the F1 score. Our first observation is that all the
features deliver very good precision. This means that they
rarely produce a cluster than contains two different entities.
Thus, the features behave rather conservatively.

Let us now look at recall. The macro-recall is very low in
general, because as soon as one entity appears in more than
one cluster, the metrics decreases (even if all other men-
tions of the entity are clustered correctly). Let us therefore
look at the micro-recall and the pairwise-recall. All features
perform decently. This is mainly because all features can
build on the pre-clustering that the canopies already estab-
lished, i.e., every feature is applied only to pairs of mentions
with overlapping words. When comparing the recall of the
features, the attribute overlap stands out with lowest recall.
This is because our triples are very sparse: It rarely happens
that two different mentions of the same entity share many
attributes. The type overlap, in contrast, works very well:
The fact that two mentions with similar names share a type
is a strong signal that they refer to the same entity. The
word overlap performs well for a similar reason. Among the
features that do not require preprocessing, the IDF token
overlap is a clear winner.

Rather surprisingly, the combined features (Full ML and
Simple ML) are not the best performing methods. We
thought that this would be because of the canopies, which
make the resulting data distribution at test time quite dif-
ferent from what was used to train the model. To assess
this conjecture, we also ran HAC without canopies on this
dataset (Table 2). We can observe that the string identity,
the IDF tokens overlap, and the attributes overlap are insen-
sitive to the canopies policy. The other features, in contrast,
perform much worse without canopies. This suggests that
they provide little or no extra evidence of synonymy. They
are noisy signals that mainly mislead the ML methods. This,
in turn, explains the performance of the ML methods with
and without canopies.

Table 3 lists some examples of pure entity clusters that
the Simple ML feature could find. We can for instance clus-
ter the mentions “Phoenix Arizona” and “Phoenix” using as
signals the tokens overlap and common attributes such as
(located in, Arizona). Moreover we can avoid mixing these
mentions with the mythological creature of the same name.
On the other hand, the sparseness of the attribute overlap
still leads to losses in recall. For example, we could not clus-
ter the mentions ”"Beijing National Stadium” and "National
Stadium” together, even though they are the same entity.
Results on Ambiguous. The Ambiguous dataset consists
of 34K mentions and 37K triples. With the same setup as
for Base, our implementation produces 823 clusters in 15.045
minutes on average with a peek memory footprint of 6.5GB.
The results are shown in Table 4. Not surprisingly, preci-
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Macro Micro Pairwise
Precision Recall F1 Precision Recall F1 Precision Recall F1
String identity 1.000 0.436  0.607 1.000 0.798  0.888 1.000 0.740  0.851
String similarity 0.995 0.658  0.792 0.998 0.844 0.914 0.999 0.768 0.986
IDF token overlap 0.994 0.879  0.933 0.996 0.969  0.982 0.999 0.973 0.986
Attribute overlap 1.000 0.05 0.102 1.000 0.232  0.377 1.000 0.094 0.173
Entity overlap 0.996 0.436  0.607 0.995 0.934 0.964 0.999 0.932  0.964
Type overlap 0.987 0.926 0.956 0.995 0.973 0.984 0.999 0.972  0.985
Word overlap 0.988 0.913  0.949 0.995 0.973 0.984 0.999 0.973 0.986
Simple ML 0.994 0.899  0.944 0.996 0.972 0.984 0.999 0.973 0.986
Full ML 0.994 0.906  0.948 1.000 0.937  0.967 1.000 0.973 0.869

Table 1: Precision and recall on ReVerb’s Base dataset. The highest values in each column are in bold.

Macro Micro Pairwise
Precision Recall F1 Precision Recall F1 Precision Recall F1
String identity 1.000 0.436  0.607 1.000 0.798  0.888 1.000 0.740  0.851
String similarity 0.948 0.477  0.634 0.971 0.811  0.884 0.973 0.743  0.842
IDF token overlap 0.994 0.879 0.933 0.996 0.969 0.982 0.999 0.973 0.986
Attribute overlap 0.994 0.054  0.102 0.990 0.232  0.376 0.990 0.094 0.172
Entity overlap 0.000 0.805  0.000 0.169 0.987  0.289 0.051 0.981  0.097
Type overlap 0.750 0.980 0.850 0.157 1.000 0.272 0.051 0.999  0.097
Word overlap 0.000 1.000 0.000 0.157 1.000 0.271 0.051 1.000 0.097
Simple ML 0.979 0.490 0.653 0.824 0.916  0.868 0.405 0.937  0.565
Full ML 0.990 0.154  0.267 0.776 0.889  0.829 0.396 0.931 0.555

Table 2: Precision and recall on ReVerb’s Base dataset, without canopies. Highest values in bold.

sion is lower on this dataset. This is mainly caused by the
single linkage criterion for clusters. Under this policy, the
similarity of a pair of clusters is determined by the highest
intercluster similarity score. While this aggressive strategy
was shown to improve recall significantly, it also propagates
errors more easily. Furthermore, this phenomenon is am-
plified by the reclustering phase and the ambiguity of the
test set. To see this, consider a set of mentions with labels
Barack Obama, Michelle Obama, and Obama, the latter re-
ferring ambiguously to both Barack and Michelle Obama. A
single clustering error on the ambiguous mentions (Obama)
will move the three entities in the same cluster, and thus
decrease precision. Conversely, the baseline approach is less
sensitive to ambiguity in this particular case because the pre-
cision will only penalize the merge of the ambiguous mention
Obama, as Barack Obama and Michelle Obama will be never
clustered together. Hence, all features produce lower preci-
sion. The attribute overlap has highest precision — but this
is mainly because it is a very sparse feature that hesitates to
merge mentions. Let us therefore look at the micro-F1 and
the pairwise-F1. We see that the IDF token overlap is the
strongest feature, even in presence of ambiguity. It is fol-
lowed by the combined features. For comparison, the table
also shows the Simple ML without the “object canopy ex-

Pure clusters

{Phoeniz Arizona, Phoeniz}
{Hannibal Hamlin, Hamlin, Hannibal}
{The Colorado Rockies, The Rockies}

Impure clusters

{John’s Gospel, John Peel, Peel}
{Suns, Phoeniz Coyotes, Phoeniz Suns}
{Ethanol, Cellulosic Ethanol }

Table 3: Some examples of successfull and unsuc-
cessful synonym identification

pansion” (Section 3.2). We see that the expansion increases
recall slightly, and has a negligible effect on precision. There-
fore, we conclude that the technique is indeed useful. Table 3
shows some examples of impure clusters.

Lessons Learned. Our study of features shows that,
among the more advanced features, the type overlap and
the word overlap produce significant leverage if combined
with canopies — both on the random dataset and on the am-
biguous one. They are closely followed by the IDF token
overlap, which stands out as the strongest simple feature,
with and without canopies. The combined features also per-
form decently. All in all, the best features can cluster en-
tities in the general case with nearly 100% precision, and a
pairwise-recall of more than 98%.

5.1.3 Clustering NELL

The NELL project [5] also extracts triples from the
ClueWeb09 corpus. The Concept Resolver approach [18]
aims to cluster the entities of these triples. Concept Re-
solver operates under the one-sense-per-category assump-
tion, which states that within one category, names are un-
ambiguous. Once the type for a noun phrase has been ex-
tracted, Concept Resolver collects all the type compatible
triples about the noun phrase and builds a “sense” for that
NP, the equivalent of what we call a “mention”. The authors
of [18] provided us with the data and the training examples
used to evaluate Concept Resolver. As described in Sec-
tion 3.4, we used the triples to construct mentions.

The challenge is to cluster together several names that re-
fer to the same entity. Since not all the triples contained the
source from which they were extracted, we defined a default
source for those without provenance. We also restricted our
dataset to the categories considered in the evaluation of Con-
cept Resolver. The resulting dataset consists of 18K triples
and 20K mentions.



Macro Micro Pairwise
Precision Recall F1 Precision Recall F1 Precision Recall F1
String identity 0.734 0.390 0.510 0.932 0.771  0.844 0.942 0.565  0.706
String similarity 0.607 0.442 0.511 0.792 0.873 0.831 0.809 0.574 0.671
IDF token overlap 0.643 0.509  0.568 0.913 0.847 0.879 0.900 0.703 0.789
Attribute overlap 0.997 0.083 0.153 0.998 0.162 0.279 0.997 0.024  0.047
Entity overlap 0.905 0.480 0.627 0.663 0.939 0.777 0.458 0.892  0.606
Type overlap 0.467 0.917 0.619 0.626 0.970 0.760 0.401 0.914  0.558
Word overlap 0.390 0.926 0.549 0.625 0.970 0.760 0.401 0.915  0.557
Simple ML, no obj.can. 0.711 0.444  0.546 0.808 0.909  0.855 0.630 0.889  0.738
Simple ML 0.709 0.444  0.546 0.808 0.923  0.862 0.649 0.968  0.777
Full ML 0.685 0.552  0.611 0.671 0.955 0.788 0.302 0.989 0.463

Table 4: Precision and recall on ReVerb’s Ambiguous dataset. The highest values in each column are in bold.

Micro-evaluation

Precision
Simple ML 0.660
Concept Resolver 0.778
IDF Token Overlap 0.700

Recall
0.578
0.633
0.475

Pairwise
F1 Precision Recall F1
0.616 0.376 0.188 0.250
0.699 0.542 0.335 0.415
0.566 0.356 0.067 0.113

Table 5: Comparison of entity clustering methods on the NELL data.

Gold Standard. Concept Resolver comes with a manu-
ally compiled set of noun phrases that should be clustered
together as one entity. We estimated our precision by sam-
pling a random subset of 100 clusters from the output and
checking them manually. For Concept Resolver we report
the precision value from [18], averaged across all categories
and weighted by the number of senses per category.

We note that our notion of precision is not fully compara-
ble to theirs: the one-sense-per-category assumption merges
all mentions of the same type into one mention — no matter
if the triples come from different sources. This can cause
problems. For example, Obama:Person is assumed to map
to only one entity, whereas we allow it to map to multi-
ple entities, depending on which page the mention was seen.
Moreover, Concept Resolver removes singleton clusters from
the evaluation of precision. For us, in contrast, such a sin-
gleton cluster can correspond to several successfully merged
mentions. Therefore, we restricted our manual evaluation
to non-singleton clusters according to Concept Resolver and
used the IDF token overlap as baseline. Concept Resolver
does not report values for the macro dimension, we show
results for the micro and pairwise evaluation.

Results. We ran our synonym resolution machinery on the
NELL triples and computed precision and recall. The results
are shown in Table 5. The Simple ML feature can achieve
decent precision and recall, albeit inferior to the values of
Concept Resolver. We believe this is because the logistic
regression model implemented by Concept Resolver lever-
ages information from the ontology, which is not possible
in an Open IE scenario. Whereas our Simple ML uses a
Jaccard score on the attributes of mentions as signal for
synonymy, Concept Resolver also builds features from the
properties of the relations. For instance, their approach will
penalize the similarity for the mentions Auburn and Auburn
Hills as they have different values for the functional predi-
cate cityLocatedInState (the first located in Maine and the
second in Michigan) even if they have other attributes in
common (e.g. both located in USA). Additionally, Concept
Resolver makes use of inverse and quasi-inverse functions
as they can identify mentions uniquely. The fact that the

mentions Mumbai and Bombay share the inverse functional
predicate (cityCapitalofState, Maharastra) is used as strong
evidence for synonymy. Still, our Simple ML and the IDF
token overlap deliver reasonable results even without this
additional information.

Lessons Learned. We can see here that the relation
schema that Concept Solver uses improves the entity clus-
tering results. If such data is not available, a synonym res-
olution approach based on Open IE attributes and string
similarity features can deliver reasonable results. Even a
simple baseline such as the IDF token overlap should not be
outright discarded for the task of synonym resolution.

5.2 Relation clustering

5.2.1 Dataset

Since the relations of NELL are already canonicalized, we
run the relation clustering only on the ReVerb set of triples.
As discussed in Section 4.1, the relation clustering requires
a semi-canonicalized KB, in which the subjects and objects
have been canonicalized. There are two ways to achieve
this: either by our entity clustering (“Clustered KB”) or
by a mapping to Freebase (“Linked KB”). The Clustered
KB was constructed by sampling 25K freebase ids from the
Linked KB and gathering all their triples. This results in
600K triples. Both the Clustered and the Linked KB are
given as input to the AMIE system in order to mine relation
equivalences. We ran AMIE using a support threshold of 5,
meaning that two verbal phrases must have at least 5 pairs
in common. This also implies that relations with less than
5 cases are discarded. The Linked KB has 33215 of such
relations, the Clustered KB has 17259.

5.2.2  Ambiguous phrases

[22] suggests that approximately 22% of the Reverb
phrases are polysemous. The phrase belongs-to, e.g., con-
veys different meanings in the sentences “The Wii belongs
to Nintendo” (invention created by organization) and “Mal-
lorca belongs to Spain” (island belongs to country). Poly-
semy hurts precision, since phrases with unrelated meanings
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Table 6: Quality of relation clusters for two different confidence thresholds.

Verb phrases

Freebase relation

be an abbreviation-for, be known as, stand for, be an acronym for -
be spoken in, be the official language of, be the national language of location.country.official_language

be bought, acquire

organization.organization.acquired_by

Table 7: Examples of clusters of verbal phrases. The last two were mapped to Freebase.

will be transitively clustered as synonyms due to the poly-
semic relations. To alleviate this effect, we also run AMIE
on triples from Linked KB where the entities are augmented
with types. This option makes AMIE enforce type con-
straints on the arguments of the equivalence mappings when
possible. Thus, a single verbal phrase can generate multiple
specific relations that differ only in their signatures. Since
the Freebase ontology has approximately 23K different data
types, we allowed type enhacement only with the most com-
mon types, i.e., person, organization, location, and string.

5.2.3 Evaluation metrics

Since evaluating recall would require identifying all the
relations in the set of 1.3M triples, we focus on measures
of precision. As before, we can measure the precision of a
relation cluster at the macro, micro or pairwise level. The
pairwise precision measures the quality of a set of clusters
as the ratio of correct pairwise merges. A pairwise merge is
counted as correct if the corresponding verbal phrases mean
the same, or if one of them is slightly more general than the
other. For instance, the phrases be-spoken-in and be-the-
official-language-of count as a correct merge. The micro-
precision assumes the most frequent meaning in a cluster as
ground truth. Hence, it is calculated by adding up the fre-
quency of the most common meaning in each of the clusters
and dividing this number by the total number of phrases.
Conversely, the macro-precision is the ratio of pure clusters,
i.e., the proportion of clusters where all the phrases belong to
the same meaning. For micro and macro precision, phrases
were labeled with the most general meaning.

5.2.4 Results

On the Clustered KB, AMIE mined 3.5K equivalence
mappings, whereas mining the Linked KB produced 4.3K
equivalence rules. When the type enhancement is enabled,
the number rises to 22K mappings. For example, we find
use-truck-for < use-van-for with confidence 1.0 and sup-
port 19, or stand-for < be-an-acronym-for with confidence
0.88 and support 44. With the type enhancement, AMIE
can discriminate between a country changing location, e.g.,
“Israel moved to Mont Hor”, a person visiting a place,
e.g., “Barack Obama moved to Los Angeles”, and an or-
ganization changing location, e.g., “Fostoria Glass moved

to Moundsville” . This results in different equivalence
rules for the phrase move-to such as moved-to(location —
location) < located-in(location — location) (support 8,
confidence 0.5) and moved-to(person — location) < move-
permanently-to(person — location) (support 5, confidence
0.5). In these examples our coarse-grained type constraints
are enough to avoid mixing phrases that denote permanent
location (e.g. situated-in) with phrases that denote place of
residence (e.g. now-lives-in).

The mappings have different confidence scores, and there-
fore we tested the phrase clustering at two confidence thresh-
olds: 0.8 and 0.5. Table 6 shows the results, together with
the number of clusters and phrases. As we see, the preci-
sion of our clusters is very good, meaning that we do not
merge phrases that do not belong together. Naturally, a
higher confidence threshold always leads to fewer phrases
being clustered, and to fewer clusters. Our results are bet-
ter on the cleaner Linked KB than on the Clustered KB.
We can also observe the benefit of the type enhancement.
In general, we can cluster only a very small portion of the
verbal phrases. However, our clusters are non-trivial and
contain an average of 4-5 phrases.

Comparison to WEBRE. We compare our results to the
WEBRE system [22]. We use the precision on the Linked
KB with types because the type-enhanced phrases resemble
the type A relations introduced by WEBRE. To be com-
parable, we report a weighted micro-precision, where the
correct assignments of phrases to clusters are weighted by
the number of triples with the verbal phrase. We get a score
of 0.981, which is slightly better than WEBRE’s score of
0.897. Nevertheless, this comparison must be taken with a
grain of salt because the evaluation performed in WEBRE is
somewhat different from ours (see Section 5 in [22]). First,
their method to generate typed verbal phrases is different.
Second, we could not have access to their gold standard for
precision and recall. Third, the micro-precision formula of
WEBRE uses are more granular definition of synonymy: a
phrase can be a synonym of the true relation of a cluster
(score 1), somehow related (score 0.5) or unrelated (score
0). Nevertheless, it is safe to say that our approach is not
far off from the state-of-the-art in terms of precision.

Mapping to Freebase. As described in Section 4.4, we
used AMIE and ROSA rules [12] to find equivalences be-



tween verbal phrases and Freebase relations. We ran AMIE
on a combination of Freebase and Reverb with support
threshold 5, producing 5.1K cross-ontology mappings. We
then applied the same confidence thresholds as for relation
clustering (0.5 and 0.8) and used the rules to map the clus-
ters of verb phrases to Freebase. We counted clusters that
were mapped to one Freebase relation or to two mutually in-
verse Freebase relations as “correctly mapped”. For example,
Freebase expresses the fact that Steven Spielberg directed
the Titanic movie with a pair of mutually inverse relations,
(Steven Spielbery, directed, Titanic) and (Titanic, directed
by, Steven Spielberg). The last column in Table 6 shows
the proportion of triples whose relation could be mapped.
We find a large number of very interesting mappings, some
of which are shown in Table 7. Going manually through
the mappings, we find an average precision of 88% for the
Clustered KB with threshold 0.8.

Lessons Learned. We conclude that rule mining can be
used to cluster verbal phrases, and to map them to canonical
Freebase relations. A cleaner KB and the type enhancement
both help. This method can produce such clusterings and
mappings only for a small portion of the verbal phrases,
but it can do so at a high precision and for a significant
percentage of the Reverb triples.

6. CONCLUSIONS

We have shown that it is possible, using fairly simple and
standard machine learning techniques, to identify synonym
mentions in a reasonable fraction of the triples coming from
standard Open IE systems, such as Reverb and NELL. Our
results suggest that, even with a certain level of ambiguity,
the IDF token overlap is the strongest signal of synonymy for
noun phrases on the Web, whereas more sophisticated fea-
tures extracted from the sources are insufficient for this task
on their own. We also provided useful and novel insights
about the impact of canopies in the performance of Hier-
archical Agglomerative Clustering, a standard technique for
record linkage and identification of synonyms. The resulting
clusters of entities and relations are semantically meaningful;
some of them correspond to existing entities and predicates
in Freebase, but others are novel extensions. We believe this
hybrid approach — whereby we use high recall extractors,
followed by clustering methods to improve the precision —
shows great promise for bridging the gap between Open and
Closed TE methods for knowledge base construction.
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