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1 Introduction
A knowledge base (KB) is a computer-processable collection of knowledge about the world. Recent
years have seen the rise of KBs such as YAGO [17], Freebase 1, DBpedia [3], or the Google Knowl-
edge Vault [5]. These KBs typically contain facts of the form spouse(ElvisPresley, PriscillaPresley).
Modern KBs contain facts about millions of entities. These KBs can be mined for rules, such as

spouse(x, y) ∧ hasChild(x, z)⇒ hasChild(y, z)

This rule says that if x is married to y and x has a child z, then z is also the child of y. Such
rules do not always hold, and hence they are usually given a weight or confidence measure. Recent
work [8] allows us to mine such rules at large scale in a few minutes on today’s KBs. This works by
systematically enumerating all possible rules in a search tree, and pruning this tree aggressively.

We propose to enlarge the scope of rule mining to numerical rules. A numerical rule contains
variables that do not bind to named entities, but to numerical values. Consider, e.g., the rule

type(x,marketEcon) ∧ import(x, y) ∧ export(x, z) ∧ cad(x,w)⇒ w ≈ 1.2×(y − z)
This rule says that if x is a market economy, then its current account deficit (cad) is roughly 120% of
the difference between its import and export (measured in dollars, for example). Such rules would
add tremendous value to today’s KBs: First, the rules could be used to spot errors in the data. If the
cad of a country does not fall in the expected range, then the value could be flagged as erroneous
or less confident. Second, such rules could be used to compute missing information. If, e.g., we
do not have the cad of France, we could compute it from the data. Finally, the rules carry human-
understandable insight. The finding that the cad of a country correlates with its import and export
has a value in itself [16].

Mining such rules is challenging for several reasons. First, there are infinitely many numerical con-
stants. In the example, the factor could be refined to 1.21 or 1.3. Second, there are infinitely many
ways in which numerical variables can correlate. For example, the cad could be the sum, product
or any other function of the ages of its members of parliament. Thus, the search space becomes un-
bearably large. Finally, numerical rules bridge two traditionally different areas of research: inductive
logic programming (ILP) and statistical data mining. While statistical data mining techniques can
spot correlations of values, they are less able to simultaneously derive logical constraints such as
type(x, marketEcon). ILP, on the other hand, traditionally does not deal with numerical values.

In this vision paper, we study the different types of numeric rules. We develop a unified language for
writing down numerical rules, and we explain which types of rules can already be mined by existing
work. With this thrust, we hope to lay the ground for research that will enable us to mine numerical
rules just as efficiently as logical rules.

2 Numerical Rules
2.1 Horn Rules

The starting point of most ILP and rule mining approaches are Horn rules. Horn rules are based on
atoms. An atom takes the form r(x1, . . . , xm) where r is a relation name and at least one argument
in x1, ..., xm is a variable. A Horn rule takes the form

B1 ∧ ... ∧Bn ⇒ H (abbreviated ~B ⇒ H)
1http://freebase.com
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Constraint Example rule with this constraint
x ≥ φ age(x, y)⇒ y ≥ 0
x > φ type(x, solvent) ∧ balance(x, y)⇒ x > 0
x = φ type(x, dog) ∧ numLegs(x, y)⇒ y = 4
x ∈ [a, b] lat(x, y)⇒ y ∈ [−90, 90]
x ≈ φ wikiLinks(x, y) ∧ articleLength(x, z)⇒ z ≈ 3.4×log(y)

Table 1: Numerical constraints and some examples

where B1, ..., Bn are the body atoms and H is the head atom. An instantiation of a rule is a substi-
tution for the variables. An atom a holds under an instantiation σ in a KB K, if σ(a) ∈ K. A rule
holds under σ in K, if either one of the body atoms does not hold or the head atom holds.

2.2 Numerical Constraints

One of the most intuitive ways to add numerical constraints to Horn rules is to permit constraints,
i.e., atoms of the form x ◦ φ. Here, x is a numerical variable, ◦ is a binary operator that returns a
truth value, and φ is an expression that may or may not involve variables. The atom holds under an
instantiation σ, if σ(x) ◦ σ(φ) = true. Atoms that are not constraints are called categorical atoms.
Categorical atoms that contain a numerical variable are called numerical atoms. Table 1 shows some
types of numerical constraints and example rules.

We could also aim to mine cardinality constraints such as hasWonPrize(x,EmmyAward) ∧
actedIn(x, y) ⇒ #y > 10. Such constraints are particularly interesting because they allow us to
mine negations by setting #y = 0 or #y < c for c ∈ N. Negations, however, are inconsistent
with the Open World Assumption that KBs make. We could also mine rules such as type(x, city)∧
hasPopulation(x, y)⇒ y ∼ N(µ;σ), saying that a set of values follows a certain distribution. We
leave such rules as future work and concentrate on the operators from Table 1. We notice that the
addition of numerical constraints may lead to pathological cases such as

p(x, y) ⇒ z = y (1)
p(x, y) ∧ z = y ⇒ r(x, y) (2)
p(x, y) ∧ z > y ⇒ r(x, z) (3)

In cases (1) and (2), we are binding a variable z that serves no purpose. In case (3), we are predicting
r(x, z) where z has no defined value. These phenomena are a particularity of constraints. If we
replace the constraints by categorical atoms, the problem does not appear:

p(x, y) ⇒ q(z, y) (4)
p(x, y) ∧ q(z, y) ⇒ r(x, y) (5)
p(x, y) ∧ q(z, y) ⇒ r(x, z) (6)

To avoid the pathological rules, we impose that every numerical variable has to appear in at least
one categorical atom. We also impose that the head atom can only contain bound variables, i.e.,
variables that appear in the body either in a categorical atom or in a constraint that restricts it to one
particular value.2 Different from [8], we do not impose that every variable has to appear at least in
two atoms, because we want to allow rules such as hasAdvisor(x, y) ∧ age(y, z)⇒ z > 30.

2.3 Descriptive and Predictive rules

Consider the following rule:

gdp(x, y) ∧ natDebt(x, z) ⇒ z = 0.9y (7)

This rule says that if x has a GDP and a national debt, then the debt can be computed as 90% of
the GDP. If x has no national debt, then the rule will always hold trivially. We say that the rule
is a descriptive rule because it will not try to predict the debt of x. Any rule that does not have a
categorical atom in the head is descriptive. Now consider the following variant of the rule:

gdp(x, y) ⇒ ∃z : natDebt(x, z) ∧ z = 0.9y (8)

2This is usually the case for =, although not necessarily, cf. x = x. ≈ also binds, as does x ∈ [a, a].
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This rule says that every x that has a GDP also has a national debt, and that this debt amounts to 90%
of the GDP. This formula allows for prediction of the national debt of a country given only its GDP.
However, it does not qualify as a Horn rule, because it contains a conjunction and an existential
quantifier in the head. We propose to write this rule as

gdp(x, y) ∧ z = 0.9y ⇒ natDebt(x, z)

This rule has the same semantics, but does not require the existential quantifier3. We call rules with
a categorical atom in the head predictive rules.

2.4 Functions

A function is a binary atom that has, for each first argument, at most one second argument in the
KB. It is very common for rule mining systems to assume that numerical atoms are functions. In
our survey of the state of the art (Section 3), we did not find any approach that would not make this
assumption. For example, a country can have only one national debt value. This assumption makes
sense only if we do not take into account the dimension of time.

If all numerical atoms are functions, we can use them in constraints. For example, we can write

natDebt(x) > 5×gdp(x) ⇒ hasProblem(x)

to mean
gdp(x, y) ∧ natDebt(x, z) ∧ z > 5y ⇒ hasProblem(x)

In general, any function term f(x) is replaced by a fresh variable y, and the categorical atom f(x, y)
is added to the body. This rewriting applies also if the function term is in the head:

indebted(x) ⇒ natDebt(x) = 5×gdp(x)

becomes
indebted(x) ∧ natDebt(x, y) ∧ gdp(x, z) ⇒ y = 5×z

This rewriting, however, allows only the descriptive semantics of =. There is no way to predict that
x has a national debt, if x doesn’t have that property already. To allow for this subtlety, we permit
the assignment atom f(x) := φ in the head. Such an atom is replaced by f(x, y) (where y is a fresh
variable), and this time the constraint y = φ goes to the body. Thus,

indebted(x) ⇒ natDebt(x) := 5×gdp(x)

becomes
indebted(x) ∧ gdp(x, z) ∧ y = 5×z ⇒ natDebt(x, y)

Every rule with function terms can be transformed into an equivalent rule without function terms.
Vice versa, every rule in which all numerical atoms are functions can be rewritten to an equivalent
rule without numerical variables. This is because every numerical variable y has to be bound in
some categorical atom f(x, y). Thus, we can replace y by f(x). As we will show in the next section,
function terms allow us to extend the notions of support and confidence — designed originally for
categorical rules — to rules with constraints. For this reason, we propose to use the language of
Horn rules with function terms as a unified language for rules with numerical constraints.

2.5 Evaluation Metrics

Support. The statistical significance of a rule is measured by the support metric. The support of
a rule ~B ⇒ H is the absolute number of cases in the KB where the rule holds. Following [8], we
count the support as the number of instantiations of the head variables:

support( ~B ⇒ H) := #x1, . . . , xm : ∃z1, . . . , zk : ~B ∧H

Here, #x1, . . . , xm are the variables in H , z1, ..., zk are the variables that appear only in ~B, and
#x1, . . . , xm : Φ stands for |{x1, ..., xm : Φ}|. This definition of support does not transfer well to
rules that have a constraint in the head, such as natDebt(x, y)∧gdp(x, z)⇒ y > z. This is because
we would want to count the different countries for which this rule holds, not the different debt values.

3The FORS system [10] uses the same notation, albeit with the Prolog predicate is/2.
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If natDebt is a function, we could associate y to x and count on x instead. In our language of
function terms, we get this behavior for free: The rule becomes ⇒ natDebt(x) > gdp(x) (with
an empty body). In such a rule, we count the support on all variables in the head as given by the
function terms – i.e., on x in this case.

Confidence. The standard confidence of a rule measures the ratio of correct conclusions:

stdconf( ~B ⇒ H) :=
support( ~B ⇒ H)

#x1, . . . , xm : ∃z1, . . . , zk : ~B′

Here, ~B′ is the body of the rule after all function terms have been rewritten. For example, the
standard confidence of the predictive rule R : indebted(x)⇒ natDebt(x) := 5×gdp(x), rewritten
as indebted(x) ∧ gdp(x, z) ∧ y = 5×z ⇒ natDebt(x, y), is given by

stdconf(R) :=
#x : ∃ y, z : indebted(x) ∧ gdp(x, z) ∧ z = 5×y ∧ natDebt(x, y)

#x : ∃ y, z : indebted(x) ∧ gdp(x, z) ∧ y = 5×z

where the equality constraint in the denominator is trivially satisfied and could be omitted. The stan-
dard confidence was originally designed for descriptive rules under the Closed World Assumption,
that is, it punishes rules concluding facts that are not in the KB. In the example, any indebted country
with a GDP will lower the confidence value, no matter whether it has the wrong debt value or no
value at all. However, KBs operate under the Open World Assumption, meaning that a fact that is
not in the KB is not necessarily false. To avoid unfairly punishing a rule, we can use the Partial
Completeness Assumption (PCA) [8]. It says that if a KB knows some r-values for an entity, then
it knows all its r values and new values outside this set are assumed false. If a rule predicts, e.g.,
additional children for a person, the PCA assumes the KB is partially complete and counts these pre-
dictions as false, but if the person has no children, the predictions are not used as counter-examples.
Likewise, if a rule predicts the national debt of a country for which this value is unknown, the PCA
does not use this as counter-evidence. This notion is encoded in the formula

pcaconf( ~B ⇒ r(x, y)) :=
support( ~B ⇒ r(x, y))

#x1, ..., xn : ∃z1, . . . , zk, y′ : ~B ∧ r(x, y′)

This formula is defined only for binary relations in the head. Most KBs that implement the OWA use
binary relations only anyway. If the head atom is an assignment atom, the rule has to be rewritten
into its function term free form, and the function of the assignment atom takes the role of r(x, y). In
our example, this yields:

pcaconf(R) :=
#x : ∃ y, z : indebted(x) ∧ gdp(x, z) ∧ z = 5×y ∧ natDebt(x, y)

#x : ∃ y, z, y′ : indebted(x) ∧ gdp(x, z) ∧ y = 5×z ∧ natDebt(x, y′)

Again, the equality constraint in the denominator is trivially fulfilled and could be omitted. We see
that the PCA confidence counts as counter-examples only those countries for which a national debt
value is known. For rules that have a constraint x ◦ φ in the head in their function term free form,
the head atom becomes x ◦ y′ in the denominator. Thus, it is trivially fulfilled and can be omitted,
which makes the PCA confidence boil down to the standard confidence.

Confidence and support measure two orthogonal dimensions of the quality of a rule, which can be
combined [12], but are kept distinct in most rule mining approaches [8, 1, 9, 13].

Error measures. If a rule contains a numerical constraint in the head, other measures may become
applicable. For example, if the rule concludes y ≈ 3x, then the quality of the rule could depend on
the difference |y−3x|. If we know that x follows certain probability distribution, x ∼ F (µ, σ), then
the confidence could be the probability that our predictions were drawn from such a distribution,
i.e., P (y | y = 3x ∧ x ∼ F (µ;σ)). While such measures abound, the difficulty is to make
numeric measures interoperable with classical measures. For example, if a rule mining algorithm
produces both numerical and non-numerical rules, and if numerical rules have an error measure but
no confidence, then it is unclear how these rules can be ranked together. We propose to replace a
constraint y ≈ φ by y>φ−ε ∧ y<φ+ε for a suitable error margin ε. If the constraint appears in the
head, the rule has to be split into two rules that each have one of the conjuncts in the head. The value
of ε depends on the domain of y. If the domain of y operates under a value scale, i.e., scales for
which ratios are not defined (such as temperatures or geographic coordinates), ε can be defined as an
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absolute error. This requires the choice of an appropriate numerical constant, which depends, e.g.,
on the unit system that y uses. An absolute error of 2 units for predicting temperatures in Celsius
may be too loose if the scale is changed to Fahrenheit or if we are trying to predict latitudes. If y
operates under a ratio scale (as is the case for populations or distances), we can use a relative error
ε = αy, α ∈ (0, 1). Then, α is independent of the unit system and can be set to a default value.

With this change, all error measures become binary measures, and hence interoperable with the
categorical support and confidence measures.

3 Existing Work
We survey here existing work in the area of numerical rule mining, and express the rules in our
proposed language with function terms. The work of [14] studies the problem of mining opti-
mized rules of the form A ∈ [a, b] ∧ C1 ⇒ C2 on a database table. Here, A is a column name
and C1, C2 are equality constraints on columns, as in year ∈ [1990, 2000] ∧ src city = NY ⇒
dest city = Paris. In our language, we would define a unique identifier for each row of the table
and express the columns as binary relations, e.g., year(id) ∈ [1990, 2000] ∧ src city(id,NY ) ⇒
dest city(id, Paris). The problem consists in finding the values of a and b that maximize either
support or confidence given a minimum threshold for the other metric. The general problem with
an arbitrary disjunction of inequality constraints is shown to be NP-Hard [14]. One way to reduce
the search space is to discretize it. [7] uses equi-depth bucketing and computational geometry tech-
niques to calculate a and b almost optimally, providing bounds for the approximation error. The
approach described in [4] proposes to optimize for the gain, a function of support and confidence. A
method based on genetic algorithms [15] allows mining confidence-optimized rules with categorical
atoms and multiple interval constraints, as in height(x) ∈ [150, 180]⇒ weight(x) ∈ [50, 90].

The work presented in [2] incorporates interval constraints into the standard ILP framework, mining
rules such as age(x) ∈ [a, b] ⇒ status(x, Single). The goal is to find a, b that maximize the rule
confidence. Before refining the rule, the system performs an independence test between the age
of people and their marital status. If the variables are not independent, then the algorithm reports
intervals where it is more likely to find single people, i.e., intervals where confidence is maximized.

Regression trees [11] are a common method to learn functional correlations in numerical struc-
tured data. Imagine we want to predict the length of a Wikipedia article as a function of its
number of links: ⇒ wikiLength(x) := g(wikiLinks(x)). Most mining systems use the writ-
ing wikiLinks(x, y′) ⇒ ∃ y : wikiLength(x, y) ∧ y = g(y′), and start with a training set
consisting of all the articles x where the dependent variable y is known. If some quality con-
ditions are met, a regression model y ≈ g(y′) is induced and the algorithm stops. Otherwise,
the training set is split into positive and negative examples and their hypothesis refined with new
categorical atoms, e.g., type(x, Scientist). The algorithm is then recursively applied to the new
hypotheses and training sets. FORS [10] was one of the first systems in integrating functional
correlations using regression trees into the ILP framework. In the syntax of FORS, the rule is
wikiLinks(x, y′) ∧ is(y, g(y′)) ⇒ wikiLength(x, y). FORS cannot mine the descriptive vari-
ant of such a rule. Furthermore, the system was tried out only on toy examples and is unlikely
to scale to the millions of facts in today’s KBs. A more recent approach [6] relies on regression
trees for the prediction of numerical attributes in OWL KBs. The approach learns rules that predict
the value of one fixed numerical attribute of an entity, based on the properties of that entity, as in
talkShow(x) ∧ dealsWith(x, sports)⇒ popularity(x) := 12%.

4 Conclusion
We have seen that there has been quite some work on numeric rule mining. In our proposed rule
language, these approaches become comparable. However, so far, these works solve only islands
of numeric rule mining. None of the approaches can mine full-fledged rules with function terms at
scale. This, however, may be about to change: As we make progress on small scale numerical rule
mining, and as categorical rule mining starts to scale, these islands may soon become connected. A
unified syntax for numerical rules may be the first step.
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