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YAGO3: A Knowledge Base from Multilingual Wikipedias

We present YAGO3, an extension of the YAGO knowledge base that combines the information from the Wikipedias in multiple languages. Our technique fuses the multilingual information with the English WordNet to build one coherent knowledge base. We make use of the categories, the infoboxes, and Wikidata, and learn the meaning of infobox attributes across languages. We run our method on 10 different languages, and achieve a precision of 95%-100% in the attribute mapping. Our technique enlarges YAGO by 1m new entities and 7m new facts.

INTRODUCTION

Motivation. Wikipedia1 is one of the most popular online encyclopedias. Several projects construct knowledge bases (KBs) from Wikipedia, with some of the most prominent projects being DBpedia [START_REF] Auer | DBpedia: A Nucleus for a Web of Open Data[END_REF], Freebase2 , and YAGO [START_REF] Suchanek | YAGO: A core of semantic knowledge -unifying WordNet and Wikipedia[END_REF]. These KBs contain millions of entities, including people, universities, cities, organizations, or artworks. These entities are structured into a taxonomy of classes, where more general classes (such as person) subsume more specific classes (such as singer). The KBs also contain hundreds of millions of facts about these entities, such as which person was born where, which singer sang which song, or which city is located in which country. Unlike Wikipedia itself, the KBs store this knowledge in a structured form of subject-predicate-object triples, which allows one to query it like a database.

So far, most extraction approaches have focused on the English version of Wikipedia. With 4.5 million articles, it is the largest Wikipedia. However, there are dozens of other Wikipedias in different languages. Several of these have more than a million articles. If we could tap the knowledge of these Wikipedias, we could gain thousands, if not millions of new entities and facts -e.g., those entities that are too local to be described in the English Wikipedia. This is the treasure that we want to unearth: Our goal is to construct a KB from the Wikipedias in different languages. Crucially, we want to build not several KBs, but one coherent fact collection from these different sources. State of the Art and Limitations. Several projects extract information from multilingual Wikipedias. However, these projects either build up one KB per language [START_REF] Auer | DBpedia: A Nucleus for a Web of Open Data[END_REF], fuse data across different Wikipedias without building a central KB [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF][START_REF] Tacchini | Experiments with wikipedia cross-language data fusion[END_REF][START_REF] Nguyen | Multilingual schema matching for wikipedia infoboxes[END_REF][START_REF] Bouma | Cross-lingual alignment and completion of wikipedia templates[END_REF]1,[START_REF] Wang | Cross-lingual knowledge linking across wiki knowledge bases[END_REF][START_REF] Giuliano | Towards an automatic creation of localized versions of dbpedia[END_REF], or exclude the facts from the infoboxes [START_REF] Navigli | BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network[END_REF][START_REF] De Melo | MENTA: Inducing multilingual taxonomies from Wikipedia[END_REF][START_REF] Nastase | Wikinet: A very large scale multi-lingual concept network[END_REF][START_REF] Aprosio | Automatic expansion of dbpedia exploiting wikipedia cross-language information[END_REF]. The infoboxes contain information about the article entity in the form of attribute-value pairs, and are thus a very rich source of knowledge. Despite a lot of progress on several aspects of multilingual extraction, the community does not yet have a coherent KB built from the Wikipedias in different languages.

Challenges.

Building a coherent KB from different Wikipedias is not an easy task. The first challenge is extracting knowledge from the infoboxes. The infobox attributes usually have foreign language names and are not shared across different Wikipedias. Thus, they have to be mapped to the canonical relations of the central KB. Since there are thousands of infobox attributes, this is very hard to achieve. Furthermore, the extraction from Wikipedia is error-prone, and so the data has to be cleaned in order to be of use for a central KB. Finally, the challenge is creating a taxonomy that reaches across different languages, and that integrates entities from all Wikipedias under the same roof. Contribution. In this paper, we propose a holistic approach for the creation of a full-fledged KB on top of Wikipedias in different languages. Our approach maps multilingual infobox attributes to canonical relations, merges equivalent entities into canonical entities by help of Wikidata, cleans the data, and arranges all entities into a single taxonomy. The result is YAGO3, the successor of YAGO.

Our key advantage is that we do not align different noisy extractions from different Wikipedias, but different Wikipedias with a central clean KB. This yields an approach that is remarkably simple and elegant. Most notably, it allows us to deduce the infobox mappings for non-English languages automatically. Our approach works with European languages as well as with non-European ones, across different scripts, and with an accuracy of 95%-100%. We gain 1m new entities and 7m new facts over the original YAGO.

The rest of this paper is structured as follows. Section 2 discusses related work, and Section 3 introduces preliminaries. Section 4 presents our approach, and Section 5 shows our experiments and data. Section 6 shows some applications of the KB, before Section 7 concludes.

RELATED WORK

Several works have harvested the multilingual data from Wikipedia. Wikidata. The Wikidata project builds a KB through crowd sourcing. The community members add the facts manually to the KB. So far, Wikidata has gathered 14 million entities. However, most entities have only few facts. On the long run, Wikidata aims to incorporate, consolidate, and replace the Wikipedia infoboxes, lists, and categories. Thus, our approach and Wikidata share the same goal of creating a common multilingual KB. While Wikidata is a community effort, our approach is automated. We believe that the two projects can complement each other: Our approach builds on Wikidata, and we believe that Wikidata could benefit from our results in return. DBpedia. The DBpedia project [START_REF] Auer | DBpedia: A Nucleus for a Web of Open Data[END_REF] has launched KB construction projects for Wikipedias in different languages. The community maps the infobox attributes to a central ontology using different approaches. DBpedia's crowd-sourced approach has inspired us to aim at an automated approach to construct a single KB from the Wikipedias. Another approach uses classification to align the DBpedia classes across different Wikipedia languages [START_REF] Aprosio | Automatic expansion of dbpedia exploiting wikipedia cross-language information[END_REF]. Their main goal is to assign novel entities to DBpedia classes automatically. However, they don't focus on obtaining new facts. Our technique in contrast, introduces new facts in addition to new entities. [START_REF] Giuliano | Towards an automatic creation of localized versions of dbpedia[END_REF] presents a method that maps infobox attributes of different Wikipedias automatically to the central DBpedia properties. Our work aims at a holistic integration of different Wikipedias into one unified knowledge base, which includes information from the categories, the infoboxes, and a taxonomy. Lexical KBs. Several projects [START_REF] De Melo | MENTA: Inducing multilingual taxonomies from Wikipedia[END_REF][START_REF] Nastase | Wikinet: A very large scale multi-lingual concept network[END_REF][START_REF] Nastase | Transforming wikipedia into a large scale multilingual concept network[END_REF][START_REF] Navigli | BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network[END_REF] make use of the multilingual data in Wikipedia to construct dictionaries and concept networks. MENTA [START_REF] De Melo | MENTA: Inducing multilingual taxonomies from Wikipedia[END_REF][START_REF] De Melo | Taxonomic data integration from multilingual wikipedia editions[END_REF] collects entities from all editions of Wikipedia as well as WordNet into a single coherent taxonomic class hierarchy. BabelNet [START_REF] Navigli | BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic network[END_REF] is built by integrating lexicographic and encyclopedic knowledge from WordNet and Wikipedia. We share the goal of a unified ontology, but want to add to this structure also the consolidated facts from the infoboxes in different Wikipedias. This is an entirely different problem.

[9] straightens the inter-language links in Wikipedia. This task has been addressed also by the Wikidata community, and we make use of the latter. Cross-Lingual Data Fusion. A large number of works extract information from Wikipedia (see, e.g., [START_REF] Medelyan | Mining meaning from wikipedia[END_REF] for an overview). Of these, several approaches consolidate information across different Wikipedias [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF][START_REF] Tacchini | Experiments with wikipedia cross-language data fusion[END_REF][START_REF] Nguyen | Multilingual schema matching for wikipedia infoboxes[END_REF][START_REF] Bouma | Cross-lingual alignment and completion of wikipedia templates[END_REF]1,[START_REF] Wang | Cross-lingual knowledge linking across wiki knowledge bases[END_REF]. We also want to align information across Wikipedias, but our ultimate goal is different: Unlike these approaches, we aim to build a single coherent KB from the Wikipedias, which includes a taxonomy. This goal comes with its own challenges, but it also allows simplifications. Our infobox alignment method is considerably simpler, and requires no similarity functions or machine learning methods. Still, as we show in our experiments, we achieve precision and recall values comparable to previous methods. Second, unlike previous approaches that have been shown to work on 4 or less languages [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF][START_REF] Bouma | Cross-lingual alignment and completion of wikipedia templates[END_REF][START_REF] Nguyen | Multilingual schema matching for wikipedia infoboxes[END_REF][START_REF] Tacchini | Experiments with wikipedia cross-language data fusion[END_REF]1,[START_REF] Wang | Cross-lingual knowledge linking across wiki knowledge bases[END_REF], we can show that our method is robust enough to run across 10 different languages, different scripts, and thousands of attributes. In addition, we construct a coherent knowledge base on top of these knowledge sources. Ontology Alignment. A large number of works have looked into the alignment of entities, relations, and classes across KBs (see, e.g., [START_REF] Suchanek | Paris: Probabilistic alignment of relations, instances, and schema[END_REF][START_REF] Wijaya | Pidgin: ontology alignment using web text as interlingua[END_REF] and references therein for recent works). PARIS [START_REF] Suchanek | Paris: Probabilistic alignment of relations, instances, and schema[END_REF] is a probabilistic approach for the automatic alignment of ontologies. It aligns instances, relations and classes by measuring degrees of matchings based on probability estimates. We show in our experiments that we achieve comparable precision to this approach in our alignment of infobox attributes. At the same time, we construct an entire unified knowledge base on top of the different knowledge sources. This includes a unified taxonomy, the resolution of attribute names across 10 different languages, and the insertion of the data into one central schema. WordNet. The online dictionary WordNet [START_REF] Miller | WordNet: An Electronic Lexical Database[END_REF] aims to cover all words of the English language. WordNet groups synonymous nouns together into synsets, which can be interpreted as classes. For example, person and human are in the same synset, which is the class of people. WordNet structures the synsets into an subClassOf hierarchy (a taxonomy), where, e.g., the synset of people is below the synset of animals. YAGO. YAGO [START_REF] Suchanek | YAGO: A core of semantic knowledge -unifying WordNet and Wikipedia[END_REF][START_REF] Suchanek | YAGO -A Large Ontology from Wikipedia and WordNet[END_REF] is a large KB constructed from Wikipedia and WordNet. In its new version, YAGO 2 [START_REF] Hoffart | Yago2: A spatially and temporally enhanced knowledge base from wikipedia[END_REF][START_REF] Biega | Inside yago2s: A transparent information extraction architecture[END_REF], several new sources were added, including geonames 3 and the Universal WordNet [START_REF] De Melo | UWN: A large multilingual lexical knowledge base[END_REF]. For this paper, we exclude the newer sources from the construction process, and stay with WordNet and Wikipedia. This subset of YAGO contains 3.4m entities, 17m facts, and 77 manually defined relations. YAGO Architecture. The architecture of the YAGO extraction system [START_REF] Biega | Inside yago2s: A transparent information extraction architecture[END_REF] is based on extractors and themes. A theme is a set of facts stored in a file. An extractor is a software module, which takes as input a set of themes and other data, and produces a set of output themes. Extractors can extract data from Wikipedia, WordNet, or other sources. They can also postprocess themes produced by other extractors, and perform deduplication, verification, or constraint checking. These dependencies yield a bipartite graph of themes and extractors, where every extractor is connected to the themes it consumes and the themes it produces. A scheduling module calls the extractors in parallel so that an extractor starts as soon as all its input themes are available. Figure 1 shows an excerpt from this graph; the full graph is available at http://yago-knowledge.org. Some extractors exist in several instantiations, because they perform the same task on different input data. All in all, YAGO uses 40 extractor instantiations.

PRELIMINARIES

APPROACH

Our input is a list of Wikipedia languages, and our goal is to create a KB from these multilingual Wikipedias. This comes with 3 challenges: (1) We have to determine the set of entities, (2) we have to extract facts about these entities from Wikipedia, and (3) we have to create a taxonomy.

We will now show how these 3 tasks can be solved holistically. Our key advantage is that we can leverage the existing English YAGO as a reference KB and as a taxonomic backbone. Furthermore, the YAGO architecture is modular enough to allow an organic extension beyond the English Wikipedia. By adding extractors in the right places, we arrive at an elegant, yet effective solution for the creation of a full-fledged KB from multilingual Wikipedias.

Set of Entities

In YAGO, every Wikipedia article becomes an entity. In YAGO3, we have to take care not to duplicate entities, because the same entity can be described in different Wikipedias. We use Wikidata for this purpose. As described in Section 3, Wikidata maintains its own repository of entity and category identifiers, and maps them to articles in Wikipedias in different languages. We designed a Wikidata extractor (Figure 1 top right), which takes Wikidata as input, and produces a theme Dictionary as output. This theme contains facts that map every foreign category name and entity name to its English counterpart, as in this example:

"de/Amerikanische Sänger" hasTranslation "American Singer" de/Elvis hasTranslation Elvis We prefix entities and categories with the language code of their Wikipedia edition. Some foreign entities have no English counterpart. In these cases, our method chooses the first language in the input list of languages in which the entity appears. For example if our list of languages is English, French, Italian, German , and if the Italian Wikipedia contains the village of Loano, then we will seek this entity first in English and then in French before defaulting to Italian. This gives us a file that maps every foreign and English article name to a unique entity name. The set of these unique names is our set of entities.

Fact Extraction

In this section, we explain how we extract facts from infoboxes. We first treat the existing extractors for the English YAGO and then explain the new extractors for the multilingual YAGO.

English Extraction

Extraction from Infoboxes. The YAGO system extracts facts about the article entity from infoboxes, such as birth places, authored books, or physical attributes. We first explain the existing extractors (Figure 1, left). The Infobox Extractor (top left) parses out attribute-value pairs and produces the theme Infobox Attributes. These are raw pairs as they appear in the article, and take, e.g., the following form:

Elvis infobox-spouse "[Pricilla Presley], 1967" The Term Extractor extracts all possible terms from the attribute value. These are instance names, and literals such as dates, numbers, and quantities. The resulting theme, Attribute Facts, contains, e.g.:

Elvis infobox-spouse Priscilla_Presley Elvis infobox-spouse "1967-##-##"^^xsd:date YAGO uses wildcards if components of a date are unknown. The Attribute Mapper uses manually defined mappings between the English infobox attributes and the YAGO relations to produce facts in YAGO's schema. This yields, e.g.,

Elvis marriedTo Priscilla_Presley

Elvis marriedTo "1967-##-##"^^xsd:date Type Checking. YAGO performs several checks on its facts. One of them is the type check. A fact x, r, y is accepted, if x, type, dom(r) and y, type, ran(r) are part of the KB. YAGO defines classes not just for instances, but also for literals. These include dates, strings, and numbers with their subclasses of rational numbers, integers, positive integers, and so forth. Every such class comes with a manually defined regular expression that identifies literals of this class. For example, the class integer comes with the regular expression "[+-]?[0-9]+". The type check y ∈ ran(r) is performed by matching y to the regular expression of ran(r). This way, the type check can filter out non-conforming facts for both entities and literals. In the example, the type checker will reduce the facts to

Elvis marriedTo Priscilla_Presley

Funclash Checking. Some of YAGO's relations have been defined as functional. If r is a functional relation, this imposes x, r, y ∧ x, r, y ⇒ y = y ∀x ∈ I, y ∈ I ∪ L. If two fact candidates x, r, y , x, r, y appear with y = y for some functional relation r, we have a functional clash (funclash for short). In this case, either one or both of the candidates have to be discarded. In the current YAGO implementation, the input themes are sorted in such a way that the more precise information (from the infoboxes) precedes the more coarse information (from the categories). In case of a funclash, the fact from the first theme is kept, and all potentially following clashing facts are discarded.

Type checking and funclash checking are performed by extractors that read one or several themes as input, and produce a theme as output that contains only the facts that pass the check. Finally, the themes are merged together. In this process, duplicates are removed. Furthermore, less specific facts (such as Elvis, wasBorn, "1935-##-##" ) are removed if more specific facts are available (such as Elvis, wasBorn, "1935-01-08" ).

Multilingual Extraction

Foreign Infoboxes. The extraction from multilingual Wikipedias proceeds similar to the English one. The center branch of Figure 1 uses the same extractors, and is replicated for every input language. For example, for German, the theme Foreign Infobox Attributes may contain: de/Elvis de/heirat "[Priscilla Presley],

1967 in [Las Vegas (Stadt)]" This fact states that Elvis married Priscilla in 1967 in the city of Las Vegas. As for the English Wikipedia, the Term Extractor extracts all possible terms: de/Elvis de/heirat de/Priscilla_Presley de/Elvis de/heirat "1967-##-##"^^xsd:date de/Elvis de/heirat de/Las_Vegas_(Stadt) Different languages have different ways to express numbers and dates (this is true in particular for Farsi). We adopt a conservative approach: We run our standard term extractor, and extract only dates and numbers that follow the English convention. Our date extraction is designed in such a way that it only extracts dates in which the order of day, month, and year can be established unambiguously. We leave the adaptation of the term extractor to different languages for future work. After the term extraction, the Entity Translator uses the dictionary to translate the entities to their unique names: Elvis de/heirat Priscilla_Presley Elvis de/heirat "1967-##-##"^^xsd:date Elvis de/heirat Las_Vegas We call these facts foreign attribute facts. Attribute Mapping. While the entities of the foreign attribute facts have been mapped to their languageindependent unique names, the attributes still have to be mapped to the YAGO schema. In the example, we want to deduce that the German infobox attribute de/heirat corresponds to the YAGO relation marriedTo. Let Fa be the set of subject-object-pairs that appear in the foreign Wikipedia with an infobox attribute a (e.g., a = de/heirat). Let Er be the set of subject-object-pairs that appear in the English YAGO with a given relation r (e.g., r = marriedTo). We want to determine whether a maps to r.

In principle, we could deduce this mapping from the fact that a Fa and Er will share many subject-object pairs. In practice, this is challenging for several reasons: First, the term extractor produces dozens of terms per attribute value, and only very few of them are the intended objects. Second, the foreign Wikipedia may contain facts that YAGO does not contain. Vice versa, YAGO may contain facts that the foreign Wikipedia does not contain. Third, there may be spurious matches. The foundation year of a village, e.g., may coincide with its number of inhabitants. Matches. Our Term Extractor can extract several objects of several types from a single infobox attribute-value pair. Since the majority of them are usually of the wrong type, we may not hope to find all of them in the English YAGO facts. Vice versa, the English YAGO facts may be more detailed than the foreign attribute facts. For example, they may know several albums of a singer, while the foreign Wikipedia may know only a few. Thus, we may not hope to find all English YAGO objects in the foreign Wikipedia. Therefore, we count as a match between a and r any subject that has a common object for a and r in Fa and Er, respectively:

matches(Fa, Er) = π subj (Fa ∩ Er)
Clashes. If a YAGO relation r is a functional relation, and a foreign attribute a contains a different object for the same subject x, then a cannot map to r. We call x a clash. In practice, Fa will contain several objects of different types, and only few of them will actually match with the English YAGO. Therefore, we relax the definition of a clash as follows: A subject is a clash for a and r, if it has objects in Fa and in Er, and if these objects are disjoint:

clashes(Fa, Er) = π subj (Fa) ∩ π subj (Er) \ π subj (Fa ∩ Er)
We call this definition of clashes and matches the object set semantics, because, for a given subject and a given relation, the objects are considered as a set. We look only at disjointness or non-empty intersections for the definition of clashes and matches. Contributions. The foreign Wikipedias may bring entities that are unknown to the English YAGO. They may also bring facts that the English YAGO does not know. Thus, for a given foreign attribute, not every subject is a clash or a match. It may also just be a new fact. To quantify this phenomenon, we introduce the contributions of a foreign attribute a as the number of distinct subjects:

contrib(Fa) = π subj (Fa)
The total number of facts that a contributes in the end may be larger than this number (if most subjects have several objects), or smaller (if most objects are removed by type checks).

Given Fa and Er, our goal is to determine whether a maps to r. Several measures can be envisaged to this end. Support. The support is simply the number of matches:

support(Fa, Er) = |matches(Fa, Er)|
This measure corresponds to the support in association rule mining [2]. It can be used to map an attribute to a relation if the number of subject-object pairs exceeds a certain threshold. This measure might be to restrictive for attributes with a small number of contributions. Vice versa, it may be misleading if there is a large number of contributions and a large number of spurious matches. Confidence. The other measure of association rule mining is the confidence. In our setting, it corresponds to the ratio of matches out of the total number of contributions:

conf idence(Fa, Er) = |matches(Fa, Er)| |contrib(Fa)|
This measure is rather conservative, because it will punish mappings that have only few matches, and potentially many new facts that are unknown to the English YAGO. PCA Confidence. The PCA-confidence [START_REF] Galárraga | Amie: association rule mining under incomplete evidence[END_REF] measures the number of matches out of the total number of matches and clashes:

pca(Fa, Er) = |matches(Fa, Er)| |matches(Fa, Er)| + |clashes(Fa, Er)|
It was developed for association rule mining under the open world assumption, and is used in [START_REF] Galárraga | Mining rules to align knowledge bases[END_REF] to align relations across KBs. The PCA confidence admits that a fact that cannot be found in the English YAGO is not necessarily wrong. It is merely unknown. Therefore, the measure considers only facts that are confirmed or rejected explicitly (the matches and clashes), and ignores other facts.

Probabilistic Measure. Most pairs of a and r will exhibit some proportion of spurious matches. Before mapping a to r, we want to make sure that the proportion of matches exceeds that proportion of spurious matches, say 1%. The problem is that if our sample is small (say, 5 elements), then already one spurious match will fulfill that condition. Hence, we use a measure that models the mapping problem as a Bernoulli experiment. We observe that all non-English Wikipedias are smaller than the English Wikipedia. Therefore, we assume that Fa is only a subset of the future, yetunknown set of infobox attribute facts F * a that the foreign Wikipedia will eventually comprise. We want to know the proportion of these infobox attribute facts that match the English YAGO facts with r. In particular, we want to know whether this proportion exceeds a threshold θ of spurious matches.

We make the following simplifying assumptions: We assume that Fa is a uniformly randomly drawn sample from F * a . We also assume that Er is fixed. We want to estimate the proportion of matches, conf idence(F * a , Er). In particular, we want to know whether conf idence(F * a , Er) exceeds θ. We do not have access to F * a , and cannot compute conf idence(F * a , Er), but only conf idence(Fa, Er). Thus, we aim to estimate a lower bound for a Bernoulli parameter from the observed parameter in the sample.

There are several ways to estimate a lower bound for a Bernoulli parameter. Here, we opt for the Wilson Score Interval [START_REF] Brown | Interval Estimation for a Binomial Proportion[END_REF], because it is particularly well-suited for small samples. The interval takes the form of a center c and a width δ. These values are computed from the size of the sample, |Fa|, and the confidence on the sample, conf idence(Fa, Er). The interval guarantees that with a given probability (set a priori, usually to α = 95%), the value conf idence(F * a , Er) falls into [c -δ, c + δ]. For small samples, the interval width δ will be very large. With growing sample size, δ shrinks and the center c converges towards conf idence(Fa, Er).

The properties of the Wilson interval imply that conf idence(F * a , Er) > c -δ with α = 95%. Therefore, we define our measure for the matching of a to r as as wilson(Fa, Er) := c -δ This measure allows us to judge whether the proportion of matches is large enough, even if the sample is small. Mapping. Given any of the measures, m ∈ {support, confidence, pca, wilson}, and given a threshold θ ∈ R, we can define an approximate mapping of foreign infobox attributes to YAGO relations: map(a) = argmaxr m(Fa, Er), if maxr m(Fa, Er) > θ undefined, else

We designed an extractor for the YAGO system that performs this mapping, the Attribute Matcher (Figure 1). It takes as input a measure m and a threshold θ, and maps the foreign attributes in to YAGO relations. In the example, this will yield:

de/heirat hasTranslation marriedTo These mappings are then used by an Attribute Mapper, just as for the English Wikipedia, to produce foreign YAGO facts from the attribute facts. In the example, we get:

Elvis marriedTo Priscilla_Presley Elvis marriedTo "1967-##-##"^^xsd:date Elvis marriedTo Las_Vegas

These facts will undergo the same checking and filtering as the other YAGO facts. A type check, e.g., will leave us with

Elvis marriedTo Priscilla_Presley

In this example, we just learned a fact that was in the English YAGO anyway. However, other foreign infobox attribute facts will give rise to new YAGO facts that were not in the English Wikipedia. Likewise, in the example, both Elvis and Priscilla were in the English YAGO. However, we extracted one million entities from the other Wikipedias that were not in the English YAGO. These give rise to new nodes in the YAGO knowledge base. Further Processing. The facts will also undergo a funclash checking, with the preference rules as follows. First of all, the preference is given to the facts that were extracted from the infoboxes over facts from the categories. Within each group, preference is given to the English Wikipedia, followed by the other Wikipedias in our input list of languages. Within the infobox facts, preference is given to the first values. Within an infobox value string, preference is given to the left-most extracted value. This is just the order in which the Term Extractor produces the terms. We justify this choice by our manual analysis in Section 5.1.

Taxonomy Construction

In this section, we explain how we construct a unique taxonomy for YAGO. We first explain the existing architecture for the monolingual case before explaining our extension to the multilingual case. English Extraction. The taxonomy of YAGO comes mainly from the categories of Wikipedia. Again, the process is driven by a sequence of extractors that each perform one particular transformation of data. The Category Extractor (not shown in the figure) extracts category memberships. It creates a theme that contains facts such as Elvis inCategory "Rock Music" Elvis inCategory "American Singers" A subsequent extractor will filter out categories that do not correspond to class names (such as Rock Music, see [START_REF] Suchanek | YAGO: A core of semantic knowledge -unifying WordNet and Wikipedia[END_REF]), and produce a theme that contains statements such as Elvis type American_Singer A follow-up extractor will use noun phrase parsing to find out that this class is most likely a subclass of the class Singer of WordNet, thus producing American_Singer subclassOf Singer Another extractor will transform the entire WordNet taxonomy into triples, which yields, e.g.,

Singer subclassOf Person

Person subclassOf LivingBeing etc. This way, the entity Elvis Presley is linked via the subclass of American Singers into the WordNet taxonomy. Multilingual Extraction. In the English Wikipedia, the categories of articles are identified by the keyword Category. Other languages use other keywords. To find out these keywords, we made use of Wikidata. For example, in our Dictionary from Wikidata, Category: American singers is mapped to the German equivalent Kategorie: Amerikanische Sänger. This tells us that the categories in the German Wikipedia are introduced by the keyword Kategorie. We extracted all of these translations from Wiki-data. We could then modify the existing category extractor of YAGO to extract category memberships also from foreign Wikipedias. For German, the Category Extractor extracts: de/Elvis inCategory "de/Amerikanische Sänger" A follow-up extractor uses the dictionary to translate these foreign entity and category names to their unique names: Elvis inCategory "American singers" From this point on, the standard YAGO extractors can do their work. The categories will be filtered and connected to the WordNet taxonomy. Other Processing. Categories such as 1935 births can also be a source of facts about the article entity. YAGO uses manually defined patterns to extract these facts. In the multilingual case, we first translate the categories to English through the dictionary, and then use the very same patterns to extract facts. If an infobox template (such as singer) is used in an article, this can be indication that the article entity belongs to a particular class. Hence, we extract infobox templates in the same way as categories, and use them to create type facts.

Overall Integration

Taxonomy.

Every entity is mapped to a languageindependent unique identifier (Section 4.1), so that facts about the same entity will use the same entity identifier. Each Wikipedia article is in one or more categories. These categories are translated to their English counterparts, and then give rise to classes (Section 4.3). If we cannot establish a class for an entity, the entity is abandoned. Hence, every entity, foreign or English, is a member of at least one class. The classes are linked into the common WordNet taxonomy. All in all, this process creates a KB in which English entities and foreign entities live together in the same taxonomy. Schema. All foreign language attributes have been either abandoned or mapped to one of the 77 English YAGO relations. This ensures that every fact has its place in the common schema. Final extractors will remove any duplicate facts, so that each fact in YAGO is unique, even if contributed from several sources. Manual Work. We note that the only manual effort in the construction of YAGO3 is the mapping of English infobox attributes to YAGO relations -which exists already in the original YAGO. The foreign infobox attributes are mapped automatically to YAGO relations. The translation of entities and categories is done with the data from Wikidata.

EXPERIMENTS

We ran the YAGO extraction system on 10 languages: English, German, French, Dutch, Italian, Spanish, Romanian, Polish, Arabic, and Farsi. The choice of languages was determined by the proficiency of the authors, so as to facilitate manual evaluation. We cover some of the largest Wikipedias, and both European and non-European languages.

Funclashes

As discussed in Section 4.2.1, funclashes occur when a fact candidate x, r, y with a functional relation r encounters a YAGO fact x, r, y with y = y . Such clashes are often used to spot contradictions in semantic data. We wanted to know whether funclashes have this role in our setting, too. In our setting, facts are collected from the Wikipedias in the given order of languages (Section 4. an incoming fact clashes with an existing fact from a higher ranked language, the incoming fact is discarded. Table 1 shows the relations that produce most funclashes. The vast majority of clashes stem from date relations, followed by numeric relations. We were interested in whether funclashes are really an indication for contradictions. Therefore, we sampled a set of 100 funclashes randomly, and analyzed them manually. In 5 cases, the rejected object was clearly more accurate than the existing object. The other cases were as follows: (1) A Wikipedia article describes several variants of the entity with different properties. For example, a movie may exist in original and abridged form, where the latter has a shorter duration. (2) In nearly half of the cases, the rejected object was wrong or less accurate than the existing object. This is mainly because Wikipedia often contains complementary information in the infobox value string after the targeted value. For example, numerical attributes (such as page numbers or population numbers) are often followed by years in the infobox attribute value. The funclash gives preference to the first number and thus discards the (incorrect) second number. [START_REF] Aprosio | Automatic expansion of dbpedia exploiting wikipedia cross-language information[END_REF] In one forth of the cases, different values can be justified. For example, numerical values in different units give rise to slightly different objects. The year of foundation of a city can be either when it was first populated, or when it was incorporated. The height of a tower may or may not include the antenna. In these cases, the funclash just makes an arbitrary choice. It would be confusing for applications if a tower had two height values, because the additional textual information that is present in Wikipedia is projected away in the KB.

While we could justify abandoning the functional constraints on this basis, they are invaluable to avoid mixing up different versions of the same entity (case (1)), to avoid extracting years as page numbers (case (2)), and to ensure overall consistency (case (3)). Therefore, we decided to keep functional constraints. At the same time, they are not always an indication for semantic inconsistencies, which makes them less useful for attribute mapping, as we shall see.

Choice of Parameters

Gold Standard. We wanted to measure the precision and recall of the mapping of infobox attributes to YAGO relations under different measures and thresholds (Section 4.2.2). We created a near-exhaustive mapping, which maps every infobox attribute a of a particular Wikipedia edition to every YAGO relation r with matches(Fa, Er) > 0. This mapping is arguably a superset of the desired mapping. For every language, we randomly sampled 150 attribute-relation pairs from this mapping, and evaluated them manually. A pair a, r was evaluated to true, if the attribute a will yield a correct r fact for every entity of type ran(r) in its value. Thus, our manual gold standard will map the German attribute geboren (born) to both bornInPlace and bornOn-Date, because the attribute value can contain both a birth place and a birth date. Evaluation. We produced attribute mappings by each of the measures from Section 4.2, for different threshold values, and for all languages under consideration. The threshold θ was varied between 0 and 1 for the confidences, between 0 and 500 for support, and between 0 and 50% for the Wilson score. Values outside these ranges decreased recall without increasing precision. By varying θ, we can trade off precision and recall. Figure 2 exemplifies this for French and Farsi. Since YAGO has an accuracy of 95% [START_REF] Suchanek | YAGO: A core of semantic knowledge -unifying WordNet and Wikipedia[END_REF], we have to choose a threshold that achieves at least this precision.

We find that only for the Wilson score and the confidence there exist thresholds that achieve a precision of 95% and a recall of more than 5% across all languages. This is because the support is not robust to scaling: languages with many facts (such as German) need a high threshold, while languages with few facts (such as Spanish) produce no mappings if the threshold is too high. The PCA confidence is misguided by the clashes, and thus behaves in a very erratic way across languages. The Wilson score consistently achieves the highest recall across all languages, at comparable precision to the confidence (Table 2). This is because in order to achieve a high precision, the confidence has to use a high threshold. This, in turn, hurts recall. The Wilson score, in contrast, can stay with a low threshold and thus a high recall, because it cautions automatically against too small sample sizes. Hence, we chose the Wilson score as our measure. To achieve a precision of 95%, we chose θ = 4%. Discussion. Most erroneous mappings come from two sources. First, unit-less numbers (such as the number of inhabitants) produce a disproportionally high number of spurious matches, coinciding, e.g., with longitude values or years. Second, there are a number of relations that are strongly correlated in life, but that are strictly speaking not matches (such as wasBuriedIn/diedIn), and so we did not count them as such. Still, we achieve very good precision and recall values overall.

If the Wikipedias of two different languages share no knowledge, then our method will not propose any mapping. However, it is improbable that this happens. There has been a rapid globalization of Wikipedia, which triggered thousands of volunteers to create, modify, and link millions of articles. Together with manual translation of articles, this led to a substantial overlap of the Wikipedias in a lot of common concepts such as countries, important people, and prominent events.

Our KB is built on YAGO, and tries to match foreign attributes to YAGO relations. Our method does not consider attributes that have no mapping to the existing YAGO relations. We leave the introduction of new YAGO relations for future work.

Comparison. With respect to attribute matching, the work of [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF] reports a recall of 85% at the precision of 95% that is required for YAGO. This is a combination that our method cannot achieve. The focus in YAGO3, however, is on broad language coverage. Our method achieves a weighted 0. precision of 98% at a recall of 56% for German, a precision of 99.98% at a recall of 69% for French, and a precision of 99.99% at a recall of 22% for Dutch. These are the languages that [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF] considered. In addition, our system produces alignments for Italian, which the method of [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF] could not run on due to poor infobox naming conventions, and 5 other languages. These include languages of non-Latin script, which [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF] explicitly excludes. Our method thus provides a robust alternative to [START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF] with much higher language coverage.

[1] solves the slightly different problem of merging infoboxes across Wikipedia languages. They report a precision of 86% for English, Spanish, French, and German. Our method compares favorably with this precision. Beyond that, we can show that it works for 6 more languages.

[28] aligns the English Wikipedia with 2 Chinese online encyclopedias. They report a precision of 86% at a recall of 88%. Their work concerns non-Wikipedia data sources, and so we cannot compare directly to them. [START_REF] Nguyen | Multilingual schema matching for wikipedia infoboxes[END_REF] aligns infobox attributes between the English and the Portuguese Wikipedia, and the English and the Vietnamese Wikipedia. For Portuguese, the average weighted precision on 14 infobox templates is 93%, and the recall is 75%. For Vietnamese, the values are 100% and 75%, respectively. These values are comparable to ours. [START_REF] Giuliano | Towards an automatic creation of localized versions of dbpedia[END_REF] Different from all of these approaches [START_REF] Nguyen | Multilingual schema matching for wikipedia infoboxes[END_REF]1,[START_REF] Rinser | Cross-lingual entity matching and infobox alignment in wikipedia[END_REF][START_REF] Giuliano | Towards an automatic creation of localized versions of dbpedia[END_REF], our alignment method is considerably simpler. It requires no similarity functions or machine learning methods -while achieving comparable results. This is because we can build on the existing YAGO infrastructure, which is able to produce a high-precision KB. We also show that our method is robust enough to treat twice as many languages as previous work. Finally, our method goes beyond previous work by constructing a unified KB on top of these sources, which includes type facts and a taxonomy. We illustrate this in the next section.

Size

Facts. Table 3 shows the total number of distinct new entities that each language contributed to our unified KB. Every entity is counted only for the first language in our preference list in which it appears, even if it is contributed by several other languages as well. In total, we gain 1m new entities. The number of new entities does not scale linearly with the number of languages, because most languages treat the same global concepts before venturing into local entities. The ta-de/Kirdorf_(Bedburg), hasNumberOfPeople, "1204"^^xsd:integer fr/Château_de_Montcony, isLocatedIn, Burgundy pl/Henryk_Pietras, wasBornIn de/Debiensko fa/ , wasBornIn, Teheran Table 4: Some sample facts ble also shows the number of facts contributed by every language. Again, every fact is counted only once. The "facts" column shows ordinary facts extracted from the infoboxes and categories. We gain 2.5m facts over the English-only extraction. The next column shows type facts extracted from the template names and the categories. We gain 5m new facts about types. Not all of these are necessarily about the new entities that a language contributed; a language can also contribute a type fact about an English entity. The last column shows the label facts. We gain 1m labels. This number is complemented by 355k labels that we extracted from the English disambiguation pages, 11m labels that come from the redirect pages, 1.5m person names (given name and family name), and 729k new labels from Wikidata, and 1.5m facts extracted by other extractors from the English Wikipedia, bringing the total number of all facts to 40m.

Examples. Our facts include truly hybrid facts, where the subject or object do not exist in the English Wikipedia. Table 5 shows some examples. In the first example, the subject exists only in the German Wikipedia. In the second example, the subject exists only in French, but the object is contributed by English. In the third example, neither the subject nor the object exists in English. The subject exists only in Polish, and the object exists in German and Polish (and German is chosen over Polish). We also have a large number of facts in non-Latin script. We show a fact about Amir Alam, a former member of the Iranian parliament. Schema. All foreign language attributes have been either abandoned or mapped to one of the 77 English YAGO relations (see Section 4.2.2). Every entity has at least one type fact (see Section 4.3). The types are connected to the common WordNet taxonomy. This ensures that every entity has its place in the common schema. All in all, YAGO contains 488,469 classes.

6. APPLICATIONS

DBpedia

Multilingual DBpedia. Our method can be used to align other KBs. We downloaded the version of the English DBpedia that contains ontological relations. We used our methodology to align it with the foreign attribute facts of German. As in the other scenarios, we produced a gold standard and evaluated the precision and recall. Our vanilla setting of the Wilson score interval with θ = 4% achieves a precision of 95% and a recall of 81%. The values are not as high as for the YAGO-internal alignments, because DBpedia uses different data types (such as xsd:gYear) that our term extractor does not produce. On the other hand, our system was run off the shelf, and DBpedia-specific adjustments could in-crease the performance further. For example, by using the support measure with a dataset-specific threshold of 100, we achieve a precision of 96% and a recall of 94%. Thus, our methodology could help map the infobox attributes of different languages to the common DBpedia properties -a task that is currently achieved manually by the community. Ontology Alignment. Our method can also be used to align the relations of DBpedia and YAGO. We took again the English DBpedia with ontological relations, and matched them with the YAGO facts. We generated a gold standard, and evaluated the mappings. Our vanilla setting of a Wilson score threshold of θ = 4% achieves a weighted precision of 100% and a weighted recall of 76%. This is in line with the weighted precision of 100% that [START_REF] Suchanek | Paris: Probabilistic alignment of relations, instances, and schema[END_REF] reports for this alignment, while they report no recall.

Le Monde

In [START_REF] Huet | Mining history with le monde[END_REF], the authors analyze the text of the French newspaper Le Monde by mapping all mentions of entities in the text to YAGO entities. This allows, e.g., statistics on the prevalence of foreign companies in different countries, or an analysis of the changing age structure in certain professions over time. Since YAGO was not available in French, the approach could use only those YAGO entities that had a French name and that had enough facts in the English Wikipedia, resulting in 3.4m mentions. With YAGO3, we can boost that number by 824k new mentions, referring to 32k unique new entities. 112k of the mentions are people, and of these, 20k are politicians and 8k are musicians. These entities can contribute more data points to the statistics. For example, we can add 5 more countries to the analysis of the prevalence of foreign companies, because we now have enough data for these countries.

CONCLUSION

In this paper, we have shown how to construct the first full-fledged KB from Wikipedias in multiple languages. By using YAGO as a central reference KB, and by extending its existing architecture, we arrive at a simple and elegant, yet very effective method. Our approach works across 10 languages and different scripts, and achieves a precision of 95%-100% in the attribute mapping. The new KB gains 1m new entities and 7m new facts over the English-only YAGO.

On the technical side, we have compared several measures for the mapping of infobox attributes, and presented a measure that is robust to scale and language. We have shown that our measure can be applied to different other relation alignment problems at high precision and recall. For future work, we envisage extending our methods to more languages, and study new applications of the knowledge base. YAGO3 is available at http://yago-knowledge.org.
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  RDFS. The Resource Description Framework Schema (RDFS) is a W3C standard for knowledge representation. It is used in most major KBs. RDFS is based on a set U of resources. In most applications, the resources are partitioned into instances I, relations R, literals L, and classes C, with U = I ∪R ∪L ∪C. An instance is any entity of the world, such as a person, a city, or a movie. A class (or type) is a name for a set of instances. The class city, e.g., is the name for the set of all instances that are cities. A relation is a name for a relationship between resources, such as loves, or livesIn. Every relation r comes with a domain dom(r) ∈ C and a range ran(r) ∈ C. A literal is number, string, or date. Literals usually take the form "string"^d atatype. Here, string is the string representation of a number, date, or other literal. datatype is a resource.

	Wikidata. The Wikidata project aims to be a structured
	version of Wikipedia. It is a KB that is fed with facts by
	volunteers. Wikidata provides central abstract identifiers
	for entities and links them to the articles in the Wikipedias
	in different languages. For example, Elvis Presley has the
	identifier Q303, and has links to the Wikipedia articles in
	147 languages. Wikidata provides similar data for infobox
	templates and category names.
	For
	YAGO, the datatypes behave exactly like classes: Every lit-
	eral is considered an instance of its datatype. Usually, in-
	stances, classes, and relations are prefixed by a namespace.
	We omit the namespace in this paper for legibility. In all
	of the following, we assume fixed sets U, I, R, L, C. A state-
	ment (or fact) is a triple s ∈ (U \ L) × R × U, and usually
	for most statements s, s ∈ I × R × (I ∪ L). The statement
	says that the first component (the subject) stands in the re-
	lation given by the second component (the predicate) with
	the third component (the object), as in Elvis, marriedTo,
	Priscilla . We use the statement Elvis, type, singer
	to say that Elvis is an instance of the class singer. We
	use singer, subClassOf, person to say that singer is a
	subclass of person. The subClassOf-relationship is transi-
	tive. A knowledge base (KB) is set of statements.
	Wikipedia. The online encyclopedia Wikipedia is written
	by a community of volunteers. It is available in 287 lan-
	guages, and 9 of them have more than 1m articles. The
	English edition currently has 4.5m articles. The articles are
	written in the Wiki markup language. Each article usually
	describes one concept or entity. Most articles are members
	of one or several categories. The article about Elvis Pres-
	ley, e.g., is in the categories American baritones, and 1935
	births. Furthermore, many articles have an infobox. An in-
	fobox is a set of attribute-value pairs with information about
	the article entity, such as {birthplace = Tupelo, birth-
	date = 8 January 1935, ...}. The infoboxes are grouped
	into templates, which often carry the name of the class of the
	article entity. For example, the infobox for Elvis belongs to
	the template singer. The templates define which attributes
	may be used. However, the templates are not used consis-
	tently, and the attributes vary widely across articles.
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					Figure 2: Precision/Recall for French (left) and Farsi (right)	
			Confidence 16%		Wilson 4%				
			Prec Rec F1		Prec Rec F1				
		ar	100	73 85		100	82 90				
		de	100	37 54		98	56 72				
		es	96	19 32		95	29 45				
		fa	100	49 66		97	54 69				
		fr	100	16 27		100	69 82				
		it	100	7 12		98	23 37				
		nl	100	19 32		100	22 36				
		pl	95	10 19		97	64 77				
		ro	96	52 67		95	70 81				

Table 3 :

 3 aligns infobox attributes to DBpedia. The approach Number of entities and facts

	Language	Entities	Facts Type Facts	Labels
	en	3,420,126 6,587,175	10,280,369	477,628
	de	349,352	984,830	2,563,246	125,575
	fr	255,063	549,321	920,014	361,932
	nl	204,566	249,905	398,719	208,521
	it	67,330	148,268	160,777	1,424
	es	118,467	43,271	512,024	213
	ro	11,024	12,871	44,175	946
	pl	103,440	235,357	296,398	215,470
	ar	50,295	98,285	314,495	2,575
	fa	16,243	27,041	121,492	4,553
	total	4,595,906 8,936,324	15,611,709 1,398,837
	was evaluated for Italian, and achieves its highest precision
	of 87% at a recall of 37%. These values are comparable to
	ours.				
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APPENDIX A. DEMO PROPOSAL A.1 YAGO3

YAGO is a knowledge base extracted from WordNet and the English Wikipedia [2]. YAGO3 extends the original YAGO by the Wikipedias in 10 languages: English, German, French, Dutch, Italian, Spanish, Romanian, Polish, Arabic, and Farsi. It contains 4,5m entities (such as people, cities, or organizations), and 24m facts about these entities (such as which city is in which country, which singer created which album, or who is the president of which organization). Some facts and entities were extracted only from the English Wikipedia, while others came from both the English Wikipedia and a foreign Wikipedia, or from several foreign Wikipedias. Table 5 shows some examples. In the first example, the subject exists only in the German Wikipedia, and hence it has a German identifier. In the second example, the subject exists only in French, but the object is contributed by English. In the third example, the subject exists only in Polish, and the object exists in German and Polish (and the German identifier was chosen). We also have a large number of facts in non-Latin script. We show a fact about Amir Alam, a former Iranian member of parliament. The facts, likewise, stem from Wikipedias of different languages.

de/Kirdorf_(Bedburg), hasNumberOfPeople, "1204"^^xsd:integer fr/Château_de_Montcony, isLocatedIn, Bresse pl/Henryk_Pietras, wasBornIn de/Debiensko fa/ , wasBornIn, Teheran 

A.2 Demo

In our demo proposal, users can explore our multilingual knowledge base. They can visualize facts about an entity of their choice in a graphical browser (as in Figure 3). The browser shows all facts that YAGO3 knows about it. In the example, the user can see that the French province Bresse has certain geographical coordinates, that it is called "Bresse" in French, and that the Château de Montcony is located there. When there are several facts with the same relation (e.g., several rdf:type facts), these can be displayed by clicking on "more". Each fact is annotated with the Wikipedias in which it was found. In the example, the fact that Bresse is in the class Provinces of France has been found in the English, the French, and the Italian Wikipedias. Facts that stem from Wikidata have no flag. When the user clicks on another entity, this other entity becomes the center of the displayed graph. This way, the user can navigate through YAGO3 and explore which facts are contributed by which Wikipedias. For example, clicking on the Château de Montcony will display facts that come exclusively from the French Wikipedia.

By clicking on a flag, the user can show provenance information about the fact. This includes the source Wikipedia URL, the name of the extractor, and the name of the (potentially foreign) infobox attribute or category. For example, clicking on the English flag at Provinces of France shows that this fact was found on the English page of Bresse by the category type extractor. Some facts are extracted by several extractors. By clicking on the source Wikipedia URL, the user can browse through a list of facts extracted from this Wikipedia.

We also provide a search field, where the user can enter the name of an entity in different languages. This allows the user to navigate, say, to their hometown. Even if this town does not exist in the original monolingual YAGO, chances are that it exists in our multilingual YAGO.

In a separate window, users can explore the infobox attribute mappings that we found for our 10 languages. 

A.3 Implementation

Server-Client. Our browser is implemented as a Java servlet and runs on the client in a standard Internet browser. The entire knowledge base resides on the server in a Postgres database in a single table. The frontend is an SVG image, which is created dynamically to show the data from the database. The entities in the SVG image are hyperlinks. When the user clicks on one of them, a request is sent to the server, which replies with a new SVG image. Previous Implementation. The browser implementation for the English YAGO without the provenance annotations is already online at http://yago-knowledge.org. It has not been the subject of a demo submission so far. Our WWW 2013 demo [1] concerned the extractor architecture of a previous YAGO version, and did not actually allow browsing the knowledge base at all.

A.4 Conclusion

Our demo proposal allows users to interactively explore the new YAGO3 knowledge base in several languages. Users can see facts contributed by different Wikipedias, and display the provenance of these facts. Since the conference participants are international, we believe that our demo will be of interest to the audience.