
HAL Id: hal-01699871
https://imt.hal.science/hal-01699871v1

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DIVINA: Discovering Vulnerabilities of Internet
Accounts

Ziad Ismail, Danai Symeonidou, Fabian M. Suchanek

To cite this version:
Ziad Ismail, Danai Symeonidou, Fabian M. Suchanek. DIVINA: Discovering Vulnerabilities of Internet
Accounts. 24th International Conference on World Wide Web Conference, May 2015, Florence, Italy.
1 562 p., �10.1145/2740908.2742836�. �hal-01699871�

https://imt.hal.science/hal-01699871v1
https://hal.archives-ouvertes.fr

DIVINA: Discovering Vulnerabilities of Internet Accounts

Ziad Ismail, Danai Symeonidou, Fabian Suchanek
Télécom ParisTech, Paris, France

{ismail.ziad, danai.symeonidou, fabian.suchanek}@telecom-paristech.fr

ABSTRACT
Internet users typically have several online accounts – such
as mail accounts, cloud storage accounts, or social media
accounts. The security of these accounts is often intricately
linked: The password of one account can be reset by send-
ing an email to another account; the data of one account can
be backed up on another account; one account can only be
accessed by two-factor authentication through a second ac-
count; and so forth. This poses three challenges: First, if a
user loses one or several of his passwords, can he still access
his data? Second, how many passwords does an attacker
need in order to access the data? And finally, how many
passwords does an attacker need in order to irreversibly
delete the user’s data? In this paper, we model the depen-
dencies of online accounts in order to help the user discover
security weaknesses. We have implemented our system and
invite users to try it out on their real accounts.

1. INTRODUCTION
In 2012, Mat Honan found that his Twitter account had

been hacked. When trying to figure out what happened,
he found that not just his Twitter account was hacked, but
also his Amazon account, his Gmail account, and his Apple
account. His iPhone was locked, and his Mac was wiped
clean. All the data was erased. As it turned out, hackers
were able to access his Amazon account. With the credit
card numbers stored there, they could access his Apple ac-
count. Since his Gmail account sent password recoveries to
his Apple account, the hackers could access Gmail – and
thus all of Mat’s digital accounts [2].

If you want to minimize the chance of getting hacked,
you can enable two-factor authentication for an account, if
it is available. With two-factor authentication, you have to
provide not only your password if you want to log in, but also
a second security token. This can be a code that you receive
by SMS, a number generated by an app on your smartphone,
or a special code that you possess in a printed version. This
would have made the attack on Mat impossible.

This research was partially supported by Labex DigiCosme (project ANR- 11-
LABEX-0045-DIGICOSME) operated by ANR as part of the program “In-
vestissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

Copyright is held by the International World Wide Web Conference Committee
(IW3C2). IW3C2 reserves the right to provide a hyperlink to the author’s site if the
Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742836.

The problem is, though, that if you forget your password
and you do not have access to your second security token,
you lose access to your account. Owen Williams, for ex-
ample, woke up one day to find that his Mac was locked.
Apparently, hackers had tried to access his Apple account.
They failed, but for security reasons Apple locked the ac-
count. To unlock it, Owen had to provide the printed recov-
ery key. It’s just that he never printed it! Thus, he was not
able to access his Apple account any more, losing access to
all the data stored on Apple devices [5]. Hence, if you lose
your recovery keys, you may lose access to your data. There-
fore, we find ourselves in a trade-off: The more protection
we add to an account, the less vulnerable it is to hackers.
However, by increasing the protection, we also increase the
risk of losing the access ourselves.

To make matters worse, security measures are often in-
tertwined. Assume, e.g., that your Gmail password can be
recovered from your Apple account, and that you have two-
factor authentication enabled on your Gmail account. This
gives you some degree of security. However, if you send your
Gmail recovery codes to your Apple email address and a
hacker manages to gain access to your Apple account, then
this security implodes. In general, the more accounts you
have, the more difficult it is to keep track of the security
dependencies between them. In Britain, for example, the
average adult has 26 different online accounts [1]. However,
they use an average of just five different passwords. As a
result, a hacker could compromise one account and leverage
it to get into the others.

There are a number of tools to manage account passwords,
such as 1Password, LastPass, and Personal. However, none
of these analyzes the dependencies between online accounts,
or the potential impact when a set of access keys is compro-
mised. In fact, there seems to be no tool that allows users to
check the dependencies of their accounts automatically [3].

In this paper, we use Datalog rules to model the security
dependencies between online accounts. We present DIVINA,
a system that allows users to assess the transitive impact of
compromising a set of access keys. Using game-theory, DIV-
INA also suggests the security guarantee that the user has
to give for each of his access keys, in order to bound the
probability that one of his accounts will be hacked. Our
system can be tried out with the dependencies of real online
service providers. It allows users to assess the security risks
of their current configuration, and to simulate alternatives.

2. MODELING ACCESS
Our data is protected by keys. A key is any item that

is necessary to access the data – such as a physical key,

a password, a smartphone, or the physical possession of a
digital storage device or a physical document. For every
online account, we want to ensure 3 things:

Data Safety: We can still access the data as long as we
lose less than n keys.

Data Security: An attacker needs at least n keys to access
the data.

Data Protection: An attacker cannot erase the data as
long as he has less than n keys.

Here, n is an integer number that defines the level of
safety, security and protection, respectively. For example, if
an account has a security level of 3, then an attacker needs
at least 3 keys in order to gain access to the data.

To see that these desiderata are orthogonal, consider a
user who can access her Gmail account using only her pass-
word. If she loses her password, she can reset it through
3 alternative email accounts (with different passwords). In
this scenario, the level of data security is 1, since an attacker
needs to know only one password to access the account. The
level of the data safety is 4, because the user has to forget 4
passwords to lose access to her data. The level of protection
is 1, because an attacker can delete all emails by knowing
only one of the passwords. If the user backs up her mails on
her computer, then the level of protection increases to 2: In
order to destroy the data, the attacker has to be able to log
in to Gmail and to steal the user’s computer.

In general, data can be secured without being protected.
For example, an encrypted hard drive is secure at level 2
(an attacker has to steal the hard drive and to decrypt it to
access the data), but protected only at level 1 (the attacker
can just steal and destroy the hard drive). Vice versa, an
account can be better protected that secured, if, e.g., the
service requires only one password to read the data, but two
passwords to modify it. Dropbox, e.g., distinguishes between
sharing a folder (which requires a full login and allows writ-
ing), and sharing the link of a folder (which requires only a
URL, and allows only reading).

3. APPROACH

3.1 Datalog
We propose to model the dependencies between accounts

as datalog rules. A datalog rule r over a set of atoms A is
a rule of the form a1, a2, ..., an → a0. Here, a1, ..., an ∈ A
are the antecedent of r, and a0 ∈ A is the succedent of r.
Intuitively, the rule says that the succedent is true if all
atoms in the antecedent are true. We consider only null-ary
atoms, i.e., the elements of A are simple propositions such
as hasGmailAccess without arguments. Then, we say that
r derives a0 from a set of atoms A ⊆ A, written A `r a0, if
A ⊇ {a1, ..., an}. Given a set of rules R, and a set of atoms
A ⊆ A, we say that an atom a ∈ A can be derived, written
A `∗R a, if (1) a ∈ A or (2) there exists an atom a′ ∈ A and
a rule r ∈ R, such that A `r a′ and A ∪ {a′} `∗R a. If the
set of rules is fixed, we will just write A ` a for A `∗R a.

3.2 Atoms
In our scenario, the atoms represent stages of a hacking

process that the attacker has reached. We consider the ac-
counts of only one user. Therefore, our atoms are all of
the form account-stage. Here, account is an online account
(such as Gmail, Amazon, or Dropbox). For uniformity, we

gmail-data
gmail-destruction

gmail-access

gmail-2ndfactor

gmail-

trusted
device

phone-

authen
tification

phone-
app

phone-

SMS

mac-
access

dell-
access

phone-
possession

phone-
password

phone-

simPin

gmail-
password

gmail-1stfactor

yahoo-

data
gmail-
recovery

code

Figure 1: Dependencies of a Gmail account

Data Safety: We can still access the data as long as we
lose less than n keys.

Data Security: An attacker needs at least n keys to access
the data.

Data Protection: An attacker cannot erase the data as
long as he has less than n keys.

Here, n is an integer number that defines the level of safety,
security and protection, respectively. For example, if an
account has a security level of 3, then a attacker should
know at least 3 keys in order to gain access to the data.

To see that these desiderata are indeed orthogonal, con-
sider the following scenario: User (A) can access her Gmail
account using only her password. If she loses her password,
she can reset it through 3 alternative email accounts (with
di↵erent passwords). In this scenario, the level of data se-
curity of is 1, since only the password is su�cient to access
the account. The level of the data safety is 4, because A
has to forget 4 passwords to lose access to her data. The
level of protection is 1, because an attacker (B) can delete
all emails by knowing only one of the passwords. If A backs
up her mails on her computer, then the level of protection
increases to 2, and the level of safety increases to 5: In order
to destroy the data, B has to be able to log in to Gmail, and
to steal A’s computer.

In general, data can be secured without being protected.
For example, an encrypted hard drive is secure at level 2
(an attacker has to steal the hard drive and to decrypt it
to access the data), but protected only at level 1 (the at-
tacker can just steal and destroy the hard drive). Another
example would be an online account where data stored in
that account is deleted after several incorrect login attempts.
Vice versa, an account can be better protected that secured,
if, e.g., the service requires only one password to read the
data, but two passwords to modify it. Dropbox, for exam-
ple, distinguishes sharing a folder (which requires a full login
and allows writing), from sharing the link of a folder (which
requires only a URL, and allows only reading).

3. APPROACH

3.1 Datalog
We propose to model the dependencies between accounts

as datalog rules. A datalog rule r over a set of atoms A is a
rule of the form

a1, a2, ..., an ! a0

Here, a1, ..., an 2 A are the antecedent of r, and a0 2 A
is the succedent of r. Intuitively, the rule says that the
succedent is true if all atoms in the antecedent are true.
We consider only null-ary atoms, i.e., the elements of A
are simple propositions such as hasGmailAccess without
arguments. Then, we say that r derives a0 from a set of
atoms A ✓ A, written A `r a0, if A ◆ {a1, ..., an}. Given
a set of rules R, and a set of atoms A ✓ A, we say that an
atom a 2 A can be derived, written A `⇤

R a, if (1) a 2 A or
(2) there exists an atom a0 2 A and a rule r 2 R, such that
A `r a0 and A [{a0} `⇤

R a. If the set of rules is fixed, we
will just write A ` a for A `⇤

R a.

3.2 Atoms
In our scenario, the atoms represent stages of a hacking

process that the attacker has reached. We consider the ac-
counts of only one user. Therefore, our atoms are all of
the form account-stage. Here, account is an online account
(such as Gmail, Amazon, or Dropbox). For uniformity, we
also consider physical devices (such as a phone, a computer,
or a hard drive) accounts. stage is a stage that the hacker or
the owner has reached for this particular account. Important
stages for an account x are:

x-password : knowing the password of the account.

x-2ndfactor : being able to overcome the second factor of
the two-factor authentication of the account.

x-possession: having physical possession of the item (e.g.,
of a phone, computer, or a hard drive).

x-access: having access to an account (e.g., possessing a
phone, and knowing the code to unlock it; possessing
a hard drive, and knowing the code to decrypt it).

x-data: having access to the data stored in x.
x-destruction: being able to destroy the data stored in x.
Other atoms can be created ad libitum.

3.3 Rules
Based on the atoms, we can define rules. Typical rules are:

gmail-password, gmail-2ndfactor ! gmail-access
phone-possession, phone-password ! gmail-2ndfactor
gmail-recoverycode ! gmail-2ndfactor

The first rule says that if I have the Gmail password and I
am able to overcome the second factor of the two-factor au-
thentication, then I have access to Gmail. The second rule
says that the second factor can be overcome by possessing
the phone and being able to unlock it. The third rule says
that the second factor can also be overcome by using a recov-
ery code. We see that the first rule defines a conjunction:
Two stages are needed to access the Gmail account. The
other two rules define a disjunction: Either of the methods
can overcome the second factor. Figure 1 shows the real
dependencies of a Gmail account, assuming that the user
has a password backup address at Yahoo, that there are 2
trusted devices on which the second factor is not required,
that the phone is locked by a code, and that the SIM card is
also locked by a code. Arcs between arrows state that both
previous stages are needed. As we can see, the dependencies
are already quite intricate for only one account.

Figure 1: Dependencies of a Gmail account

also consider physical devices (such as a phone, a computer,
or a hard drive) accounts. stage is a stage that the hacker
has reached for this particular account. Important stages
for an account x are:

x-password : knowing the password of the account.

x-2ndfactor : being able to overcome the second factor of
the two-factor authentication of the account.

x-possession: having physical possession of the item (e.g.,
of a phone, computer, or a hard drive).

x-access: having access to an account (e.g., possessing a
phone, and knowing the code to unlock it; possessing
a hard drive, and knowing the code to decrypt it).

x-data: having access to the data stored in x.

x-destruction: being able to destroy the data stored in x.

Other atoms can be created ad libitum.

3.3 Rules
Based on the atoms, we can define rules. Typical rules are:

gmail-password, gmail-2ndfactor → gmail-access
phone-possession, phone-password → gmail-2ndfactor
gmail-recoverycode → gmail-2ndfactor

The first rule says that if I have the Gmail password and I
am able to overcome the second factor of the two-factor au-
thentication, then I have access to Gmail. The second rule
says that the second factor can be overcome by possessing
the phone and being able to unlock it. The third rule says
that the second factor can also be overcome by using a recov-
ery code. We see that the first rule defines a conjunction:
Two stages are needed to access the Gmail account. The
other two rules define a disjunction: Either of the methods
can overcome the second factor. Figure 1 shows the real
dependencies of a Gmail account, assuming that the user
has a password backup address at Yahoo, that there are 2
trusted devices on which the second factor is not required,
that the phone is locked by a code, and that the SIM card is
also locked by a code. Arcs between arrows state that both
previous stages are needed. As we can see, the dependencies
are already quite intricate for only one account.

3.4 Safety, Security, Protection
In all of the following, we assume a given set of rules R

over a fixed set of atoms A. The atoms that we particularly
care about for an account x are x-data and x-destruction
(in blue in Figure 1). Access to these atoms defines the
level of safety and security (for the first), and protection (for
the second). Any atom that is not the succedent of a rule

becomes a key : K = A \ {a0 : (a1, ..., an → a0) ∈ R}. Keys
are usually possessions of physical items (such as phone-
possession), or knowledge of codes or passwords (such as
gmail-recoverycode). They are in red in Figure 1. When we
add more security mechanisms, a key may cease to be a key.
For example, if the recovery code in the figure is not just in
a safe place, but also encrypted, then we could add the rule:

gmail-recoverycodeAccess, gmail-recoverycodeDecryption
→ gmail-recoverycode

Then, gmail-recoverycode ceases to be a key, and the stages
in the antecedent become a key. Now, safety, security, and
protection can be defined in terms of rules:

Data Safety: An account x is safe at level n, if:

∀K ⊆ K, |K| < n : ∃K′ ⊆ K,K′∩K = ∅ : K′ ` x-data
Data Security: An account x is secure at level n, if:

∀K ⊆ K, |K| < n : K 6` x-data
Data Protection: An account x is protected at level n, if:

∀K ⊆ K, |K| < n : K 6` x-destruction

3.5 Optimal Security Strategy
Some keys are more important than others. Given the

dependencies between the user’s accounts, we would like to
identify the set of keys that can cause the most impact once
compromised and propose a strategy that guarantees the
security of these accounts. We use game theory as a math-
ematical framework for this purpose.

In most cases, the attacker chooses his attack strategy
based on the deployed security mechanisms. Therefore, we
model the interactions between the user and the attacker as
a Stackelberg game [4]. In this type of games, the leader
chooses his strategy first. Then, the follower, who knows
the leader’s choice, chooses his strategy. The leader tries to
anticipate the follower’s response. In our model, the leader is
the user, who tries to find the optimal protection level for his
keys. The follower is the attacker, who tries to compromise
the leader’s keys. We define the utilities Ua and Uu of the
attacker and the user, respectively, as follows:
Ua(p, q) =

∑
i

∑
j∈a(i)

{pji
∏
k∈j

qkWi − pjiCj
a}

Uu(p, q) = −∑
i

∑
j∈a(i)

{pji
∏
k∈j

qkWi + (1− qk)Ck
u}

Here, i refers to an account, and a(i) is the set of different
key combinations that can access i. For example, if Gmail
can be accessed either by the Gmail password and the phone,
or by the phone and the Yahoo account (which can reset
the Gmail password), then a(gmail) = {{gmail-password,
phone-possession}, {phone-possession, yahoo-password}}.
j is one combination of keys in a(i), and k refers to one
key in j. pji is the probability that the attacker attempts
to compromise account i by the set of keys j. qk is the
probability that key k can be compromised. Wi refers to
the value of the data in account i. Cj

a and Ck
u refer to the

cost of attacking the set of access keys j, and the cost of
protecting an access key k, respectively.

This game encodes a balance, where the user chooses to
protect certain keys k (at a cost Ck

u) in order to keep the
value Wi of account i, and the attacker chooses to obtain
certain keys k (at a cost Ck

a) in order to obtain the value
Wi. We are interested in finding a Nash Equilibrium (NE)
of that game, i.e., a state in which none of the players has
an incentive to deviate unilaterally. We solve the Stackel-
berg game by backward induction. Since the user’s utility

is a decreasing function w.r.t. pji , the user has an incentive
to choose a strategy that reduces this value. From the at-
tacker’s utility function, we notice that he will not attempt
to compromise a set of keys j ∈ a(i), if

∏
k∈j q

kWi−Cj
a = ε,

where ε is a small negative number. Therefore, in this game,
the NE has the following property: For each account i, and
for each set of keys j ∈ a(i), the probability that the attacker
will compromise this set is bounded by Cj

a/Wi. This can be
interpreted as follows: Let us assume that the value of the
data Wi is constant for all i. Fix, for every account i, the
desired probability pi that i will be hacked during the next
year. This probability will usually be low, say 1%. Choose
Cj

a = piWi. Then, an equilibrium state q of the game can
be interpreted as follows: The user has to take care that
the probability of compromising key k within one year does
not exceed qk. We say that the user has to give a security
guarantee of 1− qk to key k. In this case, the attacker will
not have an incentive to conduct an attack to compromise
the user’s keys. Technically, the probability that an account
i will be hacked in the coming year will be bounded by the
desired value pi. Thus, the Nash Equilibrium of the game
will tell the user which security guarantees 1− qk he has to
give for his keys k, in order to get a security assurance pi
for his accounts i.

Interpreting the probabilistic security guarantees is not al-
ways straightforward. However, there are a number of tools
and statistics that can help. For example, burglary statis-
tics can help estimate the probability of theft, and there are
tools that can estimate how long it takes to guess a pass-
word by brute force. Otherwise, common sense is a good
indicator: if the user has to give a security guarantee of 95%
to his password, then his password should be rather long.

4. DIVINA

4.1 Rules
In order to analyze the safety, security, and protection of

online accounts, we have to identify the dependencies that
exist between the different accounts, and the security mech-
anisms that they offer. To this end, we have studied real-
world services and modeled their dependencies as rules. We
have modeled Gmail, Dropbox, Amazon, Facebook, and Ap-
ple. In addition, we have modeled real-world dependencies,
such as the code needed to unlock the phone, the impact
of backups, and the effect of using the same password on
several services. To tailor these rules to a particular user,
we have developed an online questionnaire that collects in-
formation about the user’s accounts, links between his ac-
counts, and the security measures that he has deployed on
each of them. Based on this input, we compute rules that
are specific to the user scenario.

4.2 Algorithm
Given a set of rules R, we can deduce the keys K. Then

we use a simple algorithm to compute the levels of safety,
security, and protection: For security, we try out all possible
combinations of keys K ⊂ K, and see if we can derive x-data
for an account x. If we cannot, then x has a level of security
larger than |K|. Similarly, for protection, we try out all
possible combinations of keys K ⊂ K, and see if we can
derive x-destruction. If we cannot, then x has a level of
protection that is larger than |K|. For safety, we try out all

Figure 2: Screenshot of the questionnaire

combinations K ⊂ K, and see if we can derive x-data from
K \K. If we can, then x is safe at level |K|.

The complexity of this algorithm may seem prohibitively
high. Yet, it is not. We first observe that if x is not safe at
level n, then it cannot be safe at any level n′ > n. The same
goes for security and protection. Thus, we can gradually
increase n and stop investigating a desideratum as soon as
it is violated. By definition, n also has a natural upper
bound |K|. If k is the maximal level that we are interested
in, then the complexity of trying out all possible sets of keys
K until |K| ≤ k (with k < 1

2
|K|) is:

k∑
i=1

(
|K|
i

)
< k ×

(
|K|
k

)
≤ |K|k

(k − 1)!

For a constant k, this expression is polynomial in the total
number of keys. At each step, we have to derive all derivable
atoms. These are at most |A|. Thus, the overall complexity
of the algorithm is O(|K|k×|A|). In practice, k is very small.
In our analysis of real-world accounts, we found no account
that is secure beyond level 3. Also, people rarely have more
than 4 distinct backups of a piece of data, implying that
protection does not go beyond level 4. This means that,
while further optimizations can clearly be envisaged, the
complexity of our algorithm is acceptable.

Our system, DIVINA, was implemented in Java. Since
unsigned Java code does not always run in a browser (for
security reasons...), we ported the code to JavaScript and
included it in the online questionnaire. This way, the en-
tire system runs in a Web page in a Web browser on the
client side. This has an impact on performance, but overall
response times are, at a few seconds, still very reasonable.

5. DEMO
The goal of our demo is to help users assess the vulnera-

bilities of their online accounts. This works as follows. The
user first fills out our online questionnaire (Figure 2). Our
questions mirror the security policies deployed by the respec-
tive services. While the questions of the form are predefined,
the user can use any account names in the fields. The user
can also add any user-specific rules. These can be rules for
accounts that we have not yet foreseen, or rules for physi-
cal dependencies (such as physical keys, safes, and offices).
Overall, the quality of the result depends on the correctness
of rules provided by the user.

After this stage, the system shows the computed rules.
This allows the user to understand the dependencies be-
tween his accounts. Finally, a click on the compute button

will make the system compute the level of safety, security,
and protection for each account, together with the key sets
K. For example, the user may see that the security of his
Gmail account is 3, because he set up 2-factor authentica-
tion and has a PIN on his phone. Or he could find that one
of his encrypted computers is not protected beyond level 1,
because it is linked to a Dropbox account that is also linked
to an unencrypted laptop. Thus, access to that unencrypted
laptop will allow an attacker to erase the Dropbox and thus
the data on the first computer.

The system also computes the required security guaran-
tees for each key. This allows the user to know which keys
are particularly precious. The values may prompt the user
to think differently about where he keeps his phone, or which
passwords he chooses.

If the user is not satisfied with the current levels of safety,
security, and protection, he can simulate different improve-
ment strategies by modifying his answers to the questions.
For example, if the safety of an account is too low, the user
could add a backup email address.

The system runs completely locally and stateless. At no
point does the form ask for passwords or personal informa-
tion. No attempt is made to contact the service providers.
No data leaves the browser, and no data is stored in the sys-
tem once the browser is closed. Thus, users can simulate the
vulnerabilities of their accounts without any security risk.

6. CONCLUSION
In this paper, we have defined the concepts of data safety,

data security, and data protection for online accounts. We
have proposed to model the dependencies between accounts
by Datalog rules. We have also shown how to compute the
importance of keys by modeling the dependencies as a game-
theoretical problem. Our system, DIVINA, allows users to
spot the weak points in their current account configuration,
and to simulate improvements. Our demo can be tried out
online1. With DIVINA, we hope to raise awareness for the
vulnerabilities of online accounts, and to help users improve
the safety, security, and protection of their data.

7. REFERENCES
[1] E. CreditExpert. Online ID OD: illegal web trade in

personal information soars. 2012.
http://press.experian.com/United-Kingdom/

Press-Release/illegal%20web%20trade%20in%

20personal%20information%20soars.aspx?&p=1.

[2] M. Honan. How Apple and Amazon Security Flaws Led
to My Epic Hacking. Wired, 2012-08-06.
http://www.wired.com/2012/08/

apple-amazon-mat-honan-hacking/all/.

[3] M. Kelly. Your weakest link: All those online accounts
you’ve forgotten about. VentureBeat, 2013-03-05.
http://venturebeat.com/2013/03/05/

online-accounts-security/.

[4] M. J. Osborne and A. Rubinstein. A course in game
theory. MIT Press, 1994.

[5] O. Williams. The dark side of Apple’s two-factor
authentication. The Next Web, 2014-12-08.
http://thenextweb.com/apple/2014/12/08/lost-apple-
id-learnt-hard-way-careful-two-factor-authentication/.

1http://suchanek.name/programs/divina

http://press.experian.com/United-Kingdom/Press-Release/illegal%20web%20trade%20in%20personal%20information%20soars.aspx?&p=1
http://press.experian.com/United-Kingdom/Press-Release/illegal%20web%20trade%20in%20personal%20information%20soars.aspx?&p=1
http://press.experian.com/United-Kingdom/Press-Release/illegal%20web%20trade%20in%20personal%20information%20soars.aspx?&p=1
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/
http://www.wired.com/2012/08/apple-amazon-mat-honan-hacking/all/
http://venturebeat.com/2013/03/05/online-accounts-security/
http://venturebeat.com/2013/03/05/online-accounts-security/
http://thenextweb.com/apple/2014/12/08/lost-apple-id-learnt-hard-way-careful-two-factor-authentication/
http://thenextweb.com/apple/2014/12/08/lost-apple-id-learnt-hard-way-careful-two-factor-authentication/
http://suchanek.name/programs/divina

	Introduction
	Modeling Access
	Approach
	Datalog
	Atoms
	Rules
	Safety, Security, Protection
	Optimal Security Strategy

	DIVINA
	Rules
	Algorithm

	Demo
	Conclusion
	References

