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Abstract Recent advances in information extraction

have led to huge knowledge bases (KBs), which cap-

ture knowledge in a machine-readable format. Inductive

Logic Programming (ILP) can be used to mine logical

rules from these KBs, such as “If two persons are mar-

ried, then they (usually) live in the same city”. While

ILP is a mature field, mining logical rules from KBs is

difficult, because KBs make an open world assumption.

This means that absent information cannot be taken as

counterexamples. Our approach AMIE [16] has shown

how rules can be mined effectively from KBs even in

the absence of counterexamples. In this paper, we show

how this approach can be optimized to mine even larger

KBs with more than 12M statements. Extensive exper-

iments show how our new approach, AMIE+, extends

to areas of mining that were previously beyond reach.

Keywords Rule Mining · Inductive Logic Program-

ming · ILP · Knowledge Bases

1 Introduction

Recent advances in information extraction have led to

the creation of large knowledge bases (KBs). These
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KBs contain facts such as “London is the capital of

the United Kingdom”, “Elvis was born in Tupelo”, or

“Every singer is a person”. Some of the most prominent

projects in this direction are NELL [6], YAGO [39], DB-

pedia [5], and Freebase [41]. These KBs provide infor-

mation about a great variety of entities, such as people,

countries, rivers, cities, universities, movies, animals,

etc. The KBs know, e.g., who was born where, which

actor acted in which movie, or which city is located in

which country. Today’s KBs contain millions of entities

and hundreds of millions of facts.

These KBs have been constructed by mining the

Web for information. In recent years, however, the KBs

have become so large that they can themselves be mined

for information. It is possible to find rules in the KBs

that describe common correlations in the data. For ex-

ample, we can mine the rule

livesIn(h, p) ∧ marriedTo(h,w)⇒ livesIn(w, p)

This rule captures the fact that, very often, the spouse

of a person lives in the same place as the person. Find-

ing such rules can serve four purposes: First, by ap-

plying such rules on the data, new facts can be de-

rived that make the KB more complete. For example,

if we know where Barack Obama lives, and if we know

that Michelle Obama is his wife, then we can deduce

(with high probability) where Michelle Obama lives.

Second, such rules can identify potential errors in the

knowledge base. If, for instance, the KB contains the

statement that Michelle Obama lives in a completely

different place, then maybe this statement is wrong.

Third, the rules can be used for reasoning. Many rea-

soning approaches rely on other parties to provide rules

(e.g., [32, 36]). Last, rules describing general regulari-

ties can help us understand the data better. We can,

e.g., find out that countries often trade with countries
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speaking the same language, that marriage is a sym-

metric relationship, that musicians who influence each

other often play the same instrument, and so on.

The goal of this paper is to mine such rules from

KBs. We focus on RDF-style KBs in the spirit of the

Semantic Web, such as YAGO [39], Wikidata1, and DB-

pedia [5]. These KBs provide binary relationships in

the form of RDF triples [43]. Since RDF has only pos-

itive inference rules, these KBs contain only positive

statements and no negations. Furthermore, they oper-

ate under the Open World Assumption (OWA). Under

the OWA, a statement that is not contained in the KB

is not necessarily false; it is just unknown. This is a cru-

cial difference to many standard database settings that

operate under the Closed World Assumption (CWA).

Consider an example KB that does not contain the in-

formation that a particular person is married. Under

the CWA we can conclude that the person is not mar-

ried. Under the OWA, however, the person could be

either married or single.

Mining rules from a data set is the central task of

Inductive Logic Programming (ILP). ILP approaches

induce logical rules from ground facts. Yet, classical ILP

systems cannot be applied to semantic KBs for two rea-

sons: First, they usually require negative statements as

counterexamples. Semantic KBs, however, usually do

not contain negative statements. The semantics of RDF

Schema are too weak to deduce negative evidence from

the facts in a KB2. Because of the OWA, absent state-

ments cannot serve as counter-evidence either. Second,

today’s ILP systems are slow and cannot handle the

huge amount of data that KBs provide. In our exper-

iments, we ran state-of-the-art approaches on YAGO2

for a couple of days without obtaining any results.

With the AMIE project [16], we have shown how to

mine logical rules from KBs despite the absence of ex-

plicit counter-examples. The key technique was the Par-

tial Completeness Assumption (PCA). It allowed AMIE

to “guess” counterexamples for rules, and thus estimate

their quality even under the OWA. We have shown that

our approach outperformed other rule mining systems

both in terms of the quality and the quantity of the

mined rules. AMIE could already run on KBs with up

to one million statements – a size that was beyond the

reach of any previous ILP-based rule mining system.

AMIE achieved this without any need for parameter

tuning or expert input.

With the present paper, we develop AMIE even fur-

ther. We present pruning strategies and approximations

that allow the system to explore the search space much

1 http://www.wikidata.org
2 RDF Schema has only positive rules and no disjointness

constraints or similar concepts.

more efficiently. This allows us to find Horn rules on

KBs with several millions of statements in a matter of

hours or minutes. Such large KBs were previously out

of reach even for AMIE. We also show how the preci-

sion of the predictions can be increased to up to 70% by

using type information and joint reasoning. In addition,

we provide a thorough investigation of the metrics we

use, thus giving a more complete picture of rule mining

on large-scale knowledge bases.

More precisely, our contributions are as follows:

• A comprehensive investigation and description of the

AMIE approach, including a description of our in-

memory database and an evaluation of AMIE’s fun-

damental assumption, the PCA.

• A suite of optimization steps that allow a much more

efficient exploration of the search space.

• Extensive experiments that show the competitive-

ness of our approach, including techniques to increase

the precision of our predictions to 70%.

The rest of this paper is structured as follows: Section 2

discusses related work and Section 3 introduces pre-

liminaries. In Section 4, we introduce the Partial Com-

pleteness Assumption (PCA) and, based on it, the PCA

confidence measure. Section 5 recaptures the AMIE ap-

proach from [16], extending it by a description of our

in-memory database. Section 6 is the main part of the

paper: It presents the pruning strategies that optimize

the performance of AMIE. Section 7 presents our ex-

periments before Section 8 concludes.

2 Related Work

Technically speaking, we aim to mine Horn rules on bi-

nary predicates. Rule mining has been an area of active

research during the past years. Some approaches mine

association rules, some mine logical rules, others mine

a schema for the KB, and again others use rule mining

for application purposes. In the following, we survey the

most pertinent related work along these lines.

2.1 Association Rule Mining

Association rules [3] are mined on a list of transactions.

A transaction is a set of items. For example, in the con-

text of sales analysis, a transaction is the set of prod-

ucts bought together by a customer in a specific event.

The mined rules are of the form {ElvisCD, ElvisBook}
⇒ ElvisCostume, meaning that people who bought an

Elvis CD and an Elvis book usually also bought an

Elvis costume. However, these are not the kind of rules

that we aim to mine in this paper; we aim at min-

ing Horn rules. We show in [16] that Horn rule mining

http://www.wikidata.org
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corresponds to association rule mining on a database

that is exponentially large in the maximal number of

variables of the rules. One problem for association rule

mining is that for some applications the standard mea-

surements for support and confidence do not produce

good results. [40] discusses a number of alternatives to

measure the interestingness of a rule in general. Our

approach is inspired by this work and also makes use of

a language bias [2] to reduce the search space.

2.2 Logical Rule Mining

Sherlock [37] is an unsupervised ILP method to learn

first-order Horn clauses from open domain facts. Sher-

lock uses probabilistic graphical models (PGMs) to in-

fer new facts. It tackles the noise of the extracted facts

by extensive filtering in a preprocessing step and by pe-

nalizing longer rules in the inference part. For mining

the rules, Sherlock uses two heuristics: statistical signif-

icance and statistical relevance. Unlike AMIE, it works

on facts extracted from free text that are not mapped

to crisp relations. QuickFOIL [44] is a standard ILP

system based on a generic top-down greedy algorithm

and implemented on top of the QuickStep in-memory

storage engine [7]. It learns a set of hypotheses (Horn

rules) from positive and negative examples of a target

relation and a collection of background facts. When re-

fining a rule, the QuickFOIL algorithm greedily picks

the clause that maximizes a scoring function depend-

ing on the support and the confidence gain of the new

rule. Once a rule is mined, the algorithm removes the

positive examples covered by the rule and starts the in-

duction process on the remaining facts. QuickFOIL can
scale to problem instances with millions of background

facts thanks to a set of aggressive pruning heuristics

and multiple database optimizations. However, it is not

suitable for mining rules under the Open World As-

sumption, since it requires explicit negative examples.

The WARMR system [13, 14] mines patterns in data-

bases that correspond to conjunctive queries. It uses a

declarative language bias to reduce the search space.

An extension of the system, WARMER [17], modified

the approach to support a broader range of conjunc-

tive queries and increase efficiency of search space ex-

ploration. ALEPH3 is a general purpose ILP system

that implements Muggleton’s Inverse Entailment algo-

rithm [30] in Prolog. It employs a variety of evaluation

functions for the rules as well as a variety of search

strategies. These approaches are not tailored to deal

with large KBs under the Open World Assumption. We

3 http://www.cs.ox.ac.uk/activities/machlearn/

Aleph/aleph_toc.html

compare our system to WARMR and ALEPH, which

are the only ones available for download. Our experi-

ments do not only show that these systems mine less

sensible rules than our approach, but also that they

take more time to do so.

2.3 Expert Rule Mining

Another rule mining approach over RDF data [33] was

proposed to discover causal relations in RDF-based

medical data. It requires a domain expert who defines

targets and contexts of the mining process, so that the

correct transactions are generated. Our approach, in

contrast, does not rely on the user to define any con-

text or target. It works out-of-the-box.

2.4 Generating Schemas

In this paper, we aim to generate Horn rules on a

KB. Other approaches use rule mining to generate the

schema or taxonomy of a KB. [9] applies clustering

techniques based on context vectors and formal concept

analysis to construct taxonomies. Other approaches use

clustering [26] and ILP-based approaches [11]. For the

friend-of-a-friend network on the Semantic Web, [19]

applies clustering to identify classes of people and ILP

to learn descriptions of these groups. Another example

of an ILP-based approach is the DL-Learner [24], which

has successfully been applied [20] to generate OWL

class expressions from YAGO [39]. As an alternative to

ILP techniques, [42] proposes a statistical method that

does not require negative examples. In contrast to our

approach, these techniques aim at generating a schema

for a given RDF repository, not logical rules in general.

2.5 Relational Machine Learning

Some approaches learn new associations from seman-

tic data without mining explicit logical rules. For ex-

ample, relational machine learning methods propose a

holistic statistical approach that considers both the at-

tribute information and the relationships between en-

tities to learn new links and concepts. [34] applies ten-

sor factorization methods to predict new triples on the

YAGO2 ontology by representing the KB as a three-

dimensional tensor. In a similar fashion, [21] uses mul-

tivariate prediction techniques to learn new links on a

social graph. In both approaches, however, the predic-

tions are opaque. It is possible to generate predictions,

but not to derive general structural knowledge about

http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html
http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph_toc.html
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the data that can explain the reasons why the predic-

tions were made. For example, these approaches will

tell us that Michelle Obama most likely lives in Wash-

ington, but they will not tell us that this is because her

husband lives in Washington and people tend to live in

same place as their spouses. Our approach, in contrast,

aims at mining explicit logical rules that capture the

correlations in the data. These can then be used to de-

rive new facts and also to explain why these facts were

derived.

2.6 Learning Rules From Hybrid Sources

[10] proposes to learn association rules from hybrid

sources (RDBMS and Ontologies) under the OWA. For

this purpose, the definition of frequency (and thus of

support and confidence) is changed so that unknown

statements contribute with half of the weight of the true

statements. Another approach [25] makes use of an on-

tology and a constraint Datalog program. The goal is to

learn association rules at different levels of granularity

w.r.t. the type hierarchy of the ontology. While these

approaches focus more on the benefits of combining hy-

brid sources, our approach focuses on pure RDF KBs.

2.7 Further Applications of Rule Mining

[22] proposes an algorithm for frequent pattern min-

ing in KBs that uses DL-safe rules. Such KBs can be

transformed into a disjunctive Datalog program, which

allows seeing patterns as queries. This approach does

not mine the Horn rules that we aim at. Some ap-

proaches use rule mining for ontology merging and

alignment [12,29,35]. The AROMA system [12], for in-

stance, uses association rules on extracted terms to find

subsumption relations between classes and properties of

different ontologies. Again, these systems do not mine

the kind of rules we are interested in. In [1] association

rules and frequency analysis are used to identify and

classify common misusage patterns for relations in DB-

pedia. In the same fashion, [45] applies association rules

to find synonym predicates in DBpedia. The matched

synonyms are then used for predicate expansion in the

spirit of data integration. This is a vital task in manu-

ally populated KBs where the users may not use canon-

ical names for relations, or for cases when the data is

produced by independent providers. In contrast to our

work, these approaches do not mine logical rules, but

association rules on the co-occurrence of values. Since

RDF data can be seen as a graph, mining frequent sub-

trees [8,23] is another related field of research. However,

as the URIs of resources in knowledge bases are unique,

these techniques are limited to mining frequent combi-

nations of classes.

Several approaches, such as Markov Logic [36] or

URDF [32] use Horn rules to perform reasoning. These

approaches can be consumers of the rules we mine with

AMIE.

3 Preliminaries

3.1 RDF KBs

In this paper, we focus on RDF [43] knowledge bases.

We follow here the introduction of the preliminaries

from [16]. An RDF KB can be considered a set of facts,

where each fact is a triple of the form 〈x, r, y〉 with

x denoting the subject, r the relation (or predicate),

and y the object of the fact. There are several equiv-

alent alternative representations of facts; in this paper

we borrow the notation from Datalog and represent a

fact as r(x, y). For example, we write father(Elvis,Lisa).

The facts of an RDF KB can usually be divided into

an A-Box and a T-Box. While the A-Box contains in-

stance data, the T-Box is the subset of facts that define

classes, domains, ranges for predicates, and the class hi-

erarchy. Although T-Box information can also be used

by our mining approach, we are mainly concerned with

the A-Box, i.e., the set of facts relating one particular

entity to another.

In the following, we assume a given KB K as input.

Let R := πrelation(K) denote the set of relations con-

tained in K and E := πsubject(K)∪ πobject(K) the set of

entities.

3.2 Functions

A function is a relation r that has at most one object

for every subject, i.e.,

∀x : |{y : r(x, y)}| ≤ 1

Similarly, a relation is an inverse function if each of

its objects has at most one subject. Since RDF KBs

are usually noisy, even relations that should be func-

tions (such as hasBirthdate) may exhibit two objects

for the same subject. Vice versa, there are relations that

are not functions in the strict sense, but that exhibit a

similar behavior. For example, hasNationality can give

several nationalities to a person, but the vast majority

of people only have one nationality. Therefore, we use

the notion of functionality [38]. The functionality of a
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relation r is a value between 0 and 1, which is 1 if r is

a function:

fun(r) :=
#x : ∃y : r(x, y)

#(x, y) : r(x, y)

where #x : X is an abbreviation for |{x : X ∈
K}|. The inverse functionality is defined accordingly as

ifun(r) := fun(r−1), where r−1 denotes the inverse re-

lation of r, that is, the relation defined by swapping the

arguments of r, e.g., actedIn−1 = hasActor, therefore

ifun(actedIn) := fun(hasActor).

Some relations have roughly the same degree of

functionality and of inverse functionality. Bijections are

an example. Usually, however, fun and ifun are dif-

ferent. Manual inspection shows that in web-extracted

common sense KBs (e.g., YAGO, DBpedia) the func-

tionality is usually higher than the inverse functionality.

For example, a KB is more likely to specify isCitizenOf

than hasCitizen. Intuitively, this allows us to consider

a fact r(x, y) as a fact about x. In the following, we

will assume that for all relations r, fun(r) ≥ ifun(r).

Whenever this is not the case, r can be replaced by its

inverse relation r−1. Then, fun(r−1) ≥ ifun(r−1). In

the following, we assume that all relations have been

substituted with their inverses if their inverse function-

ality is larger than their functionality. This will simplify

the analysis without affecting the generality of our ap-

proach.

3.3 Rules

An atom is a fact that can have variables at the subject

and/or object position. A (Horn) rule consists of a head

and a body, where the head is a single atom and the

body is a set of atoms. We denote a rule with head

r(x, y) and body {B1, ..., Bn} by an implication

B1 ∧B2 ∧ ... ∧Bn ⇒ r(x, y)

which we abbreviate as
−→
B ⇒ r(x, y).

An instantiation of a rule is a copy of the rule,

where all variables have been substituted by constants.

A prediction of a rule is the head atom of an instan-

tiated rule if all body atoms of the instantiated rule

appear in the KB. For example, the above rule can

predict citizenOf(Lisa,USA) if the KB knows a par-

ent of Lisa, e.g., hasChild(Elvis,Lisa), who is American,

e.g.,citizenOf(Elvis,USA).

AMIE, like other ILP systems, does not mine gen-

eral Horn Clauses, but uses a language bias (constraints

to the form of the mined rules) in order to restrict the

size of the search space. Language biases offer a trade-

off between the expressiveness of the mined rules and

the speed of the mining process. As an example, rules

with 3 atoms can capture more complicated correlations

than rules with 2 atoms, but come with a larger search

space and thus with a much slower performance. The

less restrictive the language bias is, the more expressive

the rules can potentially be, the larger the search space

grows, and the less tractable the search becomes.

AMIE’s language bias requires rules to be connected.

We say that two atoms in a rule are connected if they

share a variable or an entity. A rule is connected if ev-

ery atom is connected transitively to every other atom

of the rule. The restriction to connected rules avoids

mining rules with completely unrelated atoms, such as

diedIn(x, y)⇒ wasBornIn(w, z).

AMIE also requires the rules to be closed. A vari-

able in a rule is closed if it appears at least twice

in the rule. A rule is closed if all its variables are

closed. The restriction to closed rules avoids mining

rules that predict merely the existence of a fact, as in

diedIn(x, y)⇒ ∃z : wasBornIn(x, z).

AMIE omits also reflexive rules, i.e., rules with

atoms of the form r(x, x), as they are typically of

less interest in real world KBs. However, unlike some

other ILP systems, AMIE allows mining recursive rules.

These are rules that contain the head relation in the

body, as e.g., isMarriedTo(x, z) ∧ hasChild(z, y) ⇒
hasChild(x, y).

3.4 Measures of Significance

Normally, data mining systems define a notion of signifi-

cance or support for rules, which quantifies the amount

of evidence for the rule in the data. If a rule applies

only to a few instances, it is too risky to use it to draw

conclusions. For this reason, data mining systems fre-

quently report only rules above a given support thresh-

old. In the following, we define this metric for AMIE’s

setting and introduce another notion of significance, the

head coverage.

Support. In our context, the support of a rule quan-

tifies the number of correct predictions in the existing

data. One desired property for support is monotonicity,

that is, the addition of more atoms and constraints to

the rule should always decrease its support. As we will

show in Section 5.1, such property is crucial for prun-

ing. There are several ways to define the support: it can

be the number of instantiations of a rule that appear in

the KB. This measure, however, is not monotonic if we

add atoms to the body. Consider, for example, the rule

R: livesIn(x, y)⇒ wasBornIn(x, y)

If we add the atom hasGender(x, male) to the body,

the number of instantiations x, y in the KB decreases.
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In contrast, if we add an atom with a fresh variable,

e.g., hasFriend(x, z), to the body, the number of in-

stantiations x, y, z increases for every friend of x. This

is true even if we add another atom with z to obtain a

closed rule. Alternatively, we can count the number of

facts in one particular body atom. Under this definition,

however, the same rule can have different support val-

ues depending on the selected body atom. We can also

count the number of facts of the head atom. This mea-

sure decreases monotonically if more body atoms are

added and avoids equivalent rules with different sup-

port values. With this in mind, we define the support

of a rule as the number of distinct pairs of subjects and

objects in the head of all instantiations that appear in

the KB:

supp(
−→
B ⇒ r(x, y)) := #(x, y) : ∃z1, ..., zm :

−→
B ∧ r(x, y)

where z1, ..., zm are the variables of the rule apart from

x and y. Table 1 shows an example KB that con-

tains only 2 relations and 5 facts. For this KB, our

example rule R has support 1, because of the facts

livesIn(Adam,Paris) and wasBornIn(Adam,Paris).

Note that the support is defined even for rules that

are not yet closed. This allows for early pruning of un-

promising candidate rules. For example, consider the

rule

R’: livesIn(x, y)⇒ wasBornIn(y, z)

This rule is obviously unpromising, because it postu-

lates a birth place for y, which is not a person. The

rule is not yet closed (x and z appear only once). Yet,

it has support 0. Thus, it can be pruned away and does

not need further refinement.

Head Coverage. Support is an absolute number. This

means that a user defining thresholds on support has

to know the absolute size of the KB to give meaning-

ful values. Moreover, if the support threshold is higher

than the size of some relation, this relation will be dis-

regarded as head relation for rule mining. To avoid this,

we propose a proportional version of support. A naive

way would be to use the absolute number of support

(as defined in the previous paragraph) over the size of

the KB. This definition, however, does not solve the

problem for small relations. Therefore, we propose to

use the notion of head coverage:

hc(
−→
B ⇒ r(x, y)) :=

supp(
−→
B ⇒ r(x, y))

size(r)

with size(r) := #(x′, y′) : r(x′, y′) denoting the number

of facts in relation r. Head coverage quantifies the ratio

of the known true facts that are implied by the rule.

For the example presented in Table 1, hc(R) = 1/2.

livesIn wasBornIn
(Adam, Paris) (Adam, Paris)
(Adam, Rome) (Carl, Rome)
(Bob, Zurich)

Table 1: An example KB containing two relations be-

tween people and cities.

4 Confidence Measures

The support of a rule quantifies the number of known

correct predictions of the rule. However, it does not

take into account the false predictions of the rule. Fol-

lowing [16], we will now describe measures that judge

the quality of a rule. We first describe the challenges in

defining such a measure in our setting and discuss the

most common way to measure the rule quality, which

we call the standard confidence. Then, we introduce our

own measure: the confidence under the assumption of

partial completeness.

4.1 Challenges

Let us consider a given Horn rule
−→
B ⇒ r(x, y). Let

us look at all facts with relation r (Figure 1). We

distinguish 4 types of facts: True facts that are known

to the KB (KBtrue), true facts that are unknown

to the KB (NEWtrue), facts that are known to be

false in the KB (KBfalse), and facts that are false but

unknown to the KB (NEWfalse). The rule will make

certain predictions about relation r (blue circle). These

predictions can be known to be true (A), known to

be false (C), or unknown (B and D). When they are

unknown to the KB, they can still be true (B) or false

(D) with respect to the real world.

Fig. 1: Prediction under Incompleteness

PredictionsA B

C D

KBtrue

KBfalse

NEWtrue

NEWfalse

true

false

known to KB unknown to KB

Our goal is to find rules that make true predictions

that go beyond the current KB. In Figure 1, we wish to

maximize the area B and to minimize the area D. There



Fast Rule Mining in Ontological Knowledge Bases with AMIE+ 7

are two obvious challenges in this context: First, the ar-

eas NEWtrue and NEWfalse are unknown. So if we wish

to maximize B at the expense of D, we are operating in

an area outside our KB. We would want to use the ar-

eas KBtrue and KBfalse to estimate the unknown area.

This, however, leads to the second challenge: Semantic

KBs do not contain negative evidence. Thus, the area

KBfalse is empty. This is the central challenge of our

setting: to provide counterexamples for the rule mining.

These can take the role of KBfalse so that we can esti-

mate the areas NEWtrue and NEWfalse. We describe

two approaches to this problem: Creating counterexam-

ples according to the Closed World Assumption (CWA)

that traditional association rule mining systems apply

and according to the Partial Completeness Assumption

(PCA) that we propose. We will now present these ap-

proaches in detail.

4.2 The CWA and Standard Confidence

The standard confidence measure takes all facts that

are not in the KB (i.e., NEWtrue and NEWfalse) as

negative evidence. Thus, the standard confidence of a

rule is the ratio of its predictions that are in the KB,

i.e., the share of A (KBtrue) in the set of predictions:

conf(
−→
B ⇒ r(x, y)) :=

supp(
−→
B ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm :
−→
B

For example, consider again the rule

R : livesIn(x, y)⇒ wasBornIn(x, y)

together with the KB given in Table 1. In this

case, conf(R) = 1/3, because (a) there is one posi-

tive example for the rule, wasBornIn(Adam,Paris),

and (b) the predictions wasBornIn(Adam,Rome) and

wasBorn(Bob, Zurich) are counted as negative exam-

ples since they do not appear in the KB.

Standard confidence is the measure traditionally

used in association rule mining and market basket anal-

ysis, where the Closed World Assumption (CWA) is

used: if there is no evidence in any of the transactions

of the database that a user bought a specific product,

then this user did not buy the product. Albeit natu-

ral for the market basket analysis scenario, standard

confidence fails to distinguish between “false” and “un-

known” facts, which makes it inappropriate for a sce-

nario with Open World semantics like ours. Moreover,

we also pursue a different goal than market basket anal-

ysis: we aim to maximize the number of true predictions

that go beyond the current knowledge, whereas market

basket analysis usually tries to mine rules that can de-

scribe data that is already known.

4.3 The PCA and the PCA-Confidence

In AMIE, we generate negative examples for a rule by

means of the Partial Completeness Assumption (PCA).

The PCA is the assumption that if r(x, y) ∈ KBtrue for

some x, y, then

∀y′ : r(x, y′) ∈ KBtrue ∪NEWtrue ⇒ r(x, y′) ∈ KBtrue

In other words, we assume that if we know one y for a

given x and r, then we know all y for that x and r. This

assumption allow us to generate counter-examples in a

way that is less restrictive than the standard confidence.

In our example from Table 1, the PCA will assume that

any other place of birth for Adam and Carl is false.

Conversely, the PCA will not assume anything about

the places of birth of Bob, because the KB does not

know any. With this notion in mind, we redefine the

definition of confidence for rules. Under the PCA, the

denominator of the confidence formula is not the size

of the entire set of conclusions derived from the body

of the rule, but the number of facts that we know to be

true together with the facts that we assume to be false.

confpca(
−→
B ⇒ r(x, y)) :=

supp(
−→
B ⇒ r(x, y))

#(x, y) : ∃z1, ..., zm, y′ :
−→
B ∧ r(x, y′)

(1)

This formula normalizes the support by the number

of pairs (x, y) for which there exists a y′ with r(x, y′).

Consider again the KB given in Table 1 and the rule

R : livesIn(x, y) ⇒ wasBornIn(x, y). In this case,

confpca(R) = 1/2. This is because (a) there is one posi-

tive example for the rule, wasBornIn(Adam,Paris),

and (b) the prediction wasBornIn(Adam,Rome) is

counted as negative example, because we already know

a different place of birth for Adam. The prediction

wasBorn(Bob, Zurich) is completely disregarded as

evidence, because we neither know where Bob was born

nor where he was not born.

Notice that Eq. 1 fixes x and r and implies that

rules will try to predict values for y. AMIE always pre-

dicts in the most functional direction. To see this, recall

that it is more intuitive to predict the birthplace of a

specific person than predict all the people that were

born in a specific city. Since in Sec. 3.2 we re-write all

relations so that their functionality is larger than their

inverse functionality, the most functional direction will

be always to predict y given x.
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In spite of being an assumption, the PCA is cer-

tainly true for functions, such as birthdate and capital.

The PCA also holds for relations that are not functions

but that have a high functionality, as we shall see in

our qualitative analysis of the PCA in Section 7.4. The

PCA has been applied in the Google Knowledge Vault

under the name “local completeness assumption” [15].

5 AMIE

We now outline the core algorithm of AMIE and its

implementation. We follow the description in [16] and

extend it with further explanations and details.

5.1 Algorithm

Algorithm. Algorithm 1 shows our approach to mine

rules. It takes as input a KB K, a threshold minHC

on the head coverage of the mined rules, a maximum

rule length maxLen and a threshold minConf on the

confidence. We discuss the choice of parameter values

later in this section. The algorithm maintains a queue

of rules (line 1), which initially contains all possible

head atoms, that is, all rules of size 1. It then iter-

atively dequeues a rule from this queue. If the rule

meets certain criteria (line 6), it is pushed to the out-

put. If the rule does not exceed the maximum number

of atoms maxLen (line 9), it goes through a refinement

process (described below) which expands the rule (the

parent) to produce a set of new rules (the children).

These new rules, if neither duplicates nor pruned by

the head coverage threshold (line 12), are also pushed

into the queue. This process is repeated until the queue

is empty. In the following, we will see in more detail the

different phases of the algorithm.

Refinement. One of the major challenges of rule min-

ing is to find an efficient way to explore the search space.

The naive algorithm of enumerating all possible combi-

nations of conjunctions of atoms is infeasible for large

KBs. Hence, we explore the search space by iteratively

extending rules using a set of mining operators (line 10

of Alg. 1). We see a rule as a sequence of atoms. The

first atom is the head atom and the others are the body

atoms. In the process of traversing the search space, we

can extend a rule by using one of the following opera-

tors:

1. Add Dangling Atom (OD)

This operator adds a new atom to a rule. The new

atom uses a fresh variable for one of its two ar-

guments. The other argument is a variable that is

shared with the rule, i.e., it occurs in some other

atom of the rule.

Algorithm 1 Rule Mining

1: function AMIE(KB K, minHC, maxLen, minConf)
2: q = [r1(x, y), r2(x, y) . . . rm(x, y)]
3: out = 〈〉
4: while ¬q.isEmpty() do
5: r = q.dequeue()
6: if AcceptedForOutput(r, out,minConf) then
7: out.add(r)
8: end if
9: if length(r) < maxLen then

10: R(r) = Refine(r)
11: for all rules rc ∈ R(r) do
12: if hc(rc) ≥ minHC & rc /∈ q then
13: q.enqueue(rc)
14: end if
15: end for
16: end if
17: end while
18: return out
19: end function

2. Add Instantiated Atom (OI)

This operator adds a new atom to a rule that uses

an entity for one argument and shares the other ar-

gument (variable) with the rule.

3. Add Closing Atom (OC)

This operator adds a new atom to a rule so that

both of its arguments are shared with the rule.

Note that all above operators create connected rules. By

repeated application of these operators, we can generate

the entire space of rules as defined in Section 3. The

operators generate even more rules than those that we

are interested in, because they also produce rules that

are not closed. An alternative set of operators could

consist of OD and an operator for instantiation. But

these operators would not be monotonic, in the sense

that an atom generated by one operator can be modified

in the next step by the other operator. Therefore, we

chose the above 3 operators as a canonic set. We will

describe in Section 5.2 how these operators are executed

on the KB.

Algorithm 2 Decide whether to output a rule

1: function AcceptedForOutput(rule r, out, minConf)
2: if r is not closed ∨ confpca(r) < minConf then
3: return false
4: end if
5: parents = parentsOfRule(r, out)
6: for all rp ∈ parents do
7: if confpca(r) ≤ confpca(rp) then
8: return false
9: end if

10: end for
11: return true
12: end function



Fast Rule Mining in Ontological Knowledge Bases with AMIE+ 9

When to Output. Not every rule that the mining al-

gorithm dequeues is output. This is because some rules

may not be closed, or may not be better than rules that

have already been output. Algorithm 2 explains how

we decide if a rule should be output or not once it has

been dequeued. The algorithm first checks if the rule

is of the form described in Section 3 (i.e., closed and

connected). The refinement operators used by AMIE

(see Section 5.1) always produce connected rules. So,

at this point, the algorithm only checks if the rule is

closed. Then, the algorithm calculates the confidence of

the rule and performs a quality check. The rule should

have a confidence value that (i) passes the confidence

threshold (line 1) and (ii) improves over the confidence

of all its parents (line 7). The latter condition implies

that the refinements of a rule (B1∧...∧Bn∧Bn+1 ⇒ H)

must bring some confidence gain with respect to the

parent rule (B1∧...∧Bn ⇒ H). Since support and head

coverage are monotonic metrics, we know that the child

rule will never have a higher score than its parent rule.

If the child rule has also lower confidence, then its qual-

ity is worse in all aspects than the parent rule. Hence,

there is no reason to output it.

A rule can have several parents. For example,

the rule actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y)

can be derived by either adding directed(x, y)

to actedIn(x, y) ⇒ created(x, y) or by adding

actedIn(x, y) to directed(x, y) ⇒ created(x, y). AMIE

requires a confidence gain over all parents of a rule.

Note that the decisions made at this point affect

only the output. They do not influence the refinement

process. i.e., a rule with low confidence can still be re-

fined to obtain new rules. This is because confidence is

a non-monotonic measure, i.e., we might get good rules

with further refinement of bad rules.

Parameters and Pruning. If executed naively, Algo-

rithm 1 will have prohibitively high runtimes. The in-

stantiation operator OI , in particular, generates atoms

in the order of |R| × |E|. For this reason the algo-

rithm defines some parameters that determine when to

stop with the exploration of the space. These are the

minimal head coverage minHC, the maximal length

maxLen and the minimal confidence minConf . Choos-

ing larger thresholds on head coverage, and choosing a

shorter maximum rule length will make the algorithm

stop earlier and output fewer rules. Relaxing the values

will make the algorithm output the very same rules as

before, and find also rules with a smaller head coverage

or a larger number of atoms. Thus, these parameters

define a trade-off between the runtime and the number

of rules.

Interestingly, a larger number of rules is not nec-

essarily a good thing. For instance, a rule that covers

only 1% or less of the instances of a relation is probably

not interesting. It simply lacks statistical significance.

Assuming that a user is not interested in such spurious

rules, we set minHC = 0.01 by default.

Additionally, we show in our experiments that rules

with more than 3 atoms tend to be very convoluted and

not insightful. Hence, we set maxLen = 3 by default.

Likewise, rules with low confidence will not be of

much use to the application. For example, a rule with

confidence 10% will make correct predictions in only

one out of ten cases. Assuming that a user is not inter-

ested in such kind of rules, we set minConf = 0.1 by

default.

That being said, if the user is interested in less con-

fident, more complex, or less supported rules, she can

change these thresholds. However, we believe that there

is no good reason to deviate from the default values. In

particular, relaxing these values will not output better

rules. This makes AMIE a system that can be run off

the shelf, without the need for parameter tuning.

Duplicate Elimination. As mentioned in Section 5.1

a rule can be derived in multiple ways. For example, the

rule actedIn(x, y) ∧ directed(x, y) ⇒ created(x, y) can

result from the application of the operator OC to both

actedIn(x, y) ⇒ created(x, y) and directed(x, y) ⇒
created(x, y). For this reason, AMIE checks for the ex-

istence of duplicate rules (line 12) in order to avoid

queuing the same rule multiple times. While checking

two rules for equality is expensive (it is a graph isomor-

phism verification task), we observe that two rules can

only be equal if they have the same head relation, the

same number of atoms and the same head coverage (or

support). This reduces drastically the set of rules that

have to be checked and therefore the time invested in

this task.

Multithreading. To speed up the process, our imple-

mentation parallelizes Algorithm 1, that is, the main

loop (lines 4 to 17) runs in multiple threads. This is

achieved by synchronizing the access to the centralized

queue from which the threads dequeue and enqueue and

the access to the output.

5.2 Count Projection Queries

AMIE tries to expand a given rule by applying all min-

ing operators defined in the last section (one each time).

We now explain how the operators are implemented and

executed on a KB.

Count Projection Queries. Assume that AMIE

needs to add the atom r(x, y) to a rule. For efficiency

reasons, we do not blindly try all possible relations in

the place of r. Instead, we first find all relations that
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lead to a new rule that passes the head-coverage thresh-

old. In other words, we first fire a count projection query

of the form

SELECT r, COUNT(H)

WHERE H ∧B1 ∧ ... ∧Bn−1 ∧ r(X,Y )

SUCH THAT COUNT(H)≥ k

where k := minHC × size(H) (see Section 3.4) is the

translation of the head coverage threshold into an ab-

solute support threshold and the expression COUNT(·)
has COUNT(DISTINCT ·) semantics (also for the rest

of this section). X and Y represent variables that

are either fresh or already present in the rule. The

results for r are the relations that, once bound in

the query, ensure that the head coverage of the rule

B1 ∧ ... ∧ Bn−1 ∧ r(X,Y ) ⇒ H is greater or equal

than minHC. Notice also that for each value of r, the

expression COUNT(H) gives us the support of the new

rule. We now discuss the instantiation of this query for

all three operators.

Dangling Atom Operator. As an example, assume

that Algorithm 1 dequeues the following intermediate

non-closed rule for further specialization:

marriedTo(x, z)⇒ livesIn(x, y)

The application of the operator OD will fire queries of

the form:

SELECT r, COUNT(livesIn(x, y)) WHERE

livesIn(x, y) ∧ marriedTo(x, z) ∧ r(X,Y )

SUCH THAT COUNT(livesIn(x, y))≥ k

with

r(X,Y ) ∈ {r(x,w), r(z, w), r(w, x), r(w, z)}
That is, r(X,Y ) binds to each possible join combina-

tion of a new dangling atom, where w is an arbitrary

fresh variable. For intermediate rules, dangling atoms

are joined on the non-closed variables; z and y in this

example. If the rule is closed, dangling atoms are joined

on all the variables appearing in the rule.

Closed Atom Operator. The OC operator works in

the same fashion. In our example, the atom r(X,Y )

can take values in {r(z, y), r(y, z)}. The method will

produce new atoms so that all open variables are closed.

In this example, the method produces the minimum

number of specializations required to close the variables

y and z. If there is only one closed variable, the method

will produce atoms between the open variable and all

the other variables. If the rule is already closed, the

operator tries with all possible pairs of variables in the

rule.

Instantiated Atom Operator. The operator OI is

implemented in two steps. We first apply the opera-

tor OD to produce a set of intermediate rules with a

new dangling atom and a new fresh variable. Then for

each rule, we fire a count-projection query on the fresh

variable. This step provides bindings for one of the ar-

guments of the relation. For instance, the application

of the OI operator to our example rule

marriedTo(x, z)⇒ livesIn(x, y)

will first add all possible dangling atoms to the rule.

Let us consider one group of such atoms, e.g., those of

the form r(x,w). Then for each value of r that keeps

the rule above the head coverage threshold minHC,

the algorithm tries to find the best bindings for w. For

example, imagine we bind r to the relation citizenOf .

The second step will fire a query of the form:

SELECT w, COUNT(livesIn(x, y)) WHERE

livesIn(x, y) ∧marriedTo(x, z) ∧ citizenOf(x,w)

SUCH THAT COUNT(livesIn(x, y))≥ k

Each binding of w forms a new rule that will be en-

queued and later evaluated for output.

Count-projection queries allow us to choose the re-

lationships and entities for the operators in such a

way that the head coverage for the new rules is above

minHC. We discuss how to implement count projection

queries efficiently in Section 5.3.

5.3 Query Implementation Details

In-Memory Database. We have shown [16] that

count projection queries translate into very inefficient

queries in both SPARQL and SQL. Therefore, we have

implemented an in-memory database that is specifically

geared towards this type of queries. Our implementa-

tion indexes the facts aggressively with one index for

each permutation of the columns subject (S), relation

(R), and object (O). This means that there are six in-

dexes, namely SRO, SOR, RSO, ROS, OSR and ORS. We

call them fact indexes. Each fact index is a hash table,

which maps elements of the first column to a nested

hash table. This nested hash table maps elements of

the second column to a set of elements of the third

column. For example, the index ORS has as keys the ob-

jects of all triples in the KB. It maps each object o to

a hash table. This hash table has as keys all possible

relations of the KB. It maps each relation r to a set

of subjects {s1, ..., sn}, such that r(si, o) for i = 1...n.

Fact indexes allow us to check the existence of a triple

in constant time. They also allow us to efficiently fetch

the instantiations of an atom.

In addition to the fact indexes, our database relies

on three aggregated indexes S, P, O. These store the

aggregated number of facts for each key of the fact in-

dexes. For example, the aggregated index P stores the
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number of triples for each relation in the KB, whereas

the aggregated index S stores the number of triples

where each entity appears as subject.

Size Queries. Fact indexes in combination with ag-

gregated indexes can be used to determine the size of

an atom (size(a,K)), i.e., its number of bindings in the

KB K. For example, the size of the atom livesIn(x, y)

can be retrieved by a simple look-up in the aggregated

index P. The size of the atom livesIn(x, USA) requires

two lookups in the fact index ROS: the first lookup to get

the object values of livesIn and the second to retrieve

the list of subjects for the object value USA.

Existence Queries. One of the central tasks of the in-

memory database is to determine whether there exists

a binding for a conjunctive query. Algorithm 3 shows

how this can be implemented. The algorithm requires

as input a conjunctive query and a KB K. If the query

is a single atom (Line 3), we can directly verify if its size

is greater than zero using the indexes (Line 4). Other-

wise, we select the atom Bs with fewest instantiations

using the indexes (Line 6), and run through all of its

instantiations (Lines 8 to 13). We apply such instanti-

ations to the remaining atoms (Line 9) and repeat this

process recursively (Line 10) until we end up with a

single atom. Since rules are connected query patterns,

the atom Bs must share at least one variable with the

remaining atoms. This means that by instantiating Bs,

some variables in the remaining atoms become instan-

tiated, making the atoms more selective with every re-

cursive step.

Algorithm 3 Existence Queries

1: function Exists(B1 ∧ ... ∧Bn, K)
2: q := B1 ∧ ... ∧Bn

3: if n = 1 then
4: return size(B1, K) > 0
5: else
6: s := argmini {size(Bi,K)}
7: q := q \ {Bs}
8: for all instantiations bs ∈ Bs do
9: q′ := q instantiated with bindings from bs

10: if Exists(q′, K) then
11: return true
12: end if
13: end for
14: end if
15: return false
16: end function

Select Queries. Algorithm 4 describes the implemen-

tation of SELECT DISTINCT queries on one projec-

tion variable for a conjunction of atoms. The algorithm

starts finding the atom with the fewest number of in-

stantiations Bs. If the projection variable x is in Bs

(Lines 5 to 11), the algorithm goes through all the in-

stantiations x̂ of x, instantiates the query accordingly

and checks whether there exists a solution for the in-

stantiated query pattern in the KB (Line 8). If there is,

the solution x̂ is added to the result set. In contrast,

if the projection variable is not in the most restric-

tive atom Bs (Lines 13 to 17), the algorithm iterates

through the instantiations of Bs and recursively selects

the distinct bindings of x in the remaining atoms (Line

16).

Algorithm 4 Select Distinct Queries

1: function Select(x, B1 ∧ ... ∧Bn, K)
2: q := B1 ∧ ... ∧Bn

3: s := argmini {size(Bi,K)}
4: result := {}
5: if x ∈ Bs then
6: for all instantiations x̂ ∈ x do
7: q′ := q instantiated with x̂ for x
8: if Exists(q′, K) then
9: result.add(x̂)

10: end if
11: end for
12: else
13: q := q \ {Bs}
14: for all instantiations bs ∈ Bs do
15: q′ := q instantiated with bindings from bs
16: result.add(Select(x, q′, K))
17: end for
18: end if
19: return result
20: end function

Count Queries. To compute the confidence of a rule−→
B ⇒ r(x, y), AMIE must fire a count query to esti-

mate the denominator of the confidence formula. For

the PCA confidence, such queries have the form:

SELECT COUNT(x, y) WHERE r(x, y′) ∧
−→
B

where x, y are the variables in the head atom of the

rule,
−→
B = B1, . . . , Bn are the body atoms, and r(x, y′)

is a variant of the head atom where the least-functional

variable has been replaced by a fresh variable y′ (see

Section 4.3). These queries return the number of dis-

tinct bindings of the head variables that fulfill the pat-

tern r(x, y′) ∧
−→
B . They are used to calculate the con-

fidence of rules. The in-memory database first fires a

SELECT query on variable x:

SELECT DISTINCT x WHERE r(x, y′) ∧
−→
B

Then, for each binding of x, it instantiates the query

and fires another select query on variable y, adding up

the number of instantiations.

Count Projection Queries. Count projection queries

take the form

SELECT x, COUNT(H) WHERE H ∧B1 ∧ ... ∧Bn

SUCH THAT COUNT(H)≥ k
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These are the types of queries used to determine the

relations and instances for new atoms in the refinement

phase of AMIE. Algorithm 5 shows how we answer these

queries. The algorithm takes as input a selection vari-

able x, a projection atom H := R(X,Y ), remaining

atoms B1, ...Bn, the threshold k, and a KB K. The al-

gorithm returns a hash table with each instantiation

of the selection variable x as key and the number of

distinct bindings of the projection atom H as value.

We first check whether x appears in the projection

atom (Line 3). If that is the case (Lines 4 to 10), we

run through all instantiations of the projection atom,

instantiate the query accordingly (Line 6), and check

for existence (Line 7). Each existing instantiation in-

creases the counter for the respective value of the selec-

tion variable x (Line 8). If the selection variable does

not appear in the projection atom (Lines 12 to 18),

we iterate through all instantiations of the projection

atom. We instantiate the query accordingly, and fire a

SELECT DISTINCT query for x (Line 14). We then

increase the counter for each value of x (Line 16).

Algorithm 5 Count Projection Queries

1: function SELECT(x, R(X,Y ) ∧B1 ∧ ... ∧Bn, k, K)
2: map = {}
3: q = B1 ∧ ... ∧Bn

4: if x ∈ {R,X, Y } then
5: for all instantiations r(x, y) ∈ R(X,Y ) do
6: q′ := q, replace R by r, X by x, Y by y
7: if Exists(q′, K) then
8: map[x] + +
9: end if

10: end for
11: else
12: for all instantiations r(x, y) ∈ R(X,Y ) do
13: q′ := q, replace R by r, X by x, Y by y
14: X := Select(x, q′, K)
15: for all x ∈ X do
16: map[x] + +
17: end for
18: end for
19: end if
20: map := {〈x→ n〉 ∈ map : n ≥ k}
21: return map
22: end function

6 Scalability Improvements: AMIE+

Since the publication of the original AMIE frame-

work [16], we have extended it with a series of improve-

ments that allow the system to run over very large KBs.

In the following, we will introduce and discuss these

extensions and refer to this new version of AMIE as

AMIE+. Our extensions aim to speed up 2 different

parts of the main rule-mining algorithm: (i) the refine-

ment phase and (ii) the confidence evaluation.

6.1 Speeding Up Rule Refinement

In this section, we will discuss how AMIE+ speeds up

the rule refinement phase for specific kinds of rules. We

emphasize that the techniques described below do not

alter AMIE’s output in any way.

Maximum Rule Length. The maximum rule length

maxLen is an input parameter for our system. AMIE

stops exploring the search space as soon as all rules

with a length of at most maxLen have been produced.

During the mining process, AMIE creates connected

rules by applying all possible mining operators (line 10

in Algorithm 1) on previously created rules. Given a

maximum rule length maxLen and a non-closed Horn

rule of length maxLen − 1, AMIE+ will refine it only

if it is possible to close it before exceeding the length

constraint. This means that for a not-yet-closed rule of

length maxLen − 1, AMIE+ will not apply the add-

dangling-atom operator OD, because this results in a

non-closed rule, which will be neither output nor re-

fined. In the same spirit, if the same rule contains more

than two non-closed variables (see Section 3.3), AMIE+

will skip the application of the add-closing atom oper-

ator OC . This happens because an application of the

operator OC can close at most two variables with one

atom. This reasoning also applies to the instantiation

operator OI : rules with more than one non-closed vari-

able are not refined with instantiated atoms, because

the addition of an instantiated atom can close at most

one variable.

Perfect Rules. By definition, a rule cannot achieve a

PCA confidence that is higher than 100%. Thus, once

a rule has achieved 100% PCA confidence, we can stop

adding new atoms. This is because the confidence can-

not increase and the support can only decrease. Hence,

any refinement is futile and will be discarded by the

output routine described in Algorithm 2. We call rules

with 100% PCA confidence perfect rules.

Simplifying Projection Queries. Support is mono-

tonically decreasing with the length of the rule (Sec-

tion. 3.4). Hence, whenever we apply an add-dangling-

atom operator to a rule Rp (the parent rule) to pro-

duce a new rule Rc (the child rule), the support of Rc

will likely be smaller than the support of Rp. However,

there is one case in which the addition of a dangling

atom cannot reduce the support. This happens when

Rc (i) already contains atoms with the same relation as

the dangling atom and (ii) these atoms have a variable

in common with the dangling atom. An example is the

parent rule Rp : livesIn(x, y) ⇒ citizenOf(x, y) and
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the child rule Rc : citizenOf(z, y) ∧ livesIn(x, y) ⇒
citizenOf(x, y). Intuitively, the addition of the dan-

gling atom citizenOf(z, y) cannot further restrict the

support of Rp because the new atom is a less restric-

tive version of the atom citizenOf(x, y). This means

that z will always bind to the same values as x. From

this observation, it follows that the support of Rc can

be rewritten as

supp(Rc) = #(x, y) : citizenOf(x, y) ∧ livesIn(x, y)

∧ citizenOf(x, y)

supp(Rc) = #(x, y) : livesIn(x, y) ∧ citizenOf(x, y)

which is the same as supp(Rp). Thus both Rp and Rc

have the same support. This observation can be lever-

aged to speed up projection queries. The query for

supp(Rp) has one fewer join and thus executes faster.

6.2 Speeding up Confidence Evaluation

Confidence Scores. A significant part of the run-

time of our algorithm is spent on computing confidence

scores (up to 35% in our experiments). The reason is

that the calculation of confidence (both PCA and stan-

dard) requires the calculation of the number of instanti-

ations of the rule body. If the body contains atoms with

many instantiations, the joins can be very expensive to

compute.

At the same time, we will not output rules with a

confidence below the threshold minConf (Section 5.1).

This means that the system might spend a significant

amount of time evaluating expensive confidence queries

only to find out that the rule was of low confidence and

will not be output. An example of such a rule (which

we will also use later in this section) is:

directed(x, z) ∧ hasActor(z, y)⇒ married(x, y)

This rule concludes that a director is married to all the

actors that acted in his/her movies, producing a total

of 74249 married couples in YAGO2. AMIE needs more

than 500ms (more than twice the average cost: 200ms)

to calculate the confidence of this intuitively bad rule.

Approximation. We have developed a method to ap-

proximate the confidence value of such a rule very

quickly. Our approximation is based on statistics, such

as the functionalities of the atoms, or the size of the

joins between two relations. We pre-compute these

quantities, so that they can be accessed in constant

time. As a result, AMIE+ prunes the example-rule

above in less than 1ms.

Our approximation is designed such that it is more

likely to overestimate confidence than to underestimate

it. This is important, because we use it to prune rules,

and we want to avoid pruning rules that have a higher

confidence in reality. Our experiments (see Section 7.2)

show that this technique prunes only 4% of the rules

erroneously. In return, it makes AMIE+ run in the

range of minutes instead of days. It is thus one of the

main techniques that allow AMIE+ to run on large-

scale KBs.

In Section 6.2.1, we give an overview of the confi-

dence approximation and we explain for which form of

rules we use it. Section 6.2.2 describes how the size of

the rule’s body is approximated. Section 6.2.3 discusses

the underlying assumptions made by our approximation

and explains how it is used within AMIE+. Finally, Sec-

tion 6.2.4 derives upper bounds for the confidence of a

particular class of rules.

6.2.1 Confidence Approximation

Computing Confidence. Recall that confidence and

PCA confidence (see Sections 4.2 and 4.3) are defined

as:

conf(
−→
B ⇒ rh(x, y)) :=

supp(
−→
B ⇒ rh(x, y))

#(x, y) : ∃z1, . . . , zm :
−→
B

and

confpca(
−→
B ⇒ rh(x, y)) :=

supp(
−→
B ⇒ rh(x, y))

#(x, y) : ∃z1, . . . , zm, y′ :
−→
B ∧ rh(x, y′)

By the time AMIE has to calculate the confidence of

a rule, the system already knows the support of the

rule. Hence, the remaining step is to fire the queries

for the denominators of the confidence expressions (see

Sections 4.2 and 4.3). We denote them by dstd and dpca:

dstd(
−→
B ⇒ rh(x, y)) := #(x, y) : ∃z1, . . . , zm :

−→
B (2)

dpca(
−→
B ⇒ rh(x, y)) := #(x, y) : ∃z1, . . . , zm, y′ :

−→
B ∧ rh(x, y′)

(3)

Our aim is to derive a conservative approximation for

dpca (or dstd) denoted by d̂pca. By plugging this expres-

sion into the confidence formula, we get

ĉonfpca(R) :=
supp(R)

d̂pca(R)
(4)

Let us reconsider Eq. 3 and rewrite it as follows:

dpca(
−→
B (x, y)⇒ rh(x, y)) := #(x, y) : ∃z1, . . . , zm, y′ :

−→
B (x, y) ∧ rh(x, y′)
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Here, we resort to an abstraction that treats the body

of the rule
−→
B (x, y) as a relation on the head variables.

If
−→
B has functionality fun(

−→
B ), this means that, on

average, each entity in variable x relates to #yper x =

1/fun(
−→
B ) bindings in y. If we denote the domain and

range of a relation r as dom(r) and rng(r) respectively,

the expression #yper x · |dom(
−→
B )| gives us an estimate

for the body size of the rule, i.e., dstd(
−→
B ⇒ rh(x, y)).

However, for the PCA confidence, the denominator is

restricted also by the entities in the domain of the head

relation. This consideration leads us to the expression:

d̂pca(R) := |dom(
−→
B ) ∩ dom(rh)| ·#yper x (5)

In the following, we first describe for which kind of rules

it makes sense to use this approximation and then, in

Section. 6.2.2, we discuss how to calculate the terms of

Equation 5 in an efficient way.

When to Use the Approximation. Using any form

of confidence approximation always involves the risk of

pruning a good rule. At the same time, if the exact con-

fidence value is cheap to compute, the potential gain of

using an approximation is small. For this reason, we

only use the confidence approximation for rules whose

exact confidence is relatively “expensive” to compute.

These rules typically have a large number of bindings in

the body because of the presence of intermediate vari-

ables. This translates into higher runtimes and memory

usage. An example is the rule we saw before:

directed(x, z) ∧ hasActor(z, y)⇒ married(x, y)

In this example, a director x is related to many movies

z (the intermediate variable) that have different ac-

tors y. Hence, we consider a rule expensive if its body

(i) contains variables other than the variables appear-

ing in the head atom (z in our example) and (ii) if

these additional variables define a single path between

the head variables (x → z → y in our example).

Note that rules without intermediate variables (such

as livesIn(x, y) ∧ bornIn(x, y)⇒ diedIn(x, y)) or that

contain multiple paths between the head variables (such

as livesIn(x, z1) ∧ locatedIn(z1, y) ∧ bornIn(x, z2) ∧
locatedIn(z2, y) ⇒ isCitizenOf(x, y)) are usually as-

sociated with more selective queries. In these examples,

both livesIn and bornIn join on x in the body and re-

strict the size of the result.

We therefore use the confidence approximation only

for rules where the head variables x, y are connected

through a single chain of existentially quantified vari-

ables z1, . . . , zn−1. These rules have the form:

r1(x, z1) ∧ r2(z1, z2) ∧ ... ∧ rn(zn−1, y)⇒ rh(x, y)

In order to write a rule in this canonical form, we may

have to replace some relations by their inverses (i.e.,

substitute r2(z2, z1) with r−12 (z1, z2)) and change the

order of the atoms.

We will now see how to compute the approximation

for this type of rules.

6.2.2 Computing the Approximation

In the following, we denote the domain and range of

a relation r by dom(r) and rng(r), respectively. In

addition, we use the shortcut notations ovdr(r1, r2),

ovrd(r1, r2), ovdd(r1, r2), ovrr(r1, r2) for the size of the

overlap sets between the domains and ranges of pairs

of relations. For example,

ovdr(r1, r2) := |dom(r1) ∩ rng(r2)|

Let us now consider again the rule

directed(x, z) ∧ hasActor(z, y)⇒ married(x, y)

which implies that a director is married to all actors

that acted in his movies. In this case, dpca(R) is defined

as

dpca(R) := #(x, y) : ∃ z, y′ : directed(x, z)

∧ hasActor(z, y) ∧ isMarried(x, y′)

Here
−→
B (x, y) = directed(x, z)∧hasActor(z,y). To cal-

culate the approximation defined in Equation 5, we

need to calculate the number of directors in
−→
B that

are married, i.e., |dom(
−→
B ) ∩ dom(isMarried)| and

the number of actors y associated to each director x,

i.e., #yper x. We focus on the latter term. This requires

us to walk from the most to the least functional vari-

able, i.e., through the path x → z → y, connecting a

director to his potential actors. If fun(r) and ifun(r)

denote the functionality and inverse functionality of the

relation r, respectively, then walking through this path

involves the following steps:

1. For each director x, the relation directed will pro-

duce on average 1
fun(directed) movies z.

2. Some or all of these movies z will find join partners

in the first argument of hasActor.

3. For each movie z, hasActor will produce on average
1

fun(hasActor) actors y.

4. Each of these actors in y acted on average in
1

ifun(hasActor) movies of the hasActor relation.

Up to step 2, we can approximate the number of distinct

movies that bind to the variable z for each director in

the variable x as:

#zper x :=
ovrd(directed, hasActor)

|rng(directed)| × fun(directed)
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Here, |rng(directed)| is the number of distinct movies in

the range of directed and ovrd(directed, hasActor) de-

notes the distinct movies in the overlap between the ob-

jects of directed and the subjects of hasActor. The term
1

fun(directed) corresponds to step 1. Our join estimation

assumes that the movies in the overlap of directed and

hasActor are uniformly distributed among the different

directors in directed.

For steps 3 and 4, we can approximate the number

of actors in the variable y for each movie in the variable

z as follows:

#yper z :=
ifun(hasActor)

fun(hasActor)

The term 1
fun(hasActor) corresponds to Step 3. At the

end of this step, we already have, for a single direc-

tor x, a bag of actors y associated to him. However,

these are not necessarily distinct actors, since x and y

are connected through the variable z (movies). There-

fore, a duplicate elimination step is needed. To see why,

assume that each director has directed on average 3

movies and that each movie has 5 actors. Then, the

rule will produce on average 15 actors y for each direc-

tor x. However, there is no guarantee that these actors

are distinct. If the director trusts specific actors and

collaborates repeatedly with them in some or all of his

movies, there will be less than 15 distinct actors. The

term ifun(hasActor) achieves this duplicate elimina-

tion: since each actor participated in 1
ifun(hasActor) dif-

ferent movies, the actor contributes to the final count

with a weight that is inversely proportional to this num-

ber.

In this way of performing duplicate elimination, a

single actor y belongs to 1
ifun(hasActor) different movies

z, which are chosen from all the movies in the relation

hasActor. In reality, we want the number of different

movies to be chosen from those that remain after Step

2, i.e., the average number of movies by the same di-

rector that an actor acts in. This number is obviously

smaller, which implies that the factor ifun(hasActor)

is a pessimistic estimator. This makes our approxima-

tion an underestimation of the real confidence denom-

inator, and the overall confidence approximation an

overestimation of the actual confidence.

With all that said, we can estimate the number of

actors y that are supposed to be married with each

director x as:

#yper x := #zper x ×#yper z

To calculate d̂pca of Eq. 5, we are now only missing

the expression |dom(
−→
B ) ∩ dom(isMarried)|. Here

we make the simplifying assumption that dom(
−→
B ) =

dom(directed), so that the expression becomes the size

of the join between the relations directed and married,

on the subject argument, i.e., ovdd(directed,married).

To summarize, the factor d̂pca(R) for a rule r1(x, z)∧
r2(z, y)⇒ rh(x, y) can be approximated by:

d̂pca(R) :=
ovdd(r1, rh) · ovrd(r1, r2) · ifun(r2)

fun(r1) · |rng(r1)| · fun(r2)

For the more general case of a rule that contains n− 1

existential variables forming a single path from x to y

r1(x, z1) ∧ r2(z1, z2) ∧ ... ∧ rn(zn−1, y)⇒ rh(x, y)

the formula becomes:

d̂pca(R) :=
ovdd(r1, rh)

fun(r1)
×

n∏
i=2

ovrd(ri−1, ri)

|rng(ri−1)|
ifun(ri)

fun(ri)

6.2.3 Discussion

Application. We precompute the functionalities, the

inverse functionalities, and the overlaps between the do-

mains and ranges of each pair of relations when the

KB is loaded into the in-memory database. This re-

sults in longer loading times, but pays off easily during

rule mining. The sizes of the ranges of the relations

are given by our indexes in constant time. After this

preprocessing, the approximation of the confidence can

be computed as a simple product of precomputed val-

ues without actually firing a single query. We apply the

approximation only if the query is expensive (see Sec-

tion 6.2.1). If the approximated value is smaller than

the threshold, we abandon the rule. Otherwise, we com-

pute the exact PCA confidence and proceed as usual.

Assumptions. Our approximation makes a series of

assumptions. First, we make use of functionalities as

average values. In other words, we assume that for any

relation all objects are uniformly distributed among the

subjects (which corresponds to a zero variance). In real-

ity, this is not always the case. Additionally, the estima-

tion of the expression #zper x uses the term ovrd(r1,r2)
|rng(r1)| .

This term assumes that the entities in the overlap are

uniformly distributed among the entities in the range

of r1. This also introduces some error that depends on

the variance of the real distribution. Nevertheless, the

duplicate elimination largely underestimates the count

of #yper x, and therefore we expect our approximation

to usually result in an overestimation of the actual con-

fidence. This is indeed the case, as our experiments in

Section 7.2 show.
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6.2.4 Confidence Upper Bounds

In some particular cases, we can derive lower bounds for

the confidence denominator (dpca, dstd) instead of using

the approximation described in Section 6.2.2. Consider

a rule of the form:

r(x, z) ∧ r(y, z)⇒ rh(x, y)

Here, the confidence denominator is given by

dstd := #(x, y) : ∃z : r(x, z) ∧ r(y, z)

Since both atoms contain the same relation, we know

that all the entities of z in the first atom will join with

the second atom. Furthermore, we know that the join

will result in at least one y-value for each binding of x,

i.e., the case where y = x. This allows us to deduce

dstd ≥ #(x, x) : ∃z : r(x, z) ∧ r(x, z)

dstd ≥ #x : ∃z : r(x, z) (6)

This expression can be calculated in constant time with

the indexes of our in-memory database (Section 5.3).

Similar analyses can be used for rules of the form

r(z, x) ∧ r(z, y)⇒ rh(x, y).

The same reasoning applies to the denominator of

the PCA confidence, yielding

dpca ≥ #x : ∃ z, y′ : r(x, z) ∧ rh(x, y′) (7)

Although this expression requires to fire a query, it

contains fewer atoms than the original expression and

counts instances of a single variable instead of pairs. It

is therefore much cheaper than the original query.

Both Inequalities 6 and 7 define lower bounds for the

number of pairs in the denominator expressions of the

standard and the PCA confidence, respectively. Thus,

AMIE+ uses them to upper-bound the respective confi-

dence scores. If the upper bound is below the threshold,

the rules can be pruned even before computing the ap-

proximate confidence denominator.

7 Experiments

We conducted four groups of experiments. In the first

round (Section 7.2) we compared AMIE with AMIE+.

We show the performance gain carried by each of the

new techniques presented in Section 6. In the sec-

ond group of experiments (Section 7.3), we compared

AMIE+ to competitor systems. The comparison was

based on runtime and prediction quality of the rules. In

KB Facts Subjects Relations
YAGO2 core 948K 470K 32
YAGO2s 4.12M 1.65M 37
DBpedia 2.0 6.70M 1.38M 15954

DBpedia 3.8 11.02M 2.20M 650
Wikidata 8.4M 4.00M 431

Table 2: Knowledge bases used to test AMIE and

AMIE+.

the third round of experiments (Section 7.4), we inves-

tigated the Partial Completeness Assumption (PCA).

We evaluated how often the PCA actually holds in a

real-world KB (YAGO). Finally, in Section 7.5, we con-

ducted a proof of concept to show how the rules mined

by AMIE can be used to make predictions. We com-

pared the performance of the PCA confidence with the

performance of the standard confidence for this pur-

pose. We also showed how post-processing of the results

can increase the precision of our predictions.

Our experimental results show that:

1. The optimizations implemented in AMIE+ allow us

to run on KBs with more than 1K relations and 10M

facts in a matter of minutes – while AMIE took more

than one day for them.

2. AMIE, and in particular AMIE+, outperforms com-

peting systems by a large margin in terms of the

quality and the quantity of the mined rules.

3. The PCA is often a valid assumption, even for rela-

tions that are not strictly functional.

4. Type constraints can improve the precision of the

predictions made by rules to about 70%.

7.1 Experimental Setup

Hardware. All experiments were run on a server with

48GB of RAM, 8 physical CPUs (Intel Xeon at 2.4GHz,

32 threads) and using Fedora 21. All rules and all exper-

imental results are available at http://www.mpi-inf.

mpg.de/departments/ontologies/projects/amie/.

Datasets. We ran our experiments on different KBs.

Table 2 shows a summary of the KBs used for our ex-

periments. In all cases, we removed all facts with liter-

als (numbers and strings). This is because literal values

(such as geographical coordinates) are shared by only

very few entities, which makes them less interesting for

rule mining. For both DBpedia 2.0 and 3.8, we used the

person data and mapping-based properties datasets.

For Wikidata, we used a dump from December 2014,

available for download at http://tools.wmflabs.

org/wikidata-exports/rdf/exports/20140420/.

4 Relations with more than 100 facts only.

http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/
http://www.mpi-inf.mpg.de/departments/ontologies/projects/amie/
http://tools.wmflabs.org/wikidata-exports/rdf/exports/20140420/
http://tools.wmflabs.org/wikidata-exports/rdf/exports/20140420/
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Settings. In their default settings, AMIE and AMIE+

use a 1% head coverage threshold (i.e.,minHC = 0.01),

and a maximum of 3 atoms for rules (i.e., maxLen = 3,

see Section 5.1). By default, AMIE does not impose

a confidence threshold, i.e., minConf = 0. In con-

trast, AMIE+ defines a PCA confidence threshold of

0.1, i.e., minConf = 0.1 (Section 6.2). Unless ex-

plicitly mentioned, the instantiation operator OI was

disabled. (“without constants”). Both systems use as

many threads as available logical cores in the system (32

in our hardware platform). Any deviation from these

settings will be explicitly stated. Whenever AMIE and

AMIE+ behave equivalently, we will refer to these sys-

tems jointly as AMIE(+).

Metrics. We compared AMIE and AMIE+ in terms of

quality and runtime to two popular state-of-the-art sys-

tems: WARMR [13,14] and ALEPH3. To have an equal

basis for the comparison with these systems, we made

AMIE(+) simulate their metrics. AMIE(+) can thresh-

old on support, head coverage, standard confidence, and

PCA confidence, and can rank by any of these. She can

also deviate from the default setting and count support

on one of the head variables (like WARMR). In that

case, AMIE(+) counts on the most functional variable

of the relation (see Section 3.2 about functions). Again,

any such deviation from the default behavior will be

mentioned explicitly.

7.2 AMIE vs. AMIE+

In this section, we discuss the runtime improvements of

AMIE+ over the previous version AMIE. Let us first

discuss only AMIE. Recall from Section 5.1 that the

AMIE algorithm consists of three main phases:

– Refinement (i.e., rule expansion).

– Output, which includes confidence calculation.

– Duplicate elimination.

Table 3 shows the proportion of time spent by AMIE

in each phase when running on YAGO2 – first without

constants and then with constants. We observe that

the refinement and output phases dominate the sys-

tem’s runtime. When constants are not enabled, most

of the time is spent in the refinement phase. In contrast,

the addition of the instantiation operator increases the

number of rules and therefore the time spent in the out-

put and duplicate elimination phases. In both cases,

the duplicate elimination is the least time-consuming

phase. The enhancements introduced by AMIE+ aim

at reducing the time spent in the refinement and out-

put phases.

Dataset Rules Refinement Output Dup. elim.
YAGO2 135 87.48% 8.79% 3.74%
YAGO2 (c) 19132 53.54% 35.64% 10.82%

Table 3: Time spent in the different phases of the AMIE

algorithm on YAGO2, first without the instantiation

operator and then with this operator.

Runtime Comparison. Table 4 shows the runtimes of

AMIE and AMIE+. We set a threshold of 0.1 PCA Con-

fidence for AMIE to make it comparable with AMIE+.

For the latter, we show the results in several categories:

1. Only output: only the improvements affecting the

output process are active, i.e., the confidence ap-

proximation and the confidence upper bounds, both

with confidence threshold 0.1 (Section 6.2).

2. Only refinement: only the improvements affecting

the refinement process (Section 6.1) are active,

namely the maximum rule length (MRL), the query

rewriting (QRW) and the perfect rules (PR).

3. Output + MRL/QRW/PR: the output improve-

ments and one of the refinement improvements are

active.

4. Full: All improvements are active.

We first note that AMIE is not able to finish within

a day for YAGO2s, DBPedia 2.0, DBpedia 3.8, and

Wikidata. In contrast, AMIE+ can mine rules on all

these datasets in a matter of hours, and even minutes.

For YAGO2 (const), we can see that the full version

of AMIE+ is 3.8x faster than AMIE. For YAGO2, this

speed-up nearly doubles to 6.7x. This boost is mainly

due to the improvements in the refinement process:

AMIE+ with only these improvements is already 3.2x

faster on YAGO2 (const) and 6.5x faster on YAGO2

than AMIE. This is not surprising since for YAGO2

most of the time is spent on refining rules (Table 3).

Therefore, the improvements in this phase result in a

significant gain.

Notice also that AMIE+ (only output) is only

marginally faster than AMIE for the YAGO2 family

of datasets. This is because the confidence approxima-

tion heuristic requires computing the join cardinalities

for every pair of relations in the KB. This means that

there is a trade-off between an initial additional cost for

pre-computing these values and the potential savings.

For the case of YAGO2, the output phase takes only

around 9% of the overall mining time, i.e., the confi-

dence evaluation is not really a problem.

For YAGO2s, DBpedia 2.0, DBpedia 3.8, and Wiki-

data, we see that using only the refinement improve-

ments or only the output refinements is not enough. If

we activate all improvements, however, AMIE+ is able
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KB AMIE
AMIE+

Only Only Output +
Full

Refinement Output MRL QRW PR
YAGO2 3.17min 29.37s 2.82min 29.03s 38.16s 2.80min 28.19s
YAGO2 (const) 37.57min 11.72min 37.05min 8.90min 12.04min 36.48min 9.93min
YAGO2 (4) 27.14min 9.49min 26.48min 8.65min 15.69min 24.20min 8.35min
YAGO2s > 1 day > 1 day > 1 day 1h 7min 1h 12min > 1 day 59.38min
DBpedia 2.0 > 1 day > 1 day > 1 day 45.11min 46.37min > 1 day 46.88min
DBpedia 3.8 > 1 day > 1 day 11h 46min 8h 35min 7h 33min 10h 11min 7h 6min
Wikidata > 1 day > 1 day > 1 day 1h 14min 7h 56min > 1 day 25.50min

Table 4: Runtime and output comparison between AMIE and AMIE+ on different KBs. On YAGO2 (4), maxLen =

4. On YAGO2 (const), the instantiation operator was switched on.

to terminate in the majority of cases within an hour or

in the worst case over-night.

Table 4 also shows the benefit of individual re-

finement improvements over the baseline of AMIE+

(only output). The improvement that offers the high-

est speedup (up to 6.7x) is the maximum rule length

(MRL), closely followed by query rewriting (QRW, up

to 5.1x speedup), whereas perfect rules (PR) rank last.

This occurs because MRL is much more often applicable

than QRW and PR. Besides, perfect rules are relatively

rare in KBs. AMIE found, for instance, 1 perfect rule

on YAGO2s and 248 (out of 5K) in DBpedia 3.8.

All in all, we find that AMIE+ can run on several

datasets on which AMIE was not able to run. Fur-

thermore, on datasets on which both can run, AMIE+

achieves a speed-up of up to 6.7x.

Output Comparison. Table 6 shows a comparison

of AMIE and AMIE+ in terms of output (number of

rules). For AMIE+ (full), we report the number of rules

that were pruned by the confidence approximation. To

assess the quality of the confidence approximation, we

report in addition the pruning precision. The prun-

ing precision is the ratio of rules for which the confi-

dence approximation introduced in Section 6.2.2 over-

estimates the actual confidence. We calculate this ratio

by counting the number of times that the heuristics pro-

duce a higher value than the real confidence (among the

rules on which the approximation is applicable). For ex-

ample, a pruning precision of 96% means that in 4% of

the cases the system erroneously pruned rules with a

confidence higher than 0.1. As in the previous section,

we set a threshold of 0.1 PCA Confidence for AMIE.

We also interrupted the system if it ran more than one

day. In those cases, we report the output until the point

of interruption (denoted by a “*” in Table 6).5

As we can see, the pruning by approximation does

not entail a serious decrease in the quality of the output:

5 In these cases, the pruning precision in Table 6 was com-
puted by comparing the output of AMIE+ to the output of
AMIE on the mined subset.

y:isCitizenOf (x, y)⇒ y:livesIn(x, y)
y:wasBornIn(x, y)∧ y:isLocatedIn(y, z)⇒ y:citizenOf (x, z)
y:hasWonPrize(x,G. W. Leibniz)⇒ y:livesIn(x,Germany)
y:hasWonPrize(x,Grammy)⇒ y:musicalRole(x,Guitar)
d:countySeat(x, y)⇒ d:largestCity(x, y)
d:jurisdiction(z, y)∧ d:successor(x, z)⇒ d:jurisdiction(x, y)
w:ownedBy(x, y)⇒ w:subsidiary(y, x)
w:relative(y, z)∧w:sister(z, x)⇒ w:relative(x, y)

Table 5: Some Rules mined by AMIE on different

datasets (y: YAGO, w: Wikidata, d: DBpedia).

AMIE AMIE+(full)
KB Rules Rules Pruned Prun. prec.
YAGO2 68 68 24 100.00%
YAGO2 (c) 15634 15634 24 100.00%
YAGO2 (4) 645 645 203 100.00%
YAGO2s 94* 94 78 100.00%
DBpedia 2.0 24308* 112865 5380 98.26%
DBpedia 3.8 2470* 5087 2621 98.41%
Wikidata 889* 1512 773 95.35%

Table 6: Output comparison of AMIE (PCA conf ≥ 0.1)

and AMIE+ full. Starred: output after processing for 1

day. On YAGO2 (4), maxLen = 4. On YAGO2 (const),

the instantiation operator was switched on.

AMIE+ does not miss more than 5% of the rules with

confidence above 10%. At the same time, the pruning

yields a speed-up by a factor of up to 3, as Table 4

shows. Table 5 shows some examples of rules with high

confidence that we mined.

Longer Rules. To investigate the performance of

AMIE and AMIE+ with longer rules, we ran both sys-

tems also with maxLen = 4. As Table 4 shows, this af-

fects the runtime: AMIE on YAGO2 with maxLen = 4

is 9x slower than with maxLen = 3. This is because

the number of rules is much larger now: As Table 6

shows, the number of output rules increases by one or-

der of magnitude from 68 to 645. Irrespective of the

rule length, the confidence approximation of AMIE+

works correctly, with a 100% pruning precision. At the
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exports(y, z)∧ imports(y, z)∧ livesIn(x, y)⇒ citizenOf (x, y)
diedIn(x, z)∧ locatedIn(z, y)∧ livesIn(x, z)⇒ politician(x, y)
advisor(z, w)∧ citizenOf (w, y)∧ livesIn(z, x)⇒ deals(x, y)

Table 7: Examples of rules mined by AMIE on YAGO2

with n = 4 atoms

Category Relation % of hits
Functions wasBornIn 96.67

diedIn 96.42
hasCapital 93.33

Quasi- hasCurrency 75
Functions hasOfficialLanguage 73.33

graduatedFrom 64.29
isCitizenOf 96.42
directed−1 90
hasAcademicAdvisor 88.89
created−1 86.67
isLeaderOf 89.47
isPoliticianOf 100
isAffiliatedTo 89.47

Granularity isLocatedIn 50
Differences livesIn 20.83
Implicit livesIn 20.83
Assumptions
Source influences−1 34.78
Incompleteness imports 0

exports 0
actedIn−1 0
worksAt 89.66
hasMusicalRole 22.22
dealsWith 10

Extraction participatedIn−1 48.14
Incompleteness isMarriedTo 79.31

produced−1 56.67
actedIn−1 0
playsFor 20
holdsPoliticalPosition 26.67
hasChild−1 26.67
hasWonPrize 31.03
dealsWith 10
influences−1 34.78
hasMusicalRole 22.22

Table 8: Categories of relations w.r.t. the validity of the

PCA.

same time, the approximation reduces the runtime dras-

tically, so that AMIE+ runs 3 times faster than AMIE

on rules with 4 atoms. Table 7 shows some rules with

4 atoms mined on YAGO2. Such rules motivate us to

keep the default rule length at 3 atoms.

7.3 AMIE(+) vs. State-of-the-Art Systems

In this section we compare AMIE and AMIE+ to two

state-of-the-art rule mining systems that are publicly

available: WARMR [17] and ALEPH [31]. We compare

the systems in terms of runtime and quality of produced

rules. A more detailed description of these experiments

Constants WARMR AMIE AMIE+
no 18h 6.02s 2.59s
yes (48h) 1.43min 1.45min

Table 9: Runtimes on YAGO2 sample

(for AMIE), as well as a comparison of usability, can

be found in [16]. For these experiments, we did not use

any confidence threshold (minConf = 0), and hence

AMIE+ only used refinement improvements.

7.3.1 AMIE(+) vs. WARMR

WARMR is a system that unifies ILP and associa-

tion rule mining. Similar to APRIORI algorithms [4],

it performs a breadth-first search in order to find fre-

quent patterns. It generates Datalog queries of the

form “?−A1, A2, . . . , An”, where Ai are logical atoms.

WARMR applies a closed world assumption for assess-

ing the quality of the produced rules.

Runtime. We first compare WARMR with AMIE and

AMIE+ in terms of runtime only. For a fair comparison,

we have to make sure that both systems run in the

same settings. Hence, we tweaked AMIE(+) to simulate

WARMR’s notion of support. We run all systems with

an absolute support threshold of 5 entities. We also

use the standard confidence as quality metric for rules,

instead of the PCA confidence.

In our initial experiment, WARMR was not able to

terminate on YAGO2 in a time period of 1 day. There-

fore, we created a sample of YAGO2 containing 47K

triples (see [16] for details about the sampling method).

Table 9 summarizes the runtime results for WARMR,

AMIE, and AMIE+ on this dataset. We see that AMIE

mines her rules in 6.02 seconds, and AMIE+ even in 3

seconds. WARMR, in contrast, took 18 hours.

We also ran both systems in a mode that allows

them to mine rules with constants. For AMIE(+), this

means enabling the instantiation operator OI (see Sec-

tion 5.1). AMIE and AMIE+ completed the task in less

than 2 minutes. WARMR, in contrast, did not termi-

nate in 3 days. Therefore, we ran it only for the rela-

tions diedIn, livesIn, wasBornIn, for which it took 48h.

To understand this drastic difference, one has to take

into account that WARMR is an ILP algorithm written

in a logic programming environment, which makes the

evaluation of all candidate queries inefficient.

Results. After filtering out non-connected rules,

WARMR mined 41 closed rules. AMIE and AMIE+,

in contrast, mined 75 closed rules, which included the

ones mined by WARMR. We checked back with the

WARMR team and learned that for a given set of

atoms B1, . . . , Bn, WARMR will mine only one rule,
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picking one of the atoms as head atom (e.g., B1 ∧ ... ∧
Bn−1 ⇒ Bn). AMIE(+), in contrast, will mine one rule

for each possible choice of head atom (as long as the

thresholds are met). In other words, AMIE(+) with

the standard support and confidence measures simu-

lates WARMR, but mines more rules. Furthermore, it

runs orders of magnitude faster. Especially for large

datasets for which the user would have needed to use

complicated sampling schemes in order to use WARMR,

AMIE(+) can be a very attractive alternative. Even for

smaller datasets with rules with constants, AMIE(+)

can provide results while WARMR cannot. Moreover,

AMIE(+) does not make a closed world assumption as

WARMR does. In Section 7.4 we show that the PCA

confidence defined by AMIE(+) is more suitable than

the standard confidence to identify predictive rules in

a web-extracted KB designed under an open world as-

sumption.

7.3.2 AMIE(+) vs. ALEPH

ALEPH is an ILP system that implements a variety

of scoring functions for measuring a rule’s quality. For

our experiments we used the Positives-only evaluation

function [28, 31], which is the most interesting for our

setting, since it does not require the existence of explicit

negative examples. It takes random facts as negative

evidence, instead:

Score := log(P )− log R+ 1

Rsize+ 2
− L

P

Here, P is the number of known true facts covered (KB-

true, or A resp., in Figure 1), R is the number of random

examples covered, Rsize is the total number of ran-

doms, and L is the number of atoms in the rule. The

intuition behind the formula is that a good rule should

cover many positive examples, and few or no randomly

generated examples. This ensures that the rule is not

overly general. Furthermore, the rule should use as few

atoms as possible.

Runtime. We ran AMIE, AMIE+ and ALEPH on

YAGO2. For ALEPH, we used the positive-only evalu-

ation function with Rsize = 50 and we considered only

clauses that were able to explain at least 2 positive ex-

amples, so that we will not get grounded facts as rules

in the output. For a fair comparison, we also instructed

AMIE and AMIE+ to run with a support threshold of

2 facts.

Table 10 shows the results. AMIE terminated in 4.41

minutes and found rules for all relations. AMIE+ was

slightly faster. ALEPH runs for one head relation at

a time. For some relations (e.g.isPoliticianOf ), it ter-

minated in a few seconds. For others, however, we had

KB ALEPH AMIE AMIE+
YAGO2 full 4.96s to > 1 day 4.41min 3.76min
YAGO2 Sample 0.05s to > 1 day 5.65s 2.90s

Table 10: Runtimes ALEPH vs. AMIE vs. AMIE+

Relations Runtime
isPoliticianOf, hasCapital, hasCurrency < 5min
dealsWith, hasOfficialLanguage, imports < 5min
isInterested, hasMusicalRole <19min
hasAcademicAdvisor, hasChild > 1 day
isMarriedTo, livesIn, worksAt, isLocatedIn > 1 day

Table 11: Runtimes of ALEPH on YAGO2

Relations Runtime
diedIn, directed, hasAcademicAdvisor < 2min
graduatedFrom, isPoliticianOf, playsFor < 2min
wasBornIn, worksAt, isLeaderOf < 2min
exports, livesIn, isCitizenOf < 1.4h
actedIn, produced, hasChild, isMarriedTo > 1 day

Table 12: Runtimes of ALEPH on YAGO2 sample

to abort the system after 1 day without results (Ta-

ble 11). For each relation, ALEPH treats one positive

example at a time. Some examples need little process-

ing time, others block the system for hours. We could

not figure out a way to choose examples in such a way

that ALEPH runs faster. Hence, we used the sample of

YAGO2 that we created for WARMR. Again, runtimes

varied widely between relations (Table 12). Some rela-

tions ran in a few seconds, others did not terminate in

a day. AMIE, in contrast, found her rules in 6 seconds,

and AMIE+ in half that time.

Results. We compared the output of ALEPH with
the positives-only evaluation function to the output

of AMIE(+) using the PCA confidence on the sam-

ple of YAGO2 used for the runtime experiments. Since

ALEPH required more than one day for some relations,

we used only rules for which the head relation runs

in less than one day. ALEPH mined 56 rules, while

AMIE(+) mined 302 rules. We ordered the rules by

decreasing score (ALEPH) and decreasing PCA confi-

dence (AMIE(+)). We computed the precision of the

rules by evaluating whether a prediction made by the

rule is correct or not (more on that metric in Section

7.5). Table 13 shows the number of predictions and their

total precision. We show the aggregated values at the

points where both approaches have produced around

3K, 5K, and 8K predictions. AMIE(+)’s PCA confi-

dence succeeds in sorting the rules roughly by descend-

ing precision, so that the initial rules have an extraordi-

nary precision compared to ALEPH’s. AMIE(+) needs

more rules to produce the same number of predictions

as ALEPH (but she also mines more).
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Top n Predictions Precision
Positives-only 7 2997 27%
PCA Confidence 12 2629 62%
Positives-only 9 5031 26%
PCA Confidence 22 4512 46%
Positives-only 17 8457 30%
PCA Confidence 23 13927 43%

Table 13: PCA confidence vs. positives-only score: ag-

gregated precision of rules mined on YAGO2 sample.

We suspect that ALEPH’s positives-only evalua-

tion function manages to filter out overly general rules

only to some extent. The reason is that this measure

“guesses” negative examples at random, whereas rules

usually create false predictions in a non-random way.

Even if a rule produces many false predictions, the in-

tersection of these false predictions and the random

counterexamples may be very small. Consider for ex-

ample the rule bornIn(x, y)⇒ diedIn(x, y), which pro-

duces false predictions for example for persons who have

moved to a different place during their life. By creating

negative examples just by considering random person-

location pairs, we might not produce any case for which

the rule will give a false prediction, simply because such

a negative example will have a relatively small proba-

bility to be generated.

Summary. Our experimental results show that AMIE

(and in particular AMIE+) can be up to 3 orders of

magnitude faster than other state-of-the-art systems,

namely WARMR [17] and ALEPH [31]. The PCA con-

fidence was shown to rank productive and correct rules

higher than other confidence metrics.

7.4 Evaluation of the PCA

The Partial Completeness Assumption (PCA) says that

if, for a given subject s and a given relation r, the KB

knows one object o with r(s, o), then the KB knows

all objects o′ with r(s, o′) (Sec. 4). The original AMIE

paper used the PCA but it did not evaluate whether this

assumption is true or not [16]. Since the PCA is one of

the basic ingredients of AMIE(+)’s mining model, we

wanted to know to what extent this assumption holds

in a real-world KB.

Setup. We looked into each of the 31 relations between

entities in YAGO2. For each relation r, we randomly

sampled 30 subjects. For each subject x, we checked

whether the KB knows all y with r(x, y). If the relation

is more inverse functional than functional (ifun(r) >

fun(r), see Section 3.2), we considered r−1 instead.

As a ground truth, we took the Wikipedia page of

x and what we could find on the Web by a search

engine. It is obvious that such an evaluation cannot

be done strictly quantitatively. For example, a person

might have worked for a company, but this fact might

appear nowhere on Wikipedia – or even on the Web. Or

a musician might play 10 instruments at different levels

of proficiency, but Wikipedia mentions only the 4 main

instruments. Even a search on the Web might not tell us

that there are more than 4 instruments. Therefore, we

resorted to a qualitative analysis. We analyzed each of

the relations manually, and grouped the relations into

categories. Some relations fall into multiple categories.

Table 8 shows, for each relation, the percentage of sub-

jects in our sample for which the PCA holds.

Functions and Quasi-Functions. By definition, the

PCA holds for functions. Our manual analysis, how-

ever, did not result in 100% precision for functional

relations in Table 8. This is because our analysis also

counts the cases where the KB contains bugs. If, for

instance, YAGO knows the wrong place of death of a

person, then there exists another value outside YAGO

that is the right value. However the PCA would reject

it. Hence, we count this case as a miss.

The PCA extends well to relations that are strictly

speaking not functions, but that have a high functional-

ity. These are relations that usually have one object per

subject, even though there could be several objects. For

example, a person can graduate from several universi-

ties, but most people graduate from a single univer-

sity. We call these relations quasi-functions. The PCA

worked very well also on these, and predicted complete-

ness correctly for 73% − 100% of the subjects under

investigation. Since the PCA takes into account the di-

rection of the functionality, the PCA also holds for quasi

inverse-functional relations such as directed.

Granularity Differences. Some relations, such as lo-

catedIn and livesIn, hold between an entity and a geo-

graphical region. In that case, the region can be given

at the granularity of a city, a region, a country, or a

continent. Naturally, if YAGO contains one of these,

the others are possible options. Hence, PCA fails and

we found rather low precision values. However, these

cases could be addressed if one restricts the range of the

relation (say, to cities). With such a restriction, the re-

lations become functions or quasi-functions, which lifts

them into the category where the PCA works well. As

we will see in Section 7.5, the use of types can signifi-

cantly improve the performance of AMIE.

Implicit Assumptions. Some statements can be in-

ferred from the Wikipedia page even if the page does

not mention them. People usually do not state infor-

mation that can easily be inferred by what they have

stated before (following Grice’s Maxim of quantity and

manner [18]). For example, if someone graduated from a
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university, people usually do not feel obliged to mention

that this person used to live in the country in which the

university is located, because this can easily be inferred

by the reader. Only less obvious residences will be ex-

plicitly mentioned. Therefore, the PCA does not always

hold. Note that rules such as graduatedFrom(x, y) ⇒
livesIn(x, y) can only be mined if Grice’s maxims are

occasionally violated by the authors of the articles. If

the authors always follow the maxims, then such rules

cannot be mined, because there are not even positive

examples for which the rule holds (lack of support). In

the case of YAGO, the only relation that we found in

this category is livesIn.

Source Incompleteness. For many relations, the

source itself (Wikipedia) is incomplete. Usually, these

relations have, for each subject, some objects that are

undisputed. For example, it is undisputed that Albert

Einstein is interested in physics. However, these rela-

tions also have objects that are less important, dis-

puted, or unknown. For example, Albert Einstein might

also be interested in music (he played the violin), but

maybe also in pancakes. These less prominent objects

are a lot less likely to appear in Wikipedia, or indeed

on any Web page. Even if they do, we can never be sure

whether there is not still something else that Einstein

was interested in. For these relations, the knowledge

sources are often incomplete by nature. For example,

not every single product that a country imports and ex-

ports is explicitly mentioned. Whether or not this poses

a problem depends on the application. If ground truth is

defined as what is universally true, then source incom-

pleteness is a problem. If ground truth is the source

of the KB (i.e., Wikipedia in this case), then source

incompleteness is not an issue.

Extraction Incompleteness. For a large number of

relations, the Wikipedia page contains more objects for

a given subject than the KB. These are cases where

the extraction process was incomplete. In the case of

YAGO, this is due to a strong focus on accuracy, which

causes the extraction to discard any extracted fact that

cannot be type checked or linked to an entity. This class

of relations is the most sensitive category for the PCA.

The success of the PCA will depend on how many re-

lations and to what extent they are affected by incom-

plete extractions.

Discussion. In summary, our analysis shows that it

depends on the nature of the relation and on its type

signature whether the PCA holds or not. There is a

large number of relations for which the PCA is reason-

able. These are not just functions and inverse functions,

but also relations that exhibit a similar behavior.

For many other cases, the PCA does not hold. In

these cases, AMIE(+) will falsely assume that a rule is

making incorrect predictions – although, in reality, the

predictions might be correct. Thus, when the PCA does

not hold, AMIE(+) will err on the side of caution.

At the same time, the PCA is not as restrictive as

the closed world assumption (CWA): the PCA admits

that there can be facts that are true, but not known

to the KB. For example, if a person has a birth date,

then both the CWA and PCA would not admit another

birth date. However, if a person does not have a birth

date, then the PCA will admit that there can be a birth

date, while the CWA will assume that there cannot be

a birth date. Thus, the PCA is more permissive than

the CWA. This encourages us to use the PCA for the

definition of our confidence. In the following, we will

show that this definition of confidence produces more

predictive and more accurate rules than the standard

confidence, which is based on the CWA.

7.5 Predicting Facts

Prediction. One of the applications of the mined rules

could be to predict new facts. Based on what the KB

knows, one aims to predict what else might be the case

in the real world. This is a difficult endeavor: It amounts

to guessing the places of residence for people, their birth

place, or even their death place. Naturally, we may not

assume a high precision in the prediction of the future.

We may only expect educated guesses.

To evaluate the precision of these guesses, we pro-

ceeded as follows: We ran our system with the de-

fault setting on the YAGO2 dataset. For each rule,

we evaluated whether the predictions that go beyond

YAGO2 were true. We did this by either checking

whether the prediction appears in a newer version of

the KB (YAGO2s), or by manually checking them in

Wikipedia. If we could find the predicted fact in nei-

ther, we evaluated it as false.

Standard vs. PCA Confidence. Our first goal is to

see whether the PCA confidence or the standard con-

fidence perform better in this task. Since both AMIE

and AMIE+ can work with both confidence metrics,

and since their output is the same, we report here our

results from [16] with AMIE. We ran AMIE, and sorted

the resulting rules first by descending PCA confidence,

and then by descending standard confidence. We looked

at the top ranked rules in each case, and evaluated the

precision of the predictions. The bottom curves of Fig-

ure 2 plot the aggregated predictions versus the aggre-

gated precision for the standard and the PCA confi-

dence. The n-th dot from the left represents the total

number of unique predictions and the total precision

of these predictions, aggregated over the first n rules.

As we see, ranking the rules by standard confidence is
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Fig. 2: Std. confidence vs. PCA confidence

a very conservative approach: It identifies rules with

reasonable precision, but these do not produce many

predictions. Going down in the list of ranked rules, the

rules produce more predictions – but at lower preci-

sion. The top 30 rules produce 113K predictions at an

aggregated precision of 34%. In contrast, if we rank the

rules by PCA confidence, we quickly get large num-

bers of predictions. The top 10 rules already produce

135K predictions – at a precision of 45%. The top 30

rules produce 3 times more predictions than the top 30

rules by standard confidence – at comparable precision.

This is because the PCA confidence is less conservative
than the standard confidence. We thus conclude that

the PCA confidence is better suited for making pre-

dictions than the standard confidence. We show in [16]

that the PCA confidence also correlates better with the

actual precision of a rule.

Using Type Information. The previous experiment

showed us the precision of individual rules for pre-

diction. To make more accurate predictions, we have

to combine these rules with more signals. We proceed

as follows. In Section 7.4 we discussed the granular-

ity differences in relations. For instance, the relation

livesIn is used to express a person’s city or country

of residence. This implies that, for example, the rule

livesIn(x, y) ⇒ isCitizenOf(x, y) can predict that

some people are citizens of cities. Such spurious pre-

dictions decrease the precision of the inference process.

Therefore, we configured AMIE+ to mine typed rules.

These have the form:

−→
B ∧ rdf:type(x,D) ∧ rdf:type(y,R)⇒ r(x, y)

where D and R correspond to the domain and range

of the head relation r in YAGO3.6 To allow AMIE+ to

find such rules, we augmented the YAGO2 dataset by

adding the rdf:type statements about the subjects and

objects of the triples.

Joint Prediction. Our second observation is that the

same prediction can be fired from multiple rules. If we

consider rules as signals of evidence, then facts pre-

dicted by more rules should get a higher confidence

score. In YAGO2, 9% of the predictions are fired by

more than one rule (with a PCA confidence thresh-

old of 0.1). To take this into account, we changed the

way predictions are ranked. In the original experimen-

tal setup, if multiple rules R1, . . . Rk made a prediction

p, the prediction was only counted the first time it was

fired. Since the rules were ranked by decreasing PCA

confidence, this was equivalent to ranking the predic-

tions according to their highest PCA confidence:

score(p) := max{confpca(R1), . . . , confpca(Rk)}

We propose an alternative score instead:

score∗(p) := 1−
k∏

i=1

(1− confpca(Ri)) (8)

Equation 8 aggregates the PCA confidence of the rules

so that the predictions concluded by multiple rules are

ranked higher. It also confers a probabilistic interpre-

tation to the PCA confidence. The score of a predic-

tion is the probability that at least one of the rules in

R1, . . . Rk concludes p. This is computed as 1 minus

the probability that none of the rules concludes p. The

probability of a rule not concluding p is defined as 1

minus the PCA confidence of the rule. The probabil-

ity that none of the rules concludes p is the product

of the individual probabilities. Although this scoring-

scheme is very simplistic (it assumes independence of

the rules, and confers a probabilistic interpretation to

the confidence), it can still serve as a proof of concept.

In real applications, more involved methods [32,36] can

be used for joint prediction.

Results. The upper curve in Figure 2 shows the preci-

sion of the predictions made with both heuristics. We

proceeded as in the previous experiment, that is, we

first used the rules to fire predictions, and then we

ranked these predictions by descending score and com-

puted their cumulative precision. Unlike in the original

experimental setup, the n-th point from the left in the

new curve corresponds to the cumulative precision of

6 We used the YAGO3 [27] types because the type signa-
tures in older versions of YAGO were too general. E.g., the
relation livesIn is defined from person to location in YAGO2s,
whereas in YAGO3 it is defined from person to city.
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the predictions up to the n-th bucket. We bucketized

the predictions by score using a bucket size of 0.1, i.e.,

the first point corresponds to the predictions with score

between 1 and 0.9, the next one accounts for the pre-

dictions with score between 0.9 and 0.8 and so on.

As we can observe, our heuristics have a significant

effect on the precision of the predictions. The preci-

sion is much higher at each level of recall, compared to

the original experiment. We can make 100,000 predic-

tions at a precision of 70%. At 400K predictions, we

still achieve a precision of 60%. While these predictions

should not be added directly to a KB, they could be

sent to human evaluators to check their correctness. It

is much easier for a person to check fact candidates for

their correctness than to invent them from scratch. In

addition, this experimental setup can serve as a baseline

for more sophisticated inference approaches.

8 Conclusion

In this paper, we have presented AMIE, an approach

to mine Horn rules on large RDF knowledge bases.

AMIE is based on a formal model for rule mining un-

der the Open World Assumption, a method to simulate

counter-examples, and a scalable mining algorithm. In

contrast to state-of-the-art approaches, AMIE requires

no input other than the KB and does not need config-

urations or parameter tuning.

We have extended AMIE to AMIE+ by a series of

pruning and query rewriting techniques, both lossless

and approximate. As our extensive experiments have

shown, AMIE+ runs on millions of facts in only a few

minutes and outperforms state-of-the-art approaches
not only in terms of runtime, but also in terms of the

number and quality of the output rules. If we combine

these rules with simple heuristics for type checking and

joint prediction, we can use them to predict facts with

a precision of about 70%.

For future work, we aim to develop better joint in-

ference approaches based on the rules mined by AMIE.

We also aim to extend the set of rules beyond the lan-

guage of closed Horn rules, so that even more facts can

be predicted.
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