
HAL Id: hal-01699864
https://imt.hal.science/hal-01699864v1

Submitted on 2 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

But What Do We Actually Know?
Simon Razniewski, Fabian M. Suchanek, Werner Nutt

To cite this version:
Simon Razniewski, Fabian M. Suchanek, Werner Nutt. But What Do We Actually Know?. 5th
Workshop on Automated Knowledge Base Construction (AKBC 2016) at the 15th Annual Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Jun 2016, San Diego, CA, United States. �hal-01699864�

https://imt.hal.science/hal-01699864v1
https://hal.archives-ouvertes.fr


But What Do We Actually Know?

Simon Razniewski
Free University of Bozen-Bolzano

Italy
razniewski@inf.unibz.it

Fabian M. Suchanek
Télécom ParisTech

France
suchanek@enst.fr

Werner Nutt
Free University of Bozen-Bolzano

Italy
nutt@inf.unibz.it

Abstract

Knowledge bases such as Wikidata, DBpedia,
YAGO, or the Google Knowledge Vault col-
lect a vast number of facts about the world.
But while quite some facts are known about
the world, little is known about how much
is unknown. For example, while the knowl-
edge base may tell us that Barack Obama is
the father of Malia Obama and Sasha Obama,
it does not tell us whether these are all of
his children. This is not just an epistemic
challenge, but also a practical problem for
data producers and consumers. We envision
that KBs become annotated with information
about their recall on specific topics. We show
what such annotations could look like, how
they could be obtained, and survey related
work.

1 Motivation

General-purpose knowledge bases (KBs) such as
Wikidata [22], the Google Knowledge Vault [4],
NELL [11], or YAGO [20] aim to collect as
much factual information about the world as possi-
ble. They store information about entities (such as
Barack Obama, Hawaii, or NAACL), and informa-
tion about relationships between these entities (such
as the fact that Barack Obama was born in Hawaii,
and that NAACL took place in San Diego). These
pieces of information typically take the form of
triples, as in 〈Barack Obama, wasBornIn, Hawaii〉.
KBs find applications in question answering, auto-
mated translation, or information retrieval.

The quality of a KB can be measured along sev-
eral dimensions. A prominent one is the size. To-

day’s KBs can contain millions, if not billions of
triples. Another criterion is precision, i.e., the pro-
portion of triples that are correct. YAGO, e.g., was
manually evaluated on a sample, and was shown to
have a precision of 95%. In this paper, we propose
to look at a third criterion for quality which, besides
in some manual evaluations that have ground truth
available, has been largely neglected so far: recall,
i.e., the proportion of facts of the real world that are
covered by the KB. For some topics, today’s KBs
show very good recall values. For example,

• 160 out of 199 Nobel laureates in Physics are in
DBpedia;
• 2 out of 2 children of Obama are in Wikidata;
• 36 out of 48 movies by Tarantino are shown in the

Google Knowledge Graph.

On some other topics, today’s KBs are nearly com-
pletely incomplete:

• DBpedia contains currently only 6 out of 35 Di-
jkstra Prize winners.
• According to YAGO, the average number of chil-

dren per person is 0.02.
• The Google Knowledge Graph contains a pred-

icate called “Points of Interest” for countries.
Since this predicate is subjective, it is not even
clear how to measure its recall.

Previous research [19, 9] has shown that between
69% and 99% of instances in popular KBs lack at
least one property that other entities in the same
class have. This gives us a hint of how incomplete
KBs really are.
The problem is not just that KBs do not contain
missing triples, but also that they do not know how



many are missing, or whether some are missing at
all. This is an issue from several perspectives:

• Philosophical perspective: We do not know what
we actually know, and what we don’t.
• Data collection perspective: KB contributors and

engineers do not know where to focus their ef-
fort. If they knew that 39 Nobel laureates in
Physics are missing, they could focus on tracing
and adding the missing ones.
• KB debugging perspective: One does not know

when too much data is added. If there is reason
to believe that Obama has two children, but a KB
contains three, this could be highlighted.
• Rule learning perspective: KBs are often used for

rule induction in order to learn new patterns and
facts about the real world. But in order to evalu-
ate learned rules, negative information is needed,
which is usually not contained in KBs, but could
be inferred from completeness information. Dis-
tant supervision, a popular pattern-based tech-
nique for automated knowledge base construc-
tion, faces the same challenge [10, 16, 21].
• Data consumption perspective: Consumers do not

know whether a query really retrieves all answers.
Also, results of aggregate queries (such as the av-
erage number of children per person) and queries
with negation cannot be trusted.

In this paper, we investigate the problem of recall for
KBs, and outline possible approaches to solve it.

2 Vision

Vision. Our vision is that a KB should know for
which topics it is complete, and for which topics it is
not. Under appropriate interpretation of terms, this
could be phrased as

KBs should know what they know.

Defining Completeness. In line with work in data-
bases [12, 8, 14], we define completeness by help of
a hypothetical ideal KB K∗. The ideal KB contains
all facts of the real world. We say that a KB K is
correct, if K ⊆ K∗. We say that K is complete for
a query Q, if Q(K) ⊇ Q(K∗). For example, we
could say that a KB K is complete for the children
of Obama by saying

K is complete for
SELECT ?x WHERE {Obama hasChild ?x.}

This means that evaluating this query on K will re-
turn at least the two children that we would expect
as an answer in the real world. Completeness is al-
ways bound to a particular query, because we do not
expect that we can ever construct a KB K = K∗.
A query can represent the completeness of simple
triples about a subject (as in the example), but also
for complex constellations, such as “This KB is
complete for all rivers longer than 100km in Eu-
rope”. We believe that completeness assertions are
particularly interesting for class expressions. These
are conjunctive queries with a single selection vari-
able. The class expression for the long rivers of Eu-
rope would be:

SELECT ?r

WHERE { ?r type river .

?r hasLength ?l .

?l > 100 .

?r locatedIn Europe .}

The notion of completeness is closely linked to a
number of other concepts, which we detail next.
Closed World Assumption. The closed world as-
sumption (CWA) says that if a fact is not in the KB,
then it does not hold in the real world. Typically, one
restricts this assumption to a certain topic or domain
(say, all US presidents). Under the CWA, the KB is
always complete for all queries in the domain.
Open World Assumption. Commonly, KBs are
not interpreted under the CWA, but under the open-
world assumption (OWA): The facts that are not in
the KB are unknown, and may or may not be true.
Under the OWA, we cannot tell whether a KB is
complete or not for a given query (unless we have
access to K∗).
Negative Information. Negative information (facts
that do not hold) is crucial for the correctness of
queries with aggregation or negation. While there
exists theoretical work about negative information in
knowledge bases, none of the state-of-the-art KBs
contains negative information. Completeness and
negative information are closely related: If we find
in a KB that Sasha and Malia are children of Obama,
and that the KB contains all children of Obama, we
can deduce that anyone else is not a child of Obama.
We thus know an infinite number of negative facts.
Recall. The recall of a KB K for a query Q is
|Q(K) ∩Q(K∗)| × |Q(K∗)|−1. The recall is 1 for a



query, if the KB is complete for that query.
Cardinality. The cardinality of a query on a KB is
the number of results. If we know the cardinality of
a query onK∗, and if we know that the KB is correct,
we can compute the recall of the KB for that query,
and vice versa.
Size. The larger a KB is, the more likely it is to be
complete, everything else being equal.
Confidence. Completeness assertions can be crisp,
but they could also be made with a certain confi-
dence score. For example, we could be 80% certain
to have all children of Obama.

3 Challenges

We see four main challenges that need to be mas-
tered in order to arrive at knowledge about the
knowledge of KBs:

3.1 Knowing What Can Be Known
A prerequisite for completeness assertions are un-
ambiguous definitions. Some relations such as “sib-
ling” or “place of birth” are well-defined, while oth-
ers, such as “affiliation” or “hobby” are not. For ex-
ample, while one of Einstein’s hobbies was playing
the violin, he might have had an unclear number of
other “hobbies” (such as going for a walk, or eating
chocolate). If a topic is not well-defined, complete-
ness has little meaning as well. One might assume
that KBs generally contain well-defined predicates,
yet this is not always the case. As mentioned before,
the Google Knowledge Graph contains an attribute
pointOfInterest. While some attractions are clearly
points of interest (such as the Colosseum in Rome),
others are less clearly so (e.g. the pub that DiCaprio
allegedly threw up at). In such cases, the concept
of crisp completeness is meaningless. We note that
some fuzzy concepts can be turned into crisp ones
by binding them to particular verifiable properties.
For example, it makes sense to consider complete-
ness for “Points of interest recommended by Tripad-
visor”, because this is a well-defined verifiable set.

3.2 Languages for Describing Completeness
Various formal languages for completeness asser-
tions have been proposed [12, 8, 14], while Erxleben
et al. [5] have introduced no-values into Wikidata
(e.g. Elisabeth I has no children), thus allowing
specifying completeness if the object has no values,

but not in the general case. All proposals so far deal
only with boolean descriptions, mentioning whether
data of some kind is present or not, but do not allow
descriptions of confidences or recall.

3.3 Obtaining Completeness Information
Experts. There are two main paradigms for con-
structing KBs: manual construction by experts or
the crowd, and automated extraction from Web
sources. For expert-created data, it makes sense to
give the task of recall estimation to the experts too
(as is the case already for the no-values in Wikidata,
and wider envisioned in the tool COOL-WD [3]). In
this way, a comparable quality of data and recall in-
formation can be guaranteed. For automatically ex-
tracted data, it is highly desirable to find automatic
ways to estimate the recall.
Partial Completeness Assumption. The partial
completeness assumption (PCA) [7] has been proven
to do well in providing negative information [7, 4].
It assumes that if a KB contains one pair of property
and object for a given subject, then the KB contains
all objects for that given subject and property. For
instance, if a KB contains the fact that Sasha is a
child of Obama, then it is assumed that the KB con-
tains all children of Obama. Hence, anyone who is
not known to be a child of Obama is not. The valid-
ity of the PCA has been evaluated manually [6] on
YAGO. For relations with generally high function-
ality [18], the PCA holds nearly perfectly. For ex-
ample, the PCA holds for 90% of the subjects of the
worksAt relation. For others, the PCA is less suited.
For hasChild, e.g., the precision of the PCA is only
around 27%.
Pattern Matching. Phrases on the Web such as “has
no children” or “X and Y are all his children” can be
used to infer completeness. Similarly, phrases such
as “The 199 Nobel laureates in Physics...” could be
used to assert the cardinality and hence the recall for
a class.
Growth Patterns over Time. The growth of data
over time, and especially the end of such a growth,
might indicate completeness. For instance, we can
imagine that once a new congress is established, its
members are added to a KB until eventually all are
inside. The fact that the number then remains con-
stant could indicate completeness.
Interrelation. The completeness of a certain class



expression could be learned from the completeness
of other class expressions. For instance, it might be
that if parents of a person are complete, then also the
children are complete with a higher probability.

Popularity of Entities. It might be that complete-
ness correlates with the number of facts about an en-
tity. For example, if a personality has numerous and
very detailed facts in YAGO, then it could be more
likely that some basic facts such as his children are
complete.

Class Membership. If an entity is a member of a
class, we can compare the entity to other members
of the class. If other members have attributes that
the entity does not have, this could indicate incom-
pleteness. If all class members have the same at-
tributes and the same number of objects, then this
could indicate completeness. For example, if all
world championships have 32 participants, then also
a current championship with 32 participants has a
higher probability of being complete.

Similar Entities. If some of the entities are labeled
as complete, we could estimate the completeness of
other, similar entities. For example, if most football
clubs have between 20 and 30 players, and they have
been labeled as complete, then a club with 28 play-
ers likely has a good recall.

Crowd Sourcing. The crowd could be used to man-
ually generate completeness annotations. A related
idea is to use games with a purpose [1].

Estimating Cardinalities. Mark and recapture
techniques have been developed in the domain of
ecology in order to estimate the size of a population
of animals. For this purpose, a sample of animals is
captured, marked, and freed. After some time, an-
other sample of animals is captured. The ratio of
marked animals in this sample can help estimate the
size of the population. This technique works also if
samples are not independent, and has been used in
the estimation of cardinalities of search results [17].
We believe that it might also be useful for estimating
the size of a set of entities, based on the overlap be-
tween different websites or datasources dealing with
the same topic. Based on the size estimate, and the
number of entities already in the KB, one could then
estimate the recall.

Figure 1: The ultimate vision.

3.4 Combining Completeness Information

Once information about the recall of KBs for in-
dividual classes exists, methods need to be found
to present this information in a meaningful way.
Several techniques can annotate query answers with
completeness information [8, 14, 15], but only if the
underlying database is annotated with such informa-
tion, and only for crisp boolean completeness infor-
mation. Techniques from the domain of query an-
swering over probabilistic databases [2] could pos-
sibly be extended to handle non-crisp completeness
assertions, while techniques from data profiling can
help understand distributions and skew [13].

Also, one would need to apply these techniques
to state-of-the-art KBs in order to finally know
how much we currently know about the world (see
Fig. 1). The community would then have to de-
velop benchmarks for comparing the performance of
completeness estimators, and for the completeness
of KBs themselves, and would face the classic chal-
lenge of KB alignment, because information may be
differently presented in different KBs.

4 Conclusion

In this paper, we have outlined our vision of knowl-
edge bases (KBs) that know how complete they
are. Their completeness assertions could be used
to guide knowledge engineers in the extension and
debugging of the KB, to provide negative examples
for machine learning algorithms, and to qualify an-
swers to user queries. We have surveyed the state of
the art in the area, and concluded that we cannot yet
automatically determine where KBs are complete.
We have discussed the challenges in defining, de-
termining, and combining completeness assertions,
and have outlined possible paths to address them.
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