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Abstract—Non-orthogonal multiple access (NOMA) is a
promising radio access technology for 5G. It allows several
users to transmit on the same frequency and time resource
by performing power-domain multiplexing. At the receiver side,
successive interference cancellation (SIC) is applied to mitigate
interference among the multiplexed signals. In this way, NOMA
can outperform orthogonal multiple access schemes used in
conventional cellular networks in terms of spectral efficiency
and allows more simultaneous users. This paper investigates
the computational complexity of joint subcarrier and power
allocation problems in multi-carrier NOMA systems. We prove
that these problems are strongly NP-hard for a large class of
objective functions, namely the weighted generalized means of
the individual data rates. This class covers the popular weighted
sum-rate, proportional fairness, harmonic mean and max-min
fairness utilities. Our results show that the optimal power and
subcarrier allocation cannot be computed in polynomial time in
the general case, unless P = NP. Nevertheless, we present some
tractable special cases and we show that they can be solved
efficiently.

I. INTRODUCTION

Long Term Evolution 4G standards have adopted orthogonal
multiple access (OMA) schemes for downlink (OFDMA) [1]
as well as for uplink (SC-FDMA) [2]. OMA schemes aim
to avoid or alleviate mutual interference among the users by
dividing the radio resource into interference-free blocks. While
this strategy allows low-complexity signal decoding at the
receiver side, its spectral efficiency is suboptimal [3] due to
the orthogonal channel access requirement.

The fifth generation (5G) mobile networks is facing new
challenges. Some key requirements are high data rates, im-
proved spectral efficiency and massive device connectivity.
Non-orthogonal multiple access (NOMA) is a promising tech-
nology to meet these requirements, and has recently received
significant attention [4]. In contrast to OMA, NOMA allows
to multiplex several users on the same radio resource block,
therefore achieving higher system spectral efficiency [5]. Real-
istic system-level simulations in [6] demonstrate that NOMA
achieves higher throughput than OFDMA in downlink. Be-
sides, [7] shows through analytical results that NOMA can
achieve superior ergodic sum-rate performance.

In multi-carrier systems, the total bandwidth is divided into
subcarriers. The basic principle of multi-carrier NOMA (MC-
NOMA) is to superpose several users’ signals on the same
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subcarrier and to perform successive interference cancellation
(SIC) at the receiver side to mitigate the co-channel inter-
ference. Power allocation among multiplexed users of the
same subcarrier should be optimized to achieve desirable data
rate performance. Since the number of superposed signals
per subcarrier should be limited due to error propagation
and decoding complexity concerns in practice [8], it is also
important to optimize the subcarrier allocation for the users.

Several papers in the literature have developed algorithms
for joint subcarrier and power allocation with the aim of
maximizing some system utility functions such as the sum
of data rates, proportional fairness and max-min fairness.
Fractional transmit power control (FTPC) is commonly used
for sum-rate maximization [5], [9], it allocates fraction of the
total power budget to each user based on their respective
channel condition. In [10] and [11], heuristic user pairing
strategies and iterative resource allocation algorithms were
studied for uplink transmissions. Reference [12] developed a
greedy user selection and sub-optimal power allocation scheme
based on difference-of-convex programming to maximize the
weighted sum-rate. User selection algorithms for sum-rate and
proportional fairness utilities were studied in [13]. The authors
of [14] solved the downlink sum-rate maximization problem
by a Lagrangian duality and dynamic programming algorithm,
and derived an upper bound for the achievable sum-rate. This
algorithm is mostly used as a benchmark due to its high
computational complexity. A more efficient heuristic based on
iterative waterfilling method is introduced in [15].

The aforementioned papers have proposed heuristic schemes
to solve various difficult joint subcarrier and power allocation
problems in NOMA. In order to understand how well can
these problems be solved in practical systems with limited
computational resources, it is important to study their com-
putational complexity. Moreover, knowing the complexity due
to different objective functions and system constraints would
complete our understanding on how to design NOMA algo-
rithms. However, to the best of our knowledge, only few papers
have studied these problems from a computational complexity
point of view: [14] proved that sum-rate maximization in
downlink MC-NOMA is strongly NP-hard, whereas [16]–[18]
proved that several problems involving various utilities and
constraints are strongly NP-hard in OFDMA systems. The
latter results can be seen as special cases of MC-NOMA with
only one user transmitting on each subcarrier.



Motivated by the above observation, we propose to study
the computational complexity of a large class of joint subcar-
rier and power allocation problems in MC-NOMA systems.
We aim at developing a framework to cover most problems
introduced in the literature, while also taking into account
practical constraints. The complexity analysis is provided to
have a more complete understanding of NOMA optimization
problems and to facilitate resource allocation algorithm design.
Besides, several results and techniques used in the derivation
could be interesting or reused for similar problems. More
precisely, the contributions of this paper are:

1) We prove that utility maximization problems in MC-
NOMA are strongly NP-hard for a large class of objective
functions, namely the weighted generalized means of
order i ≤ 1 of the individual data rates. This class cov-
ers the popular weighted sum-rate, proportional fairness,
harmonic mean and max-min fairness utilities.

2) We develop a unique framework to study these problems
based on polynomial reductions from the 3-dimensional
matching [19]. Our result includes both downlink and
uplink cases. It also takes into account individual power
budget constraints as well as superposed coding and SIC
practical limitations.

3) This class of problems is a general extension of the
existing joint subcarrier and power allocation problems
studied in the literature. Indeed, previous papers [16]–[18]
focused on OFDMA, while [14] considered only sum-rate
maximization in downlink MC-NOMA, which are both
special cases of our framework.

4) Finally, we show some interesting special cases of our
problem which are solvable in polynomial time. In addi-
tion, we provide a short discussion on possible algorithms
to solve them.

The rest of the paper is organized as follows. In Section II,
we present the system model and notations. In Section III,
we formulate the class of utility maximization problems to
be studied. By computational complexity analysis, we prove
in Section IV that these problems are strongly NP-hard. Some
tractable special cases are also presented. Finally, we conclude
in Section V.

II. SYSTEM MODEL

We consider a multi-carrier NOMA system with one
base station (BS) serving K users on N subcarriers. Let
K , {1, . . . ,K} denotes the index set of all users, and
N , {1, . . . , N} the index set of all subcarriers. For n ∈ N ,
let Wn be the bandwidth of subcarrier n and we use
W =

∑
n∈N Wn to denote the total bandwidth. We consider

there is no interference between adjacent subcarriers due to
orthogonal frequency division. Moreover, we assume that each
subcarrier n ∈ N experiences frequency-flat block fading on
its bandwidth Wn.

For k ∈ K and n ∈ N , let gnk and ηnk be the link gain and
the received noise power of user k on subcarrier n. We assume
that the channel can be accessed through either downlink or
uplink transmissions. For downlink scenarios, the BS transmits

a signal to each user k on subcarrier n with power pnk . For
uplink scenarios, each user k transmits a signal to the BS on
subcarrier n with power pnk . In both cases, we refer to pnk as
“the allocated transmit power of user k” on subcarrier n. User
k is said to be active on subcarrier n if pnk > 0.

We consider a power domain NOMA system in which
up to M users can be multiplexed on the same subcarrier
using superposition coding. Variable M is a parameter of the
system, and its value depends on practical limitations of SIC
due to decoding complexity and error propagation [8]. Let
Un , {k ∈ K : pnk > 0} represents the set of users multiplexed
on subcarrier n. Each subcarrier is modeled as a multi-user
Gaussian broadcast channel [3], [8] and SIC is applied at the
receiver side to mitigate intra-band interference.

In order to model SIC, we need to consider the decod-
ing order of every user k ∈ Un multiplexed on the same
subcarrier n ∈ N . This decoding order is represented by
a permutation function πn : {1, . . . , |Un|} → Un, where |·|
denotes the cardinality of a finite set. For i ∈ {1, . . . , |Un|},
πn(i) returns the i-th decoded user’s index. Conversely, user
k’s decoding order is given by π−1n (k). Hence, the signals
of users πn(1), . . . , πn(i− 1) are first decoded and subtracted
from the superposed signal before decoding πn(i)’s signal.
Furthermore, user πn(i) is subject to interference from users
πn(j), for j > i. In particular, πn(|Un|) is decoded last and
is not subject to any intra-band interference if the previous
|Un| − 1 users have been successfully decoded.

Note that the above discussion can be applied to both uplink
and downlink cases. However, the decoding order should be
chosen differently depending on which case we are addressing.
For downlink scenarios, the optimal decoding order obeys the
following sorting [8, Section 6.2]:

ηnπn(1)

gnπn(1)

≥
ηnπn(2)

gnπn(2)

≥ · · · ≥
ηnπn(|Un|)

gnπn(|Un|)
. (1)

For uplink scenarios, the decoding starts from the strongest
user first and move towards the weakest user [8, Section 6.1]:

gnπn(1)
pnπn(1)

≥ gnπn(2)
pnπn(2)

≥ · · · ≥ gnπn(|Un|)p
n
πn(|Un|). (2)

It is worth mentioning that the complexity results in the paper
can be easily adapted to any chosen decoding order. Therefore,
without loss of generality, we will only consider the above (1)
and (2) decoding orders for downlink and uplink scenarios,
respectively.

Shannon capacity formula is applied to model the capacity
of a communication link, i.e., the maximum achievable data
rate. Regarding the downlink, the achievable data rate of user
k ∈ K on subcarrier n ∈ N is given by:

Rnk ,Wn log2

1 +
gnk p

n
k∑|Un|

j=π−1
n (k)+1

gnk p
n
πn(j)

+ ηnk

 .

In the uplink, since the only receiver is the BS, all users
transmitting on subcarrier n are subject to the same noise



ηn = ηnk , k ∈ K. The data rate is then expressible as:

Rnk ,Wn log2

1 +
gnk p

n
k∑|Un|

j=π−1
n (k)+1

gnπn(j)
pnπn(j)

+ ηn

 .

In accordance with the SIC decoding order, user k is only
subject to interference from users πn(j), j > π−1n (k).

For ease of reading, let us define the following notations:
Rk ,

∑
n∈N R

n
k represents user k’s individual data rate,

while Rn ,
∑
k∈KR

n
k corresponds to the sum of data rates

achieved on subcarrier n. We denote by p , (pnk )k∈K,n∈N and
R , (Rk)k∈K the power allocation vector and individual data
rates vector, respectively. Data rates are function of the power
allocation, nevertheless we use the notations Rnk , Rk, Rn and
R instead of Rnk (p), Rk(p), Rn(p), R(p), for simplicity.

III. PROBLEM FORMULATION

Definition 1 (Weighted generalized mean [20]).
Let Mi,w denotes the weighted generalized mean of order
i ∈ R \ {0}, which is defined with a sequence of positive
weights w = {w1, . . . , wK} such that

∑K
k=1 wk = 1. For K

positive real numbers x1, . . . , xK , we have:

Mi,w (x1, . . . , xK) =

(
K∑
k=1

wkx
i
k

)1/i

.

It can also be extended to i ∈ {−∞, 0} by taking the limit,
i.e., Mi,w (x1, . . . , xK) = limj→iMj,w (x1, . . . , xK).

An important property is the generalized mean inequality,
see below:

r < q =⇒ Mr,w (x1, . . . , xK) ≤Mq,w (x1, . . . , xK) . (3)

Note that the equality holds if and only if (iff) x1 = · · · = xK .

In this work, we will focus on the following class of joint
subcarrier and power allocation problems for any i ∈ [−∞, 1]:

maximize
p

Mi,w (R (p)) ,

subject to C1 :
∑
n∈N

pnk ≤ P̄k, k ∈ K,

C2 : pnk ≤ p̄nk , k ∈ K, n ∈ N ,
C3 : pnk ≥ 0, k ∈ K, n ∈ N ,
C4 : |Un| ≤M, n ∈ N .

(Pi)

Note that C1 represents each user’s total power budget. C2
is the power constraint on each subcarrier. C3 ensures that
the allocated powers remain non-negative. Due to decoding
complexity and error propagation in SIC [8], practical imple-
mentation has a maximum number of multiplexed users per
subcarrier M , which corresponds to constraint C4.

The objective of Pi is to maximize the weighted generalized
mean value of every individual data rates Rk, k ∈ K. This
objective function is also known as α-fairness [21], [22].
We can see that when w = {1/K, . . . , 1/K}, we have the
following popular utility functions:

1) Sum rate utility, namely the arithmetic mean:

M1,w =
1

K

K∑
k=1

Rk

2) Proportional fairness utility, namely the geometric mean:

M0,w =

(
K∏
k=1

Rk

)1/K

3) Harmonic mean utility:

M−1,w = K/

(
K∑
k=1

(Rk)
−1

)
4) Max-min utility:

M−∞,w = min
k∈K
{Rk}

Note that most utility maximization problems in the NOMA
literature belong to the above four utilities [6]–[15]. However,
our study of the general problem Pi could provide a foundation
applicable to a much larger scope of similar subjects.

For the sake of completeness, Definition 2 formalizes the
idea of NP optimization problems introduced in [23].

Definition 2 (NP optimization problem (NPO)).
A NPO problem H is a 4-tuple (IH,SH, f, type) such that

1) IH is the set of instances. Each instance is recognizable
in polynomial time.

2) For any instance x ∈ IH, SH(x) is the space of feasible
solutions. Every solution y ∈ SH(x) has a size bounded
by a polynomial in the size of x. Moreover, membership
in SH is decidable in polynomial time.

3) f is the objective function, computable in polynomial
time.

4) type ∈ {min,max} indicates whether H is a minimization
or maximization problem.

Notice that Pi = (IPi
,SPi

,Mi,w,max) is a NP optimiza-
tion problem since it fulfills Definition 2. IPi contains all the
system parameters presented in Section II, i.e.,

IPi
= (w,K,N,M, (Wn)n∈N , (g

n
k )n∈N ,k∈K,

(ηnk )n∈N ,k∈K, (P̄k)k∈K, (p̄
n
k )n∈N ,k∈K). (4)

For a given instance x ∈ IPi
, the feasible set SPi

(x) is
defined as the set of all power vectors satisfying constraints
C1 to C4. Condition 2) in Definition 2 holds, since these
constraints can be verified in polynomial time. Finally, as
required by condition 3), the objective function is computable
in polynomial time.

IV. COMPUTATIONAL COMPLEXITY

A. Definitions and Preliminaries

Let optPi
(x) be the global optimal of an instance x ∈ IPi

,
then the decision version of problem Pi consists of checking
if this value is greater or equal to a given threshold T , i.e.,

optPi(x) ≥ T. (Di)



In Garey and Johnson computational complexity frame-
work [24, Chapter 5], a numerical optimization problem Pi is
said to be NP-hard if its corresponding decision problem Di is
NP-hard. A discussion about strong NP-hardness and complex-
ity preserving reductions can be found in [25]. We summarize
these concepts in Definition 3.

Definition 3 (Strong NP-hardness).
A decision problem H is said to be NP-hard if there exists a
polynomial-time reduction from a NP-complete problem G to
H. In addition, H is said to be strongly NP-hard if it is still
NP-hard even when all its numerical parameters are bounded
by a polynomial in the size of the input.

The 3-Dimensional Matching Problem (3DM) is one of
Karp’s 21 NP-complete problems [19] and is also known to
be NP-complete in the strong sense [26].

Definition 4 (3-Dimensional Matching Problem).
The 3-dimensional matching problem (3DM) takes four finite
sets as inputs (X,Y, Z, S) such that |X| = |Y | = |Z| and
S ⊆ X × Y × Z. Let I3DM denotes the set of all possible
inputs. The problem consists of deciding whether there exists
a 3-dimensional matching S′ ⊆ S such that no two distinct
triplets (x1, y1, z1), (x2, y2, z2) ∈ S′ overlap, i.e.,

(x1, y1, z1) 6= (x2, y2, z2) =⇒ x1 6= x2, y1 6= y2, z1 6= z2,

and all elements are covered by S′, i.e.,

|S′| = |X|. (5)

The subclass of problems Pi and Di in which the number
of multiplexed users per subcarrier M is fixed is denoted by
Pi|M and Di|M , respectively. Any instance of the optimization
problem can be converted to an instance of the decision prob-
lem by appending an additional threshold parameter T ∈ R,

IDi|M = IPi|M × R. (6)

In this work, we consider pseudo-polynomial reductions
tM : I3DM 7→ IDi|M mapping any instance of 3DM to an
instance of Di|M , for M ≥ 1, i ∈ [−∞, 1]. Pseudo-polynomial
transformations preserve NP-hardness in the strong sense [25]
and are defined for all instances x3DM ∈ I3DM as:

(i) x3DM has a matching ⇐⇒ optPi(tM (x3DM )) ≥ T ,
(ii) tM is polynomial time computable in the size of x3DM ,

(iii) The largest numerical value of tM (x3DM ) is lower and
upper bounded by polynomials in the size of x3DM .

In the following subsections, we will prove that Di|M is
strongly NP-hard for any fixed M ≥ 1 and i ∈ [−∞, 1] by
constructing the aforementioned pseudo-polynomial reduction
tM . To this end, we first prove it in Lemma 5 for the sum-
rate objective function M1,w with no more than M = 1
user multiplexed per subcarrier. Then, we extend this proof
in Lemma 6 to any M ≥ 1. In Theorem 7, we generalize it to
any objective functions Mi,w, i ≤ 1. It is interesting to note
that OFDMA results [16]–[18] correspond to the special case
M = 1 of Theorem 7. Finally, we discuss some special cases
solvable in polynomial time.

B. Sum-Rate Maximization with M = 1

Lemma 5. For M = 1, problem D1|M with sum-rate objective
function M1,w is strongly NP-hard in both downlink and
uplink scenarios.

Proof: The idea of the proof is to construct a reduction
t1 : I3DM 7→ ID1|1 mapping any instance of 3DM to an
instance of D1|1 in which no more than one user is allocated
to each subcarrier. We first detail t1 and show that it satisfies
conditions (ii) and (iii). Then, we prove condition (i) for
T = 3. As a result, t1 is a well defined pseudo-polynomial
reduction, and it follows from 3DM’s strong NP-hardness [26]
that D1|1 is also strongly NP-hard.

Let x3DM = (X,Y, Z, S) ∈ I3DM . Without loss of
generality, we can assume that |S| ≥ |X|, otherwise x3DM
has trivially no matching according to (5). The corresponding
instance t1(x3DM ) ∈ ID1|1 is given by:
• K = |S| users. There is a bijective mapping between

users k ∈ K and triplets (xk, yk, zk) ∈ S.
• N = |S|+2|X| subcarriers divided into four groups NX ,
NY , NZ and NR.

The first three groups NX , NY , NZ are called primary subcar-
riers and are in bijection with X , Y and Z respectively. For
notational simplicity, we index them by their corresponding
set, e.g., nx ∈ NX corresponds to x ∈ X . The same goes
for Y and Z. This way, we have NX = NY = NZ = |X|
subcarriers in each of these primary groups. The set NR
is called the residual group, it contains NR = |S| − |X|
subcarriers.
The link gains of user k ∈ K whose corresponding triplet is
(xk, yk, zk) ∈ S are set as follows:

∀n ∈ N , gnk =


1 if n ∈ {nxk

, nyk , nzk},
1 if n ∈ NR,
0 otherwise.

And the noise powers are set as follows:

∀n ∈ N , ηnk =

{
3/7 if n ∈ NR,
1 otherwise.

Noise powers are the same for all users on a given sub-
carrier, therefore both downlink and uplink scenarios are
covered in this proof. We further consider equal weights
w = {1/K, . . . , 1/K} in the objective function, assume that
Wn = 1 for all n ∈ N and P̄k = 3 for all k ∈ K. Moreover,
its allocated power on each subcarrier n ∈ N is subject to
constraint C2 such that:

p̄nk =

{
1 if n ∈ NX ∪NY ∪NZ ,
3 if n ∈ NR.

(7)

For this reduction, we set the decision problem’s thresh-
old (6) to be T = 3. We have characterized above the trans-
formed instance t1(x3DM ) and its parameters. The number of
parameters is polynomially bounded in the size of x: there
are |S| users, |S| + 2|X| subcarriers, and so on. Thus, by
construction our reduction satisfies property (ii). Condition



(iii) is also satisfied, since all numerical values are constant,
regardless of the size of x. It only remains to prove (i) in order
to conclude that t1 is indeed a pseudo-polynomial reduction,
i.e.,

x3DM has a matching ⇐⇒ optP1
(t1(x3DM )) ≥ 3. (8)

No more than one user can be served on each subcarrier
according to M = 1 in C4. If we suppose that the total system
power

∑
k∈K P̄k = 3K can be distributed among the N

subcarriers without constraint C1, then the optimal is obtained
by the following waterfilling power allocation [3]:

∀n ∈ NR, Rn = log2(1 +
3

3/7
) = 3, (9)

∀n ∈ NX ∪NY ∪NZ , Rn = log2(1 +
1

1
) = 1. (10)

The best solution consists in having the maximum allowable
power on every subcarrier while meeting the constraint C2.
The corresponding user allocation allocates one user on every
primary subcarrier with maximum power 1 and one user per
residual subcarrier with maximum power 3. According to the
problem setting, there is no other optimal power and subcarrier
allocation. There are 3|X| primary subcarriers and |S| − |X|
residual subcarriers, thus the sum-rate objective is:

M1,w (R) =
3|X| × 1 + (|S| − |X|)× 3

K
= 3. (11)

Since our problem is constrained by C1, the optimal cannot be
greater than (11), i.e., optP1(t1(x3DM )) ≤ 3. It follows that
the equivalence (8) to prove together with the derived upper
bound can be rewritten as:

x3DM has a matching ⇐⇒ optP1
(t1(x3DM )) = 3. (12)

Proof of the part ⇐= : Let x3DM = (X,Y, Z, S) be
an instance of 3DM. Assume that the corresponding instance
t1(x3DM ) has a power and subcarrier allocation which is op-
timal and equal to 3. We have seen that the only possibility to
achieve this optimum is to allocate every triplet of subcarriers
(nx, ny, nz) ∈ X × Y × Z to a user for which channel gain is
1 with power 1 and every residual subcarrier to the remaining
|S|− |X| users with power 3. Now, let us define S′ ⊂ S such
that (x, y, z) ∈ S′ iff nx, ny and nz are allocated to the same
user. By construction, S′ is a matching for x3DM .

Proof of the part =⇒ : Let x3DM = (X,Y, Z, S) be
an instance of 3DM for which there exists a matching S′.
Consider the following power and subcarrier allocation: for
every indexes (xk, yk, zk) ∈ S′ allocate subcarriers nxk

, nyk ,
nzk to user k with power 1; allocate the remaining users to the
residual subcarriers with power 3. Then the objective function
is exactly 3, which is also an upper bound. As a consequence,
opt(t1(x3DM )) = 3.

C. Sum-Rate Maximization with M ≥ 1

Lemma 6. For any M ≥ 1, problem D1|M with sum-rate
objective functionM1,w is strongly NP-hard in both downlink
and uplink scenarios.

Proof: The idea of this proof is to extend Lemma 5’s
reduction to any M ≥ 1 by adding N(M − 1) dummy users.
For each subcarrier n ∈ N , we create M − 1 dummy users,
denoted by the index set Dn = {dn1 , . . . , dnM−1}. Thus, the set
of all users becomes K′ = K∪D1∪ · · ·∪DN , where K is the
users set defined in Lemma 5’s proof. All parameters of the
transformation tM (x3DM ) ∈ ID1|M related to user k ∈ K and
subcarriers n ∈ N remain as t1(x3DM ) in Lemma 5’s proof.
In addition, we keep equal weights w = {1/|K′|, . . . , 1/|K′|}.
The following construction aims to guarantee that dummy
users in Dn can only be active on subcarrier n. For any
j ∈ {1, . . . ,M − 1}, parameters of user dnj on subcarrier
n′ ∈ N are set as follows:

gn
′

dnj
=

{
1 if n′ = n,

0 otherwise.
(13)

and,

p̄n
′

dnj
=

{
P̄dnj if n′ = n,

0 otherwise.
(14)

The total power constraint C1 is extended as follows:

P̄dnj =

{
14× 8M−j−1 if n ∈ NX ∪NY ∪NZ ,
24× 8M−j−1 if n ∈ NR.

(15)

Let p∗ = (pn∗k )k∈K′,n∈N denotes the optimal power alloca-
tion of tM (x3DM ). Let n ∈ N , since dummy users in Dn have
greater power budget than any other user in K (compare (15)
to (7)), it is straightforward to see that the optimal is achieved
when all M − 1 dummy users in Dn are multiplexed on
subcarrier n with the following power allocation:

∀j ∈ {1, . . . ,M − 1}, pn∗dnj = P̄dnj . (16)

We consider the following decoding order:

∀j ∈ {1, . . . ,M − 1}, πn(j) = dnj . (17)

This decoding order satisfies (1) and (2), therefore both
downlink and uplink scenarios are covered in this proof. It
is interesting to note that any desired decoding order can be
achieved by adjusting the above dummy users’ link gains,
noise powers and power budgets.

It remains that subcarrier n can be allocated to an additional
non-dummy user k ∈ K, while respecting constraints C4. In
this case, according to (1) and (2), user k is decoded last, i.e.,
πn(M) = k. Thus, k is not subject to interference from the
dummy users on subcarrier n. Furthermore, at the optimal, no
more than one user in K can be multiplexed on each subcarrier
n. It follows that the optimal subcarrier and power allocation
of users K in tM (x3DM ) is the same as in t1(x3DM ) and we
have:

optP1
(t1(x3DM )) = 3 ⇐⇒

optP1
(tM (x3DM )) =

3K +
∑
n∈N

∑M−1
j=1 Rdnj (p∗)

|K′|
. (18)



Using (13-17), we can compute the optimal data rate of
dummy user dnj , for any j ∈ {1, . . . ,M − 1}, on primary
subcarriers n ∈ NX ∪NY ∪NZ as

Rdnj = log2(1 +
P̄dnj∑M−1

j′=j+1 P̄dnj + 2
)

= log2(1 +
14× 8M−j−1∑M−1

j′=j+1 14× 8M−j′−1 + 2
)

= log2(1 +
14× 8M−j−1

14(1− 8M−j−1)/(1− 8) + 2
) (19)

= 3 (20)

where (19) is obtained by calculating the partial sum of the
geometric sequence

∑M−1
j′=j+1 14× 8M−j

′−1 with ratio 8 and
M−j−1 terms. In the same way, we prove that for all residual
subcarriers n ∈ NR,

Rdnj = 3. (21)

Combining (20) and (21), equivalence (18) then becomes

optP1
(t1(x3DM )) = 3

⇐⇒ optP1
(tM (x3DM )) =

3K + 3N(M − 1)

|K′|
= 3. (22)

Last equality is deduced from |K′| = |K ∪ D1 ∪ · · · ∪ DN | =
K +N(M − 1). Equivalence (23) follows from (22) and (12),
which implies that tM is a pseudo-polynomial reduction.

x3DM has a matching ⇐⇒ optP1
(tM (x3DM )) = 3. (23)

We then conclude from (23) and Lemma 5 that D1|M is also
strongly NP-hard, for any M ≥ 1.

D. Generalized Mean Utility Maximization with M ≥ 1

Theorem 7. For any i ∈ [−∞, 1] and M ≥ 1, problem Di|M
with objective function Mi,w is strongly NP-hard in both
downlink and uplink scenarios. In particular, the sum-rate
M1,w, proportional fairness M0,w, harmonic mean utility
M−1,w and max-min fairness M−∞,w versions of the prob-
lem are all strongly NP-hard.

Proof: Let i ∈ [−∞, 1), M ≥ 1 and x3DM ∈ I3DM
be an instance of 3DM. Using Lemma 6’s reduction tM ,
we showed that finding a 3-dimensional matching of x3DM
is equivalent to verifying optP1

(tM (x3DM )) = 3, i.e., (23).
More precisely, when (23) is satisfied, all users achieve the
same data rate. Indeed, for any user k ∈ K, there are three
possibilities:
• k is a dummy user then Rk = 3 according to (20)

and (21), or
• k is not a dummy user and it is active on a residual

subcarrier n ∈ NR with power 3 so that Rk = Rnk =
log2(1 + 3

3/7 ) = 3, i.e., (9), or
• k is not a dummy user and it is active on three primary

subcarriers nxk
∈ NX , nyk ∈ NY and nzk ∈ NZ so

that Rk = R
nxk

k + R
nyk

k + R
nzk

k = 3 log2(1 + 1
1 ) = 3,

i.e., (10).

It follows that:

x3DM has a matching ⇐⇒ ∀k ∈ K, Rk(p∗) = 3, (24)

where p∗ is the optimal power allocation. Since i < 1, the gen-
eralized mean inequality (3) implies that optPi

(tM (x3DM ))
is also upper bounded by 3 and the equality holds when all
individual data rates are equal to 3, i.e.,

optPi(tM (x3DM )) = optP1(tM (x3DM )) = 3

⇐⇒ ∀k ∈ K, Rk(p∗) = 3, (25)

where p∗ is an optimal power allocation of either Pi or P1

(this choice does not matter, as they are equal when (25)
is satisfied). Finally, we derive equivalence (26) from (24)
and (25), which proves that Di|M is strongly NP-hard.

x3DM has a matching ⇐⇒ optPi(tM (x3DM )) ≥ 3. (26)

As shown in Theorem 7, computing the optimal solution
of Pi in the general case is intractable, unless P = NP.
Nevertheless, we present in the next subsection some special
cases in which Pi is solvable in polynomial time.

E. Special Cases

We highlight here four tractable special cases and discuss
about possible polynomial time algorithms to solve them.

1) For a given subcarrier allocation Un, n ∈ N , problem Pi
reduces to a power control problem. In downlink, the sum-rate
objective function with equal weights w = {1/K, . . . , 1/K}
can be rewritten as:

M1,w (R (p)) =
∑
n∈N

Wn

|Un|∑
i=1

Rnπn(i)

=
∑
n∈N

Wn

|Un|∑
i=1

log2

1 +
gnπn(i)

pnπn(i)∑|Un|
j=i+1 g

n
πn(i)

pnπn(j)
+ ηnπn(i)


=
∑
n∈N

Wn

|Un|∑
i=1

log2

 ∑|Un|
j=i p

n
πn(j)

+ ηnπn(i)
/gnπn(i)∑|Un|

j=i+1 p
n
πn(j)

+ ηnπn(i)
/gnπn(i)


=

N∑
n=1

Wn

|Un|−1∑
i=1

log2(αni (p)) + log2(βn(p))

 . (27)

For n ∈ N and i < |Un|, αni is obtained by combining the
numerator of Rnπn(i+1) and the denominator of Rnπn(i)

, i.e.,

αni (p) ,

∑|Un|
j=i+1 p

n
πn(j)

+ ηnπn(i+1)/g
n
πn(i+1)∑|Un|

j=i+1 p
n
πn(j)

+ ηnπn(i)
/gnπn(i)

,

and βn contains the numerator of Rn1 and the denominator of
Rn|Un|, i.e.,

βn(p) ,

∑|Un|
j=1 p

n
πn(j)

+ ηnπn(1)
/gnπn(1)

ηnπn(|Un|)/g
n
πn(|Un|)

.

Assuming optimal decoding order (1) is applied in down-
link, we have ηnπn(i)

/gnπn(i)
≥ ηnπn(i+1)/g

n
πn(i+1), for all



i < |Un|. It can be verified that αni is a concave homographic
function and βn is linear, therefore also concave. Thus, by
composition with logarithms and summation, we derive that
the objective function (27) is concave. In addition, the feasible
set defined by C1 to C4 is a convex set. Therefore, given a
fixed and arbitrarily chosen subcarrier allocation, the sum-rate
maximization problem can be optimally solved using classical
convex programming methods [27]. The same result applies
to uplink transmissions with sum-rate rewritten as:

M1,w (R (p)) =
∑
n∈N

Wn log2

(∑|Un|
j=1 g

n
πn(j)

pnπn(j)
+ ηn

ηn

)
.

In particular, if M = K, then all users can be multiplexed
on all subcarriers. It directly follows that Pi is solvable by
convex programming such as the projected gradient descent.

2) Without the above assumption, and if K = 1, then
the optimal data rate is given by the waterfilling power
allocation [3].

3) In case there is only one subcarrier, i.e., N = 1, a simple
algorithm consists in sorting all users k ∈ K by their SNR val-
ues without interference g1kp

1
k/η

1
k, where p1k = min {P̄k, p̄1k}

denotes the maximum power budget of user k. Then only the
top-M users are active with power p1k.

4) Finally, if the individual power constraint C1 is relaxed
to a cellular power constraint, i.e.,

∑
k∈K

∑
n∈N p

n
k ≤ P̄ ,

then the sum-rate maximization problem becomes solvable
in polynomial time according to [17]. Furthermore, optimal
strategies for all generalized mean utilities have been derived
in [22] for OFDMA systems (M = 1) subject to cellular power
constraints.

V. CONCLUSION

In this paper, we develop a general framework to study
the complexity of various resource allocation problems re-
lated to NOMA. The aim is to have a better understanding
of these problems and to facilitate the design of resource
allocation algorithms. In this framework, we prove that joint
subcarrier and power allocation problems are strongly NP-
hard by pseudo-polynomial reduction from the 3-dimensional
matching (3DM). This result holds for any objective function
which can be represented as a weighted generalized mean of
order i ≤ 1, e.g., weighted sum-rate, proportional fairness,
harmonic mean and max-min fairness utilities. It is also valid
for both downlink and uplink scenarios, as well as any number
of multiplexed users per subcarrier. Furthermore, we present
some tractable special cases which can be easily solved by
polynomial time algorithms.
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