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Résumé – Dans ce papier, nous proposons une méthode pour modéliser la dépendance entre des bruits impulsifs. Nous utilisons la notion de

copule ce qui nous permet de représenter les dépendances d’upper et de lower tail, ce qui n’est pas le cas des coefficients de corrélation classique

(qui de plus, ne sont pas adaptés aux lois α-stables, souvent utilisées pour modéliser des bruits impulsifs). Afin d’ illustrer l’approche par les

copules, nous considérons une configuration de communication simple avec une antenne de transmission et deux antennes de réception. Nous

pouvons alors construire un récepteur adapté. Nous déterminons analytiquement le rapport de vraisemblance qui se décompose en deux parties :

une dépendant uniquement des marginales et une dépendant de la copule. Nous pouvons ensuite illustrer l’impact de la structure de dépendance

sur les régions de décision et les performances du systèmes.

Abstract – In this paper, we propose solutions for modelling dependence in impulsive noises. We use the copula framework that allows to

represent the upper and lower tail dependencies that can not be captured by classical correlation (which, besides, is not adapted to α-stable

distributions often considered in modelling impulsive noise). To illustrate the copula approach we consider a simple communication link with

a single transmit antenna and two receive antennas and an adapted receiver architecture. We can derive the likelihood ratio that exhibits two

components: one from the marginals and one from the copulas. We can then illustrate the impact of the dependence structure on the decision

regions.

1 Introduction

Impulsive interference are encountered in many situations,

e.g. power line communications, ultra-wide band technology,

or in dense networks. This significantly degrades the perfor-

mance of the classical receivers [1]. In this paper, we consider a

simple detection problem in a block fading scenario. Each data

symbol is transmitted over wireless channels and K = 2 ver-

sions of each symbol are received. We only consider the case

K = 2 for clear analytical expressions and simple illustrations

but this can be extended to higher dimensions. This transmis-

sion structure can be motivated by many different practical wi-

reless communication systems like a rake receiver [2], a Single-

Input-Multiple-Output (SIMO) system [3], a cooperative com-

munication scheme involving multiple relays [4] or in impulse

radio Ultra Wide Band systems with symbol repetitions [5].

For a single transmitted symbol sn at time n, the received

signal Y ∈ R
K is Y = snhn + Ik +Nn, where hn ∈ R

K is

the block fading channel coefficients, In ∈ R
K is the impulsive

interference and Nn
i.i.d.
∼ N (0, σ2) is the thermal noise.

In this paper we make the assumption that the channel state

is perfectly known and that interference is dominating. Besides

we assume independence between different time instant n so

that we will drop this index for clarity. The studied case can

then be summarized by Y = S+ I, where S is a vector contai-

ning the repeated sample s and I the interference vector.

Many papers have considered the case where I is compo-

sed of independent and identically distributed samples. Depen-

ding on the impulsive interference distribution assumption, it

is more or less complicated to derive the optimal receiver and

sometimes suboptimal approaches are considered [6].

In this paper we consider an α-stable interference distribu-

tion but we do not consider any longer that the components of

I are independent. We take the example of a SIMO link : if a

strong interference is received on one antenna, the probability

of receiving a strong interference sample on another antenna

is not negligible. This upper tail dependence can not be captu-

red by traditional correlation function that, anyway, can not be

used for α-stable random vectors. We propose to use the copula

framework to model the dependence structure. It allows to se-

parately model the marginal distributions and the dependence

structure.



2 Copulæ

Copulæ are a very useful way to model structures of depen-

dence between random variables [7]. The fundamental result

justifying this usefulness is the Sklar’s Theorem : it ensures

that under the condition that the cumulative distributions of the

random variables are continuous, there exists a unique copula

C such that ∀(x1, . . . , xd), we have

H(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd))) . (1)

where H is the joint distribution of (X1, . . . , Xd). Hence, a co-

pula is a function C : [0, 1]d 7→ [0, 1] which couples the mar-

ginals Fi between themselves. The name copula comes from

this last remark. In Fig. 1 we represent the interference samples

when I has independent components. The representation is done

directly on the sample or after a transformation through the re-

partition function of the marginals (Fi(.)) to have the represen-

tation of the copula.
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FIGURE 1 – In the left plot samples are independent and they

form a cross. This can be explained saying that large values are

rare and the occurrence of two large values on the same vector

is very unlikely. In the right plot (X and Y axis are Fi(y1) and

Fi(y2)), the points are uniformly distributed which signifies the

independent structure.

2.1 Archimedean copulæ

In the following, we consider a particular class of bivariate

Archimedean copulæ. The interest of this class is, first of all,

the easiness with which they can be constructed. The multi-

variate Archimedean copulæ have the following form : for all

(u1, · · · , ud) ∈ [0, 1]d,

C(u1, · · · , ud) = φ−1 (φ(u1) + · · ·+ φ(ud)) . (2)

The function φ is called the generator of the copula and is a

continuous and convex function such that φ(1) = 0. It appears

that all Archimedean copula is symmetric in its variables.

We will focus on two families of Archimedean copulæ, both

indexed by a single parameter. The Clayton and the Gumbel

families of copulæ model asymmetric dependence in tails.

Definition 2.1. For all θ > 0,The Clayton copula of parameter

θ is defined on [0, 1]d by

C(u1, · · · , ud) =
(
u
−1/θ
1

+ · · ·+ u−1θ
d − (d− 1)

)−θ

.

In particular, it is obtained when φ−1 is the Laplace transform

of a Gamma distribution.

In Fig. 2 we have a similar representation as in Fig. 1 but in-

troducing the dependence structure of the Clayton copula. The

0

0

y
1

y
2

Received samples

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

F
i
(y

1
)

F
i(y

2
)

Received samples in the copula plane

FIGURE 2 – Interference samples for Cauchy marginals and

Clayton copula.

cross in the left plot tends to disappear and points, especially

in the bottom left quadrant, are differently positioned. This re-

sults from the non zero asymmetric tail dependence introduced

by the Clayton copula.

Definition 2.2. For all θ ≥ 1,The Gumbel copula of parameter

θ is defined on [0, 1]d by

C(u1, · · · , ud) = exp

(
−(

d∑

i=1

(− log ui))
1/θ

)
.

In particular, it is obtained when φ−1 is the Laplace transform

of a α-stable distribution.

In Fig. 3 we represent the dependence structure of the Gum-

bel copula on the received samples and after the transform through

the marginals.
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FIGURE 3 – Received samples for Cauchy marginals and Gum-

bel copula.

3 LLR for dependent variables

In the two-dimensional case and with a binary input, our sys-

tem model in section 1can be written
{
y1 = s+ i1

y2 = s+ i2
, (3)

where s ∈ {−1, 1}. Two repetitions y1 and y2 of this transmit-

ted bit are obtained and I = (i1, i2) is a bivariate interference

vector. The two coordinates i1 and i2 are not independent. The

Log Likelihoood Ratio (LLR) for each Y ∈ R
2 is given by

Λ(y1, y2) = log
P(y1 = s+ i1, y2 = s+ i2 | s = 1)

P(y1 = s+ i1, y2 = s+ i2 | s = −1)
. (4)



Let f be the joint density of the couple (i1, i2), (4) becomes

Λ(y1, y2) = log
f(y1 − 1, y2 − 1)

f(y1 + 1, y2 + 1)
. (5)

3.1 Independent interferences

In the left plot in Fig. 4, we illustrate the two decision re-

gions in the case when interference is independent on the two

dimensions and Cauchy distributed with location x0 = 0 and

scale δ = 1. The X and Y axis are the values of the com-

ponents of the received vector Y. We consider two possible

transmitted symbols {−1, 1} meaning that the transmitted vec-

tor corresponds to the points (1, 1) and (−1,−1). The white

region corresponds to the decision 1, meaning that Λ ≥ 0 and

the black one to −1, i.e., Λ < 0
A Gaussian noise would correspond to a linear boundary,

corresponding to an Euclidean distance. Impulsiveness signi-

ficantly modifies those boundaries and necessitate non linear

operation to implement an optimal receiver.

3.2 Dependent interferences

If we now consider that i1 and i2 are dependent and that we

can express this dependence through an Archimedean copula,

the LLR will become

Λ(x, y) = log
fi(x− 1)fi(y − 1)c(Fi(x− 1), Fi(y − 1))

fi(x+ 1)fi(y + 1)c(Fi(x+ 1), Fi(y + 1))

= Λ⊥(x, y) + Λc(x, y), (6)

where c is the density of the copula and is defined by

c(u, v) =
∂2C

∂u∂v
(u, v); (7)

fi and Fi are respectively the probability density function and

the cumulative distribution of the interference. Λ⊥ represents

the independent part of the LLR. The second term

Λc(x, y) = log
c(Fi(x− 1), Fi(y − 1))

c(Fi(x+ 1), Fi(y + 1))
(8)

is the part of the LLR depending on the copula and represents

the dependence structure. It can however be tricky to derive

because it also depends on the marginals.

In the case of the Clayton copula, the consequence on the

decision region is shown in Fig. 4. We clearly see that the lower

tail dependence significantly modifies the decision regions.

In the case of the Gumbel copula, the consequence on the

decision region is shown in Fig. 5. We again clearly see that

the lower tail dependence significantly modifies the decision

regions.

4 Application to SIMO transmissions

4.1 Receiver design

The optimal receiver in terms of minimizing the Bit Error

Rate (BER) is the Maximum Likelihood (ML) detector ŝ =
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FIGURE 4 – Decision region for independent Cauchy, Cauchy

marginals and Clayton copula and the difference between both

(in white the areas where the dependence structure modifies the

optimal decision).
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FIGURE 5 – Decision region for independent Cauchy, Cauchy

marginals and Gumbel copula and the difference between both

(in white the areas where the dependence structure modifies the

optimal decision).

argmaxs∈Ω P(Y|s), where Ω is the set of possible transmit-

ted bits. In the binary case, Ω = {−1, 1} and the problem is

reduced to obtaining the sign of the LLR defined in (6).

ŝ = sign (Λ(x, y)) = sign (log Λ⊥(x, y) + Λc(x, y)) , (9)

Fig. 6 compares the performance of the linear Gaussian re-

ceiver, a Cauchy receiver assuming independent Cauchy inter-

ference and a copula receiver that knows both the marginal and

the dependence structures. In that case the dependence is cap-

tured by a Clayton copula. Obviously when the parameter gets

close to zero, the dependence is low, the Cauchy receiver out-

performs the Gaussian receiver and there is no need to intro-

duce the dependence structure. However, when the dependence

increases (θ gets larger), the performance of the Cauchy recei-

ver quickly degrades when the copula receiver is able to main-

tain a better performance level.
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FIGURE 6 – BER for Cauchy noise and Clayton copula as a

function of the Clayton parameter.

Fig. 7 shows similar results with the Gumbel copula.

We finally apply our Copula receiver to the SIMO case. In-

terferers are uniformly distributed in a square around the recei-
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FIGURE 7 – BER for Cauchy noise and Gumbel copula as a

function of the Gumbel parameter.

ver. The square is 10 by 10 and the mean number of interfe-

rers is 50. We consider normalized distances so the unity is not

significant. The channels are Rice channels with a main path

strength randomly chosen. The channel attenuation coefficient

is 3. For the copula receiver, we chose a mixture of the Gumbel

and Clayton copulas to ensure a symmetry in the upper and lo-

wer tail dependence. To have the symmetry, the parameters for

the two copula are linked so that only one parameter has to be

chosen to define the dependence structure. To observe the im-

pact of including the dependence in the receiver, we vary this

parameter. Fig. 8 shows the benefit of including the dependence

structure to design the receiver.
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FIGURE 8 – BER for SIMO model for mixture of Clayton and

Gumbel copulæ.

The gain in performance is limited but this is easily explai-

ned by the small dimension considered (only 2). Besides, we

chose a Cauchy distribution for the marginals which is not the

optimal choice. It has however proved to be close to the optimal

in several situations [5]. It is clear that taken the dependence

structure into account allow a further gain compared to the

independent receiver, which already gives better performance

than the Gaussian receiver.

5 Conclusion

We proposed in this paper a way to model dependency in

impulsive interference. Usual tools (based on correlation) do

not allow to well capture the dependence structure of such an

impulsive interference, especially when the α-stable model is

used.

In the case of Cauchy marginals and copulæ from the Ar-

chimedean family and with a binary input, we are able to de-

rive analytical expressions of the decision rule based on the

likelihood ratio. The results on the decision regions show that

dependent interference has a significant impact on the optimal

decision that we should make. Consequently, we compared re-

ceivers that takes this dependency into account to receivers that

do not. We show that the latter can rapidly degrade if a depen-

dence structure is present when the former manage to main-

tain good performances. We illustrate the possible benefit on a

SIMO example. Many questions are still open, what is the best

choice for the copula ? How can we estimate the interference

parameters ? How can we implement such a receiver, especially

if the dimension increases ?

The densification of networks and their heterogeneity make

interference an important issue in wireless communication. The

dependence structure is certainly a crucial point for an efficient

implementation of such networks. Will copula play a role ?
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Références
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