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Introduction

Impulsive interference are encountered in many situations, e.g. power line communications, ultra-wide band technology, or in dense networks. This significantly degrades the performance of the classical receivers [START_REF] Benmâad | Asymptotic performance of LDPC codes in impulsive non-gaussian channel[END_REF]. In this paper, we consider a simple detection problem in a block fading scenario. Each data symbol is transmitted over wireless channels and K = 2 versions of each symbol are received. We only consider the case K = 2 for clear analytical expressions and simple illustrations but this can be extended to higher dimensions. This transmission structure can be motivated by many different practical wireless communication systems like a rake receiver [START_REF] Niranjayan | The BER optimal linear rake receiver for signal detection in symmetric α-stable noise[END_REF], a Single-Input-Multiple-Output (SIMO) system [START_REF] Filippou | Optimal combining of instantaneous and statistical CSI in the SIMO interference channel[END_REF], a cooperative communication scheme involving multiple relays [START_REF] Chen | Alpha-stable multiple access interference modelling for amplify-and-forward multihop ad hoc networks[END_REF] or in impulse radio Ultra Wide Band systems with symbol repetitions [START_REF] Ghannudi | Alpha-stable interference modeling and cauchy receifor an ir-uwb ad hoc network[END_REF].

For a single transmitted symbol s n at time n, the received signal Y ∈ R K is Y = s n h n + I k + N n , where h n ∈ R K is the block fading channel coefficients, I n ∈ R K is the impulsive interference and N n i.i.d.

∼ N (0, σ 2 ) is the thermal noise. In this paper we make the assumption that the channel state is perfectly known and that interference is dominating. Besides we assume independence between different time instant n so that we will drop this index for clarity. The studied case can then be summarized by Y S + I, where S is a vector containing the repeated sample s and I the interference vector.

Many papers have considered the case where I is composed of independent and identically distributed samples. Depending on the impulsive interference distribution assumption, it is more or less complicated to derive the optimal receiver and sometimes suboptimal approaches are considered [START_REF] Beaulieu | Designing time-hopping ulwide bandwidth receivers for multiuser interference environments[END_REF].

In this paper we consider an α-stable interference distribution but we do not consider any longer that the components of I are independent. We take the example of a SIMO link : if a strong interference is received on one antenna, the probability of receiving a strong interference sample on another antenna is not negligible. This upper tail dependence can not be captured by traditional correlation function that, anyway, can not be used for α-stable random vectors. We propose to use the copula framework to model the dependence structure. It allows to separately model the marginal distributions and the dependence structure.

Copulae are a very useful way to model structures of dependence between random variables [7]. The fundamental result justifying this usefulness is the Sklar's Theorem : it ensures that under the condition that the cumulative distributions of the random variables are continuous, there exists a unique copula C such that ∀(x 1 , . . . , x d ), we have

H(x 1 , . . . , x d ) = C (F 1 (x 1 ), . . . , F d (x d ))) . ( 1 
)
where H is the joint distribution of (X 1 , . . . , X d ). Hence, a copula is a function C : [0, 1] d → [0, 1] which couples the marginals F i between themselves. The name copula comes from this last remark. In Fig. 1 we represent the interference samples when I has independent components. The representation is done directly on the sample or after a transformation through the repartition function of the marginals (F i (.)) to have the representation of the copula. Received samples in the Copula space FIGURE 1 -In the left plot samples are independent and they form a cross. This can be explained saying that large values are rare and the occurrence of two large values on the same vector is very unlikely. In the right plot (X and Y axis are F i (y 1 ) and F i (y 2 )), the points are uniformly distributed which signifies the independent structure.

Archimedean copulae

In the following, we consider a particular class of bivariate Archimedean copulae. The interest of this class is, first of all, the easiness with which they can be constructed. The multivariate Archimedean copulae have the following form : for all

(u 1 , • • • , u d ) ∈ [0, 1] d , C(u 1 , • • • , u d ) = φ -1 (φ(u 1 ) + • • • + φ(u d )) . (2) 
The function φ is called the generator of the copula and is a continuous and convex function such that φ(1) = 0. It appears that all Archimedean copula is symmetric in its variables. We will focus on two families of Archimedean copulae, both indexed by a single parameter. The Clayton and the Gumbel families of copulae model asymmetric dependence in tails. Definition 2.1. For all θ > 0,The Clayton copula of parameter

θ is defined on [0, 1] d by C(u 1 , • • • , u d ) = u -1/θ 1 + • • • + u -1θ d -(d -1) -θ .
In particular, it is obtained when φ -1 is the Laplace transform of a Gamma distribution.

In Fig. 2 we have a similar representation as in Fig. 1 but introducing the dependence structure of the Clayton copula. The 

C(u 1 , • • • , u d ) = exp -( d i=1 (-log u i )) 1/θ .
In particular, it is obtained when φ -1 is the Laplace transform of a α-stable distribution.

In Fig. 3 we represent the dependence structure of the Gumbel copula on the received samples and after the transform through the marginals. 

LLR for dependent variables

In the two-dimensional case and with a binary input, our system model in section 1can be written

y 1 = s + i 1 y 2 = s + i 2 , (3) 
where s ∈ {-1, 1}. Two repetitions y 1 and y 2 of this transmitted bit are obtained and I = (i 1 , i 2 ) is a bivariate interference vector. The two coordinates i 1 and i 2 are not independent. The Log Likelihoood Ratio (LLR) for each Y ∈ R 2 is given by

Λ(y 1 , y 2 ) = log P(y 1 = s + i 1 , y 2 = s + i 2 | s = 1) P(y 1 = s + i 1 , y 2 = s + i 2 | s = -1) . (4) 
Let f be the joint density of the couple (i 1 , i 2 ), (4) becomes

Λ(y 1 , y 2 ) = log f (y 1 -1, y 2 -1) f (y 1 + 1, y 2 + 1) . (5) 

Independent interferences

In the left plot in Fig. 4, we illustrate the two decision regions in the case when interference is independent on the two dimensions and Cauchy distributed with location x 0 = 0 and scale δ = 1. The X and Y axis are the values of the components of the received vector Y. We consider two possible transmitted symbols {-1, 1} meaning that the transmitted vector corresponds to the points (1, 1) and (-1, -1). The white region corresponds to the decision 1, meaning that Λ ≥ 0 and the black one to -1, i.e., Λ < 0 A Gaussian noise would correspond to a linear boundary, corresponding to an Euclidean distance. Impulsiveness significantly modifies those boundaries and necessitate non linear operation to implement an optimal receiver.

Dependent interferences

If we now consider that i 1 and i 2 are dependent and that we can express this dependence through an Archimedean copula, the LLR will become

Λ(x, y) = log f i (x -1)f i (y -1)c(F i (x -1), F i (y -1)) f i (x + 1)f i (y + 1)c(F i (x + 1), F i (y + 1)) = Λ ⊥ (x, y) + Λ c (x, y), (6) 
where c is the density of the copula and is defined by

c(u, v) = ∂ 2 C ∂u∂v (u, v); (7) 
f i and F i are respectively the probability density function and the cumulative distribution of the interference. Λ ⊥ represents the independent part of the LLR. The second term

Λ c (x, y) = log c(F i (x -1), F i (y -1)) c(F i (x + 1), F i (y + 1)) (8) 
is the part of the LLR depending on the copula and represents the dependence structure. It can however be tricky to derive because it also depends on the marginals.

In the case of the Clayton copula, the consequence on the decision region is shown in Fig. 4. We clearly see that the lower tail dependence significantly modifies the decision regions.

In the case of the Gumbel copula, the consequence on the decision region is shown in Fig. 5. We again clearly see that the lower tail dependence significantly modifies the decision regions.

Application to SIMO transmissions 4.1 Receiver design

The optimal receiver in terms of minimizing the Bit Error Rate (BER) is the Maximum Likelihood (ML) detector ŝ = FIGURE 5 -Decision region for independent Cauchy, Cauchy marginals and Gumbel copula and the difference between both (in white the areas where the dependence structure modifies the optimal decision).

arg max s∈Ω P(Y|s), where Ω is the set of possible transmitted bits. In the binary case, Ω = {-1, 1} and the problem is reduced to obtaining the sign of the LLR defined in [START_REF] Beaulieu | Designing time-hopping ulwide bandwidth receivers for multiuser interference environments[END_REF].

s = sign (Λ(x, y)) = sign (log Λ ⊥ (x, y) + Λ c (x, y)) , (9) 
Fig. 6 compares the performance of the linear Gaussian receiver, a Cauchy receiver assuming independent Cauchy interference and a copula receiver that knows both the marginal and the dependence structures. In that case the dependence is captured by a Clayton copula. Obviously when the parameter gets close to zero, the dependence is low, the Cauchy receiver outperforms the Gaussian receiver and there is no need to introduce the dependence structure. However, when the dependence increases (θ gets larger), the performance of the Cauchy receiver quickly degrades when the copula receiver is able to maintain a better performance level. Fig. 7 shows similar results with the Gumbel copula. We finally apply our Copula receiver to the SIMO case. Interferers are uniformly distributed in a square around the recei- ver. The square is 10 by 10 and the mean number of interferers is 50. We consider normalized distances so the unity is not significant. The channels are Rice channels with a main path strength randomly chosen. The channel attenuation coefficient is 3. For the copula receiver, we chose a mixture of the Gumbel and Clayton copulas to ensure a symmetry in the upper and lower tail dependence. To have the symmetry, the parameters for the two copula are linked so that only one parameter has to be chosen to define the dependence structure. To observe the impact of including the dependence in the receiver, we vary this parameter. Fig. 8 shows the benefit of including the dependence structure to design the receiver. The gain in performance is limited but this is easily explained by the small dimension considered (only 2). Besides, we chose a Cauchy distribution for the marginals which is not the optimal choice. It has however proved to be close to the optimal in several situations [START_REF] Ghannudi | Alpha-stable interference modeling and cauchy receifor an ir-uwb ad hoc network[END_REF]. It is clear that taken the dependence structure into account allow a further gain compared to the independent receiver, which already gives better performance than the Gaussian receiver.

Conclusion

We proposed in this paper a way to model dependency in impulsive interference. Usual tools (based on correlation) do not allow to well capture the dependence structure of such an impulsive interference, especially when the α-stable model is used.

In the case of Cauchy marginals and copulae from the Archimedean family and with a binary input, we are able to derive analytical expressions of the decision rule based on the likelihood ratio. The results on the decision regions show that dependent interference has a significant impact on the optimal decision that we should make. Consequently, we compared receivers that takes this dependency into account to receivers that do not. We show that the latter can rapidly degrade if a dependence structure is present when the former manage to maintain good performances. We illustrate the possible benefit on a SIMO example. Many questions are still open, what is the best choice for the copula ? How can we estimate the interference parameters ? How can we implement such a receiver, especially if the dimension increases ?

The densification of networks and their heterogeneity make interference an important issue in wireless communication. The dependence structure is certainly a crucial point for an efficient implementation of such networks. Will copula play a role ?
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 2 FIGURE 2 -Interference samples for Cauchy marginals and Clayton copula. cross in the left plot tends to disappear and points, especially in the bottom left quadrant, are differently positioned. This results from the non zero asymmetric tail dependence introduced by the Clayton copula. Definition 2.2. For all θ ≥ 1,The Gumbel copula of parameter θ is defined on [0, 1] d by
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 3 FIGURE 3 -Received samples for Cauchy marginals and Gumbel copula.
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 44 FIGURE 4 -Decision region for independent Cauchy, Cauchy marginals and Clayton copula and the difference between both (in white the areas where the dependence structure modifies the optimal decision).
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 6 FIGURE 6 -BER for Cauchy noise and Clayton copula as a function of the Clayton parameter.
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 7 FIGURE 7 -BER for Cauchy noise and Gumbel copula as a function of the Gumbel parameter.
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 8 FIGURE 8 -BER for SIMO model for mixture of Clayton and Gumbel copulae.