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Abstract—Due to the increasing demands for higher data rate
applications, also due to the actual spectrum crowd situation,
DSA (Dynamic Spectrum Access) turned into an active research
topic. In this paper, we analyze DSA in cellular networks context,
where a CAB (Coordinated Access Band) is shared between
RANs (Radio Access Networks). We propose an SMDP (Semi
Markov Decision Process) approach to derive the optimal DSA
policies in terms of operator reward. In order to overcome
the limitations induced by optimal policy implementation, we
also propose a simple, though sub-optimal, DSA heuristic. The
achieved reward is shown to be very close to the optimal case
and thus to significantly exceed the reward obtained with FSA
(Fixed Spectrum Access). Higher rewards and better spectrum
utilization with DSA optimal and heuristic methods are however
obtained at the price of a reduced average user throughput.

I. INTRODUCTION

Wireless networks are facing increasing demand for high
data rate applications, and hence their demand for spectral
resource increases. Researchers have started working on DSA
algorithms as a solution to the spectrum scarcity problem
encouraged by the rapid progress in SDR (Software Defined
Radio) systems that enable the required reconfigurability for
DSA and cognitive radio equipments.

In [1], the spectrum management models are divided
into four main axis: command and control, exclusive-use,
primary/secondary usage, and commons. The exclusive-use
model includes a dynamic mode, where spectrum is owned by
a single operator at any given point in space or time; owner and
usage of the spectrum can however dynamically change. This
model is thus particularly adapted to cellular networks. In this
context, the IEEE P1900.4 working group has detailed three
use cases [2] [3] with increasing levels of reconfigurability and
joint management of resources. In this paper, we focus on the
first one and consider a single operator with several RANs,
able to dynamically distribute its frequency bands between its
RANs.

Several papers are dealing with DSA for cellular networks.
For example, in [4], authors propose a coordinated DSA
system where a pool of resources (CAB or Coordinated Access
Band) is shared and controlled by a regional spectrum broker.
In [5], authors made use of the genetic algorithm to analyze the
DSA in WCDMA networks. In [6], authors propose a MAC
protocol enabling ad-hoc secondary users to utilize the unused
resources of a GSM system.

It is however difficult to separate technical from pricing as-
pects when DSA is considered, especially for cellular operators
who pay very high prices for the license. The wide interest
in DSA is indeed mainly driven by the expected benefits
resulting from sharing the spectrum [7]. Reference [8] analyzes
a network model where the service providers base stations are
sharing a common amount of spectrum. A distributed DSA
algorithm is proposed where each user maximizes his utility
(bit rate) minus the payment for the spectrum. In [9], authors
have considered a spectrum market, where they propose a
Rubinstein-Stahl method for the spectrum trading.

In this paper, we present an approach based on SMDP to
analyze DSA in a cellular context. We analyze a network
model, where different RANs are sharing a CAB, inspired by
the idea of resources sharing proposed in [4] and by the single
operator use case presented in [3]. We take into account the
spectrum price, and maximizing the operator revenue is our
main concern.

MDP approach has been used to solve several optimization
problems in telecommunication networks. In the context of
cognitive radio, reference [10] proposes a cognitive medium
access protocol that maximizes the throughput while limiting
the interference affecting the primary user. The authors formu-
lated the problem within the framework of constrained MDP.
In [11], a POMDP (Partially Observable MDP) framework is
proposed to optimize the performance of the secondary users
while limiting the interference perceived by the primary users.
These references however focus on the primary/secondary
usage model.

In [12], the SMDP framework is used in a JRRM (Joint
Radio Resource Managment) context in order to take an
optimal CAC (Call Admission Control) decision, whether to
accept a new coming call or to reject it. The reward function
in [12] presents the end-user throughput. Different from [12],
SMDP is used in this paper to find the optimal spectrum
bands allocations. The reward function in this paper takes into
account both user satisfaction and spectrum price.

The paper is organised as follows: Section II presents
the network model in terms of system model, traffic model
and the principle of DSA operation. The SMDP approach is
presented in section III. In section IV, we propose a sub-
optimal DSA heuristic easier to implement for an operator than
optimal policies. The performances of optimal DSA policies



and DSA heuristic are compared to the FSA case in section V.
Conclusion is given in section VI.

II. NETWORK MODEL

A. System model

We intend to study cell-by-cell DSA between two RANs.
The system is thus made of two cells of two different RANs
(in this paper, terms cell and RAN will be used indifferently).
RANs do not have their own spectrum bands but rather have
to dynamically access to a CAB. The CAB is sub-divided into
mmax elementary spectrum bands (blocks) that can be used
indifferently by any RAN. As traffic grows, a RAN can lease
a new elementary band (one block) and as it decreases, the
RAN can leave it free for the common pool (section III-C). We
assume that the average data rate accessible by users in a RAN
is proportional to the bandwidth allocated to the RAN and is
equally divided among all users of the RAN (section II-B).
The model is shown in Fig. 1. Parameters ni, i = 1, 2 are the
number of active users in RAN1 and RAN2. Parameter mi

is the current number of elementary bands leased by RAN i
from the CAB.

Both RANs are operated by a single operator responsible
for attributing or freeing elementary bands to each RAN. On
the one hand, revenue is assumed to be proportional to the
satisfaction of the users. On the other hand, it is supposed that
spectrum cost follows the law of supply and demand: as free
spectrum diminishes, spectrum cost increases (section III-B).
We are interested in the optimal policy that assigns bandwidth
to the RANs.

Fig. 1. System model: two RANs access to a CAB according to their needs.

Our model could be coherent with SOFDMA (Scalable
Orthogonal Frequency Division Multiple Access) cellular net-
works (i.e. WiMAX, 3GPP-LTE), where the bandwidth of the
system is scalable [13]. In these systems the operator has
indeed an additional flexibility in resource allocation through
the possibility of scaling the bandwidth.

B. Traffic

We consider a bursty packet traffic, such as web browsing or
file downloading on the downlink: a user alternates between
packet calls (several packets are transferred in a very short
time) and reading times (there is no transfer). In this paper,
we focus on the packet call level and so we neglect the details
of the packet level.

We assume Poisson arrivals of user downlink packet calls
with rate λ1 in RAN1 and λ2 in RAN2. Traffic is supposed to

be elastic: the packet call size is exponentially distributed with
mean XON bits in both RANs and so the service rate depends
on the available RAN throughput. We assume a fair share of
resources between users of a given RAN. For RAN i let Di

be the cell data rate (in bits/s) accessible with an elementary
spectrum band. Then, the service rates can be written as:

µi =
miDi

XON
.

An illustration of the traffic model is shown in Fig. 2.

Fig. 2. Assumed traffic model.

C. Dynamic spectrum access

In the considered system model, the core issue for the
operator of the RANs lies in the trade-off to be found
between spectrum cost and revenues obtained from users: more
spectrum per RAN means a higher lease cost for the operator
but also higher throughputs for users that are encouraged to
pay more for the service. As the CAB size is limited and as
spectrum cost increases with increasing demand, there is a
strong interaction between RANs.

In this paper, a DSA policy is a strategy that dynamically
attributes spectrum bands to each RAN from the CAB. We
assume that a DSA decision is taken at each new event, i.e.,
a new packet call arrival or a packet call departure in any
RAN (see Fig. 2). A DSA decision is supposed to increase
the number of spectrum bands for a RAN by one block, to
decrease by one block this number, or to keep constant the
spectrum of a RAN. We assume that at least one spectrum
block is always available to each RAN, so that starvation is not
possible. We are now interested in the optimal DSA policies
in terms of operator revenue.

III. SEMI-MARKOV DECISION PROCESS

In order to achieve this goal, we rely on the SMDP
framework. We first define the SMDP and the reward function,
then use uniformization to obtain an MDP and rely on the
policy iteration algorithm to find the optimal DSA policy.

A. State space

The system state is given by all four-tuple (n1,m1, n2,m2)
with constraints n1 ≤ nmax

1 , n2 ≤ nmax
2 and m1 + m2 ≤

mmax. The limitation imposed to the number of active users
is equivalent to setting a minimum throughput per RAN. Let
S be the state space.



B. Reward function

The reward function is based on the revenue expected by the
operator. The higher the satisfaction of users, the higher the
operator revenue; the higher the amount of bandwidth leased
by RAN, the higher the cost to lease this spectrum band. We
define a comfort service rate µcom. The revenue obtained from
a given customer in RAN i increases with its satisfaction:

φi(ni,mi) = Ku(1− exp(−µi/niµcom)),

where Ku is a constant in euros per unit of satisfaction.
Satisfaction, defined in [14], is an increasing function of the
user data rate and is without unit. Thus the total revenue
obtained by the operator in state s = (n1,m1, n2,m2) is

g1(s) = n1φ1(n1,m1) + n2φ2(n2,m2).

We assume that the spectrum price is increasing when the
amount of free spectrum decreases and we define it as:

g2(s) = KB(m1 +m2) exp
(
−mmax −m1 −m2

mcom

)
,

where mcom is a constant that controls the variation of the
price and KB is a constant in euros per MHz (it is the
equivalent spectrum price per cell). If mcom is high, the
exponential function is close to 1 whatever the state. If mcom

is small, there is a high discount when the CAB is free. Note
that the price paid by the operator for a given elementary band
varies with the occupation of the CAB. The global reward
function per time unit can thus be written in state s:

g(s) = g1(s)− g2(s).
C. Action space

In each state, the operator is allowed to increase, decrease
or leave unchanged the spectrum of each RAN. As shown in
Fig. 2, a decision epoch occurs at each packet call arrival, or
departure. As state transitions occur only at the arrival or the
departure of a single user, we assume that the band assigned
to a single RAN can be increased or decreased by a single
elementary band. This leads to nine possible actions of the
form a = (a1, a2), ai ∈ {0,−1,+1} given in Table. I.

TABLE I
LIST OF POSSIBLE ACTIONS

Action a vector action index
Band1 constant and Band2 constant (0, 0) 1
Band1 constant and Band2 increases (0, +1) 2
Band1 constant and Band2 decreases (0,−1) 3
Band1 increases and Band2 constant (+1, 0) 4
Band1 increases and Band2 increases (+1, +1) 5
Band1 increases and Band2 decreases (+1,−1) 6
Band1 decreases and Band2 constant (−1, 0) 7
Band1 decreases and Band2 increases (−1, +1) 8
Band1 decreases and Band2 decreases (−1,−1) 9

The effective action space depends on the state. If mi = 1
the spectrum band of RAN i cannot decrease. If the CAB is
blocked, i.e., if m1 +m2 = mmax, no band can increase.

D. Transition probabilities

Let ps,s′(a) be the probability that at the next decision
epoch, the system will be in state s′ = (n′1,m

′
1, n
′
2,m

′
2) if

a is chosen in state s = (n1,m1, n2,m2). Let 1/νs(a) be the
expected time until next decision epoch if action a is chosen
in state s:

νs(a) = 1{n1<nmax
1 }λ1 + 1{n2<nmax

2 }λ2

+1{n1>0}µ1 + 1{n2>0}µ2.

Transition probabilities are given by:

ps,s′(a) = λi/νs(a) if (n′i = ni + 1)
and (∀j m′j = mj + aj),
µi/νs(a) if (n′i = ni − 1)

and (∀j m′j = mj + aj).

E. Uniformization

A step of uniformization is now needed in order to transform
the continuous time Markov chain into an equivalent discrete
time Markov chain. This is done by choosing a sufficiently
small transition step 1/ν (∀s, a, νs(a) ≤ ν) and allowing self
transitions from a state to itself.

Transition probabilities are modified in the following way:

p̃s,s′(a) = ps,s′(a)νs(a)/ν for s 6= s′,

p̃s,s(a) = 1−
∑
s′ 6=s

p̃s,s′(a) otherwise.

A DSA policy R associates to each system state s, an action
R(s) from the action space of s.

F. Policy iteration

We are interested in finding the optimal policy R∗ of the
continuous-time average cost problem described above. For
that, we apply the policy iteration algorithm to the auxiliary
discrete-time average cost problem obtained after uniformiza-
tion (see [15], vol.2, p.315). The iterative algorithm is now
succinctly described.
• Step 0 (initialization): Let R be an arbitrary stationary

policy.
• Step 1 (value-determination): For the current policy R,

we solve the system of linear equations whose unknowns
are the variables {JR, hR(s)}: hR(1) = 0 and

hR(s) = g(s)− JR +
∑
s′∈S

p̃s,s′(R(s))hR(s′).

• Step 2 (policy improvement): For each s ∈ S, we find:

R′(s) = arg max
a∈A(s)

{
g(s)− JR +

∑
s′∈S

p̃s,s′(a)hR(s′)

}
.

• Step 3 (convergence test): if R′ = R, the algorithm is
stopped, otherwise, we go to step 1 with R := R′.

The SMDP approach has the advantage of providing optimal
policies and an upper bound on the achievable reward. The
policy iteration algorithm takes into account not only RANs
loads, the number of active users and RANs interactions but



also the whole dynamics of the system. Optimal policies are
thus strongly dependent on the system parameters and simple
examples cannot be easily generalized when the number of
system states increases. In the next section, we propose a sub-
optimal DSA heuristic that overcomes these limitations for an
operator, while still providing a high reward.

IV. DSA HEURISTIC

A. DSA policies implementation

In order to implement optimal policies, an operator would
have to run the policy iteration algorithm for all possible
system parameter sets and store results to be dynamically used
according to the context. Running policy iteration on a real-
time basis is indeed unthinkable, especially when the number
of system states increases (for example if many cells or
users are considered). The proposed DSA heuristic intends to
ease DSA implementation for an operator. With this heuristic,
massive storage of data is not needed and computations can
be done on the fly.

B. Proposed DSA heuristic

In order to obtain a simple heuristic, each of the RANs can
be considered as M/M/1/nmax

i system. Each has a service rate
µi. We then fix the allocated bandwidth to both RANs for a
given load: (m1,m2) is thus independent from (n1, n2).

With these assumptions, the average heuristic reward for
the operator, gH , can be easily computed for all possible
combinations of alloacted bands (m1,m2), along with the
corresponding λi values. The average reward is the sum
of the rewards obtained from the two RANs. For a given
(λ1, λ2,m1,m2):

gH(λ1, λ2,m1,m2) =
2∑

i=1

nmax
i∑

ni=0

πni(λi)niφi(ni,mi)

−g2(n1,m1, n2,m2), (1)

where the πni
(λi), i ∈ {1, 2}, ni ∈ {0, ..., nmax

i } are the
steady state probabilities of a M/M/1/nmax

i with arrival rate
λi and service rate µi. We use this result for the proposed
DSA heuristic:

1) Estimate arrival rates λ1 and λ2;
2) Consider all possible tuples (m1,m2);
3) Compute for each tuple (m1,m2) the average reward

according to Eq. 1;
4) Allocate bandwidth according to the tuple (m1,m2) that

maximizes the average reward gH .
The estimation of the λi is not in the scope of this paper,

we will thus assume that they are known. Eq. 1 can be
instantaneously computed for realistic values of the nmax

i and
can be easily extended to several cells.

V. RESULTS

In this section, we compare the results obtained with optimal
DSA policies, the proposed DSA heuristic and FSA in terms of
operator reward, CAB utilization, and average user throughput.

A. Parameters

The CAB is assumed to have a size of 6 MHz, the
elementary band (mi = 1) has a size of 1 MHz, and mcom

= 4 MHz. For the sake of simplicity, we assume that both
RANs have the same characteristics: the average cell data
rates Di are considered to be 1250 Kbps, XON = 3 Mbits,
λ1 = λ2 = λ, and nmax

1 = nmax
2 = 8. The pricing constants

are fixed as follows: Ku = 100 euros, KB = 1 euro, and
µcom = 0.167 s−1(which corresponds to a comfort throughput
of 500 Kbps).

B. Arrival rate thresholds

For the considered parameter set, Fig. 3 shows the average
reward gH as a function of the arrival rate λ for different
combinations of the allocated bands.

Fig. 3. Operator reward obtained for different allocated bands combinations.

We can notice that the (m1,m2) values that give the
maximum reward are: (1,1), (2,2), and (3,3) depending on the
arrival rate λ. The maximum reward can then be obtained
by dynamically allocating symmetric numbers of elementary
bands to the RANs according to the cell load. Threshold values
for λ are given on Fig. 3.

C. Operator reward, CAB utilization, user throughput

Fig. 4 compares operator rewards obtained respectively with
optimal DSA policy, the proposed heuristic and FSA. By
definition, FSA allocates mi = 3 elementary bands to each
RAN whatever the system state. It can be seen that optimal
policies provide significant increases of the reward for low to
intermediate values of λ (for example +229% at λ = 0.5 s−1).
At high load, FSA and optimal DSA policy converge as
expected. The proposed heuristic provides the optimal reward
at low load and converges also to FSA at high load: only for
intermediate values of λ, there is a small degradation of the
reward (for example, −21% at λ = 0.7 s−1).

These results can be explained by a better utilization of the
sepctrum. CAB utilization is illustrated in Fig. 5 as a function
of the arrival rate λ. Optimal DSA policy smoothly increases
the CAB utilization as arrival rate increases. The proposed
heuristic follows this trend with a step function. It is worth



Fig. 4. Operator reward obtained with optimal DSA policy, heuristic DSA
and FSA.

mentioning the DSA gain in terms of spectral resource usage
with respect to FSA.

Fig. 5. CAB utilization with optimal DSA policy, heuristic DSA and FSA.

Operator reward and better spectrum utilization are however
obtained at the price of a degradation of the average user
throughput. Fig. 6 illustrates the average user throughput as
a function of the RANs load λ. Optimal DSA policy and
proposed heuristic show again similar results. The achieved
average user throughput with FSA is however much higher,
especially at low loads. According to the traffic assumptions
(see section II-B), a single user is indeed allowed to take
advantage of the whole bandwidth allocated to a RAN. At low
loads, FSA allocates 3 MHz to each RAN, while DSA methods
allocates only 1 MHz leading to lower user throughputs.

VI. CONCLUSION

In this paper, we have studied DSA in cellular networks
context. We have used the SMDP framework to derive op-
timal DSA policies in terms of the operator reward. We
have proposed a simple heuristic DSA method to defeat the
generalization difficulty of the optimal policies over realistic
systems. The achieved reward using the heuristic DSA policy
gives a very close reward to the optimal obtained by SMDP
and thus significantly exceeds the reward obtained with FSA.
Operator revenue increases but better spectrum utilization is
obtained at the price of a user throughput degradation.

Fig. 6. Average user throughput with optimal DSA policy, heuristic DSA
and FSA.
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