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ABSTRACT

Side information has a strong impact on the performance of

Distributed Video Coding. Commonly, side information is

generated using motion compensated temporal interpolation.

In this paper, we propose a new method for the fusion of

global and local side information using Support Vector Ma-

chine. The global side information is generated at the decoder

using global motion parameters estimated at the encoder us-

ing the Scale-Invariant Feature Transform. Experimental re-

sults show that the proposed approach can achieve a PSNR

improvement of up to 1.7 dB for a GOP size of 2 and up to

3.78 dB for larger GOP sizes, with respect to the reference

DISCOVER codec.

Index Terms— Distributed Video Coding, Support Vec-

tor Machine, Classification, Side Information, Rate-Distortion

Performance

1. INTRODUCTION

Distributed Video Coding (DVC) is a paradigm especially fit-

ted for emerging applications such as wireless video surveil-

lance, multimedia sensor networks, wireless PC cameras, and

mobile communications. These applications demand a low-

complexity encoding process, which cannot be achieved with

current standards such as MPEG-1,-2,-4 or H.264/AVC be-

cause of the computational burden of motion estimation. On

the contrary, in the DVC framework, the correlation among

successive frames is mainly exploited at the decoder, thus

making a DVC encoder much lighter than a standard one.

The DVC foundations date back to the Slepian-Wolf the-

orem for lossless compression [1], which states that it is pos-

sible to encode correlated sources (let us call them X and Y)

independently and decode them jointly, while achieving the

same rate bounds which can be attained in the case of joint

encoding and decoding. The Wyner-Ziv (WZ) theorem [2]

extends the Slepian-Wolf one to the case of lossy compres-

sion of X, when Side Information (SI) Y is available at the

decoder.

Based on these theoretical results, practical implemen-

tations of DVC have been proposed [3, 4]. DISCOVER

codec [5, 6], based on transform domain WZ coding, is one

of the most efficient and popular existing architectures. In

this codec, the images of the sequence are split into two

sets of frames, the key frames (KFs) and the Wyner-Ziv

frames (WZFs). A Group of Pictures (GOP) of size n is a

set of successive frames, one KF and n − 1 WZFs. The KFs

are independently encoded and decoded using Intra coding

techniques such as H.264/AVC Intra mode. The WZFs are

separately transformed using a 4 × 4 integer Discrete Cosine

Transform (DCT). The obtained coefficients are uniformly

quantized. A systematic channel code such as the Turbo

code or the Low-Density Parity Check Accumulate (LDPCA)

code is applied on the resulting quantized coefficients. Only

the parity bits are kept, and sent to the decoder while the

systematic bits are discarded.

At the decoder, the reconstructed reference frames are

used to compute the SI, which is an estimation of theWZF be-

ing decoded. This estimation can be seen as a noisy version of

the original WZF. Motion-Compensated Temporal Interpola-

tion (MCTI) [7] is used to generate the SI in the DISCOVER

codec. The channel decoder corrects the DCT coefficients of

the SI using the parity bits requested by the decoder through

the feedback channel. Finally, reconstruction and inverse 4×4
integer DCT are applied to obtain the decoded WZF.

In this paper, we propose a new fusion method to com-

bine two SI using Support Vector Machine (SVM). The first

SI is generated using MCTI as in DISCOVER codec and is

referred to as MCTI SI. The second one is generated by ap-

plying global motion parameters on the decoded reference

frames [8], and is referred to as Global Motion Compensation

SI (GMC SI). In this context, the objective is to optionally

fuse MCTI SI and GMC SI to reach the best Rate-Distortion

(RD) performance. For this purpose, an SVM classifier is ap-



plied on a block basis to choose from MCTI SI and GMC SI

for fusion. We further propose two approaches based on bi-

nary and linear decisions to generate SVM SI and SVMLin

SI respectively.

This paper is structured as follows. First, the related work

is introduced in Section 2. The combination of MCTI SI and

GMC SI using SVM is depicted in Section 3. Experimental

results are shown in Section 4 in order to evaluate and com-

pare the RD performance of the proposed approach. Finally,

conclusions are drawn in Section 5.

2. RELATED WORK

MCTI [7] produces an estimation of the current frame In by

using two decoded reference frames, say In−k and In+k. It

operates as follows: First, the reference frames are low-pass

filtered, and a forward motion estimation between them is

performed. The resulting motion vector field V(n−k)→(n+k)

is then split into backward and forward motion vector fields,

Vn→(n−k) and Vn→(n+k). These fields are then refined (with

a further block matching operation) and smoothed (using a

weighted median filter). Finally they are applied to In−k and

In+k, and the resulting motion-compensated images are aver-

aged to produce the side information.

2.1. Global Motion Compensation

We proposed a new approach for GMC SI in [8]. Here, we

give the main characteristics of this technique, and we im-

prove upon it, ending up with a new SI generation algorithm.

The approach in [8] is the following: First, the feature points

of the original WZ and reference frames are extracted using

Scale Invariant Feature Transform (SIFT). Then, a matching

between the feature points is carried out. Second, an effi-

cient algorithm is proposed to estimate the affine parameters

between the WZF and the backward (and forward) reference

frame. Let TB and TF to be the affine transforms between the

original WZF and the backward and forward original refer-

ence frames, respectively. The parameters of those transforms

are encoded and sent to the decoder.

Let us denote the backward and forward reference frames

respectively as RB and RF for short. Moreover, we indicate

with R̂B and R̂F the results of GMC transforms TB and TF

applied to RB and RF . The GMC SI is simply defined as the

average of the frames R̂B and R̂F .

Using this algorithm we have two SI frames for the cur-

rent frame, therefore a technique for fusion is needed. In [8],

we proposed an algorithm for the fusion, based on the resid-

ual of the compensated reference frames. Let R̃B and R̃F

be the backward and forward compensated reference frames

estimated by MCTI technique. For each 4×4 block b, we per-
form a fusion by observing pixels in a 8×8 window. Namely,

we compute two sums of absolute differences (SADs), fGMC

and fMCTI:

fGMC =

3
∑

i=−4

3
∑

j=−4

|R̂F (Xi, Yj)− R̂B(Xi, Yj)|

fMCTI =

3
∑

i=−4

3
∑

j=−4

|R̃F (Xi, Yj)− R̃B(Xi, Yj)|

(1)

Here (Xi, Yj) = (x0 + i, y0 + j), and (x0, y0) is the co-
ordinate of the center pixel of the current block b. The fusion

in [8] is then given by:

SI(b) =

{

GMC SI if fGMC < fMCTI

MCTI SI otherwise
(2)

Hereafter, we refer to this method as ‘SAD-Fusion’.

2.2. Improved Side Information Generation

The SI is usually generated through an interpolation of the

backward and forward reference frames. The quality of the SI

is poor in certain regions of the video scene, like in areas of

partial occlusions, fast motion, etc. In VISNET II codec [9],

the refinement process of the SI is carried out after decoding

all DCT bands, and a deblocking filter is used. In [10, 11],

approaches are proposed for transform-domain DVC based

on the successive refinement of the SI after each decoded

DCT band. High-order motion interpolation has been pro-

posed [12] in order to cope with object motion with non-zero

acceleration. In [13], a solution is proposed by sending a hash

information of the current WZF. A genetic algorithm is car-

ried out using the hash information to merge multiple SI at the

decoder. A DVC scheme proposed by Dufaux et al. [14] con-

sists in combining the global and local motion estimations at

the encoder. In this scheme, the motion estimation and com-

pensation are performed both at the encoder and decoder.

On the contrary, in this paper, both global and local SI are

only generated in the decoder. It is important to note that the

encoding complexity is kept low. The global parameters are

sent to the decoder to estimate the GMC SI and the combina-

tion between the GMC SI andMCTI SI is made at the decoder

side.

The problem of SI fusion has been addressed in Multiview

DVC where two SI are usually generated. The first SI (SIt) is

generated from previously decoded frames in the same view,

while the second one (SIv) is estimated using previously de-

coded frames in adjacent views. The authors in [15] proposed

new techniques for the fusion of SIt and SIv . Inspired from

[15], a linear fusion of GMC SI and MCTI SI is proposed as

follows:

SI(b) =
fMCTI · (GMC SI) + fGMC · (MCTI SI)

(fGMC + fMCTI)
(3)

This method is referred to as ‘FusLin’. Dufaux [16] proposed

a solution that consists in combining SIt and SIv using SVM.

In this paper, we extend and improve the method of [16] for

monoview DVC.
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Fig. 1. Overall structure of the proposed DVC codec.

3. PROPOSED METHOD

The block diagram of our proposed codec architecture is de-

picted in Figure 1. It is based on the DISCOVER codec [5, 6].

The shaded (green) blocks correspond to the three new mod-

ules introduced in this paper: Model, Classification, and gen-

erating of SVM SI.

Each block in the SI can be predicted from either GMC

SI or MCTI SI using the SVM classifier. In this paper, we

use SVMLight software implementation [17]. Several kernels

have been investigated, without a notable impact on perfor-

mance. Therefore, a linear kernel is used hereafter.

The training stage to generate the model is described with

the classification procedure in Subsection 3.1. Finally, the

proposed methods for the combination of GMC SI and MCTI

SI based on the predicted value by the SVM classifier is de-

scribed in Subsection 3.2.

3.1. Model and Classification

First, we select the most discriminative features to be used

in SVM. For this reason, three features are estimated in the

proposed method as follows:







f1 = fGMC

f2 = fMCTI

f3 = fGMC − fMCTI

(4)

where fGMC and fMCTI are defined in Eq. 1. Note that different

types of features have been considered but we retain in this

paper the three ones (Eq. 4) which give the best results.

In the training stage, the first WZF is encoded using

H.264/AVC Intra mode as the KFs. This frame is used to

build the model for SVM. For each 4× 4 block b, DGMC and

DMCTI are computed according to:

DGMC = |WZF(p)− GMC SI(p)|

DMCTI = |WZF(p)−MCTI SI(p)|
(5)

More precisely, DGMC and DMCTI are the SADs between

the WZF and the GMC SI and MCTI SI for the block b re-

spectively.

The block b is assigned to GMC SI if DGMC is smaller

than DMCTI, and is assigned to MCTI SI otherwise. Only the

N blocks which give the largest differenceD (D = |DGMC−
DMCTI|) are taken in the training stage. This step allows to in-
crease the accuracy of the training stage. In our experiments,

N has been empirically set to 300 blocks (about 20% of the to-

tal blocks). However, the actual value of N has a slight impact

on the RD performance of the proposed method.

The features (f1, f2 and f3) are computed for those se-

lected blocks (N = 300 blocks), and used in the training step,
in order to create the first model for the classification. Next,

the classification procedure is carried out on the first WZF us-

ing this model. The blocks which are well-classified are taken

into account for a second learning stage, in order to produce

the final model (i.e. find the hyperplane that optimally sepa-

rates the blocks of GMC SI and MCTI SI). This model will

then be used in the classification procedure for all WZFs in

the sequence.

In the classification, three features f1, f2, and f3 are com-

puted for each WZF using GMC SI and MCTI SI. The SVM

classifier computes a predicted value for each block based on

the features and the obtained model.

3.2. Proposed fusion

The SVM classifier gives a decision value d for each block.

d represents the distance between this block and the separat-

ing hyperplane. Based on this value, we define two fusion

algorithms. The first algorithm consists of a binary combina-

tion of GMC SI and MCTI SI. The second algorithm linearly

combines the two SI.

SVM binary fusion - In this method, the value d is di-

rectly used to combine the two SI as follows:

SI(b) =

{

GMC SI if d > 0
MCTI SI otherwise

(6)

where d represents the classification label at block b. This

method is referred to as ‘SVM’.

SVM linear fusion - This method aims at combining lin-

early GMC SI and MCTI SI. The linear combination is de-

fined as follows:

SI(b) =







GMC SI if d > T

MCTI SI if d < (−T )
(T+d)·GMC SI+(T−d)·MCTI SI

2·T if |d| ≤ T

(7)

where T represents a threshold. In our experiments T has

been empirically set to 3. This method is referred to as ‘SVM-

Lin’.

Oracle fusion - This method is impractical, but it aims

at estimating the upper bound limit that can be achieved by



Fig. 2. PSNR of MCTI SI, SAD-fusion, and the proposed

method SVM for Foreman sequence for a GOP size of 2.

Fig. 3. Visual difference of the SI estimated by MCTI, SAD-

fusion, and the proposed method SVM for frame number 125
of Foreman sequence, for a GOP size of 8 (QI = 8).

combining GMC SI and MCTI SI, using the original WZF.

This fusion is defined as follows:

SI(b) =

{

GMC SI if DGMC < DMCTI

MCTI SI otherwise
(8)

DGMC and DMCTI are introduced in Eq. 5. This method is

referred to as ‘Oracle’.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed meth-

ods, we performed extensive simulations, adopting the same

test conditions as described in DISCOVER [5, 6], i.e. test

video sequences are at QCIF spatial resolution and sampled

at 15 frames/sec. The obtained results of the proposed meth-

ods SVM (Eq. 6) and SVMLin (Eq. 7) are compared to the

DISCOVER codec, to the SAD-fusion (Eq. 2), to the linear

fusion (Eq. 3), and to ‘Oracle’ fusion (Eq. 8).

SI Average PSNR [dB]

Method MCTI GMC SAD-F FusLin SVM SVMLin Oracle

Sequence GOP = 2

Stefan 22.57 25.88 26.27 26.19 26.45 26.54 27.21

Foreman 29.31 30.70 30.77 30.97 31.21 31.30 31.90

Bus 24.72 22.99 26.96 26.83 26.92 27.18 27.94

Coastguard 31.43 29.28 32.02 31.95 32.11 32.23 32.62

GOP = 4

Stefan 21.28 25.27 25.33 25.23 25.59 25.66 26.47

Foreman 27.58 29.62 29.24 29.47 29.77 29.87 30.72

Bus 23.48 22.41 25.93 25.88 25.91 26.14 26.91

Coastguard 29.85 28.19 30.78 30.76 30.90 31.03 31.46

GOP = 8

Stefan 20.64 24.85 24.79 24.71 25.06 25.15 25.99

Foreman 26.24 28.62 28.08 28.30 28.68 28.79 29.69

Bus 22.53 21.84 24.95 24.95 24.95 25.17 25.90

Coastguard 28.75 27.50 29.85 29.87 29.97 30.10 30.60

Table 1. SI average PSNR for a GOP size equal to 2, 4, and
8 (QI = 8).

4.1. SI performance assessment

Figure 2 shows the SI PSNR for Foreman sequence, for a

GOP size of 2. The proposed method (SVM) allows a con-

sistent improvement, compared to the previous fusion (SAD-

fusion), and achieves a gain up to 4.4 dB for some frames.

Figure 3 shows the visual difference of the SI for Foreman

(frame number 125), for a GOP size of 8. The SI obtained by
MCTI technique is not good as shown in this figure (top-right

- 18.36 dB). On the contrary, the SI obtained by the proposed
method (SVM) is significantly better than the SI estimated

by both MCTI and SAD-fusion. The gain is up to 5.5 dB

compared to the previous SAD-fusion method for this frame.

Table 1 shows the average PSNR of the SI obtained with

the different methods, for different sequences and different

GOP sizes. The proposed technique (SVMLin) leads to the

best SI quality for all test sequences.

4.2. Rate Distortion Performance

The RD performance is shown for the Stefan, Foreman, Bus,

and Coastguard sequences in Table 2, in comparison to the

DISCOVER codec, using the Bjontegaard metric [18], for a

GOP size equal to 2, 4 and 8.

The proposed method SVMLin always achieves a gain

compared to the other fusion methods for Foreman, Bus

and Coastguard sequences, for all GOP sizes. For Stefan

sequence, the proposed method SVM achieves the best per-

formance among fusion methods, for all GOP sizes.

It is clear that the performance of the proposed fusion be-

comes closer to that of ‘Oracle’ fusion, for all test sequences.

The difference between them is smaller than 0.5 dB for all

GOP sizes.

The gains become even more significant for a GOP size

equal to 8. In fact, for SVM, we obtain a bit reduction up to

−52.46%, which corresponds to an improvement of 3.78 dB

on the decoded frames w.r.t. DISCOVER codec, for Stefan se-

quence. For Foreman sequence, the proposed method SVM-



Method GMC SAD-F FusLin SVM SVMLin Oracle

GOP = 2

Stefan

∆R [%] -25.59 -24.49 -21.38 -25.70 -25.45 -27.43

∆PSNR [dB] 1.70 1.61 1.37 1.70 1.68 1.84

Foreman

∆R [%] -8.90 -7.90 -9.46 -11.31 -12.02 -14.30

∆PSNR [dB] 0.53 0.46 0.55 0.68 0.72 0.86

Bus

∆R [%] 5.02 -13.42 -10.05 -13.05 -14.09 -17.09

∆PSNR [dB] -0.25 0.80 0.59 0.79 0.84 1.03

Coastguard

∆R [%] 9.97 -4.94 -3.71 -5.70 -6.32 -8.20

∆PSNR [dB] -0.46 0.25 0.18 0.28 0.31 0.42

GOP = 4

Stefan

∆R [%] -45.52 -43.12 -37.55 -45.09 -44.51 -47.81

∆PSNR [dB] 3.16 2.94 2.46 3.13 3.07 3.38

Foreman

∆R [%] -22.77 -16.03 -18.58 -23.58 -24.61 -29.85

∆PSNR [dB] 1.33 0.90 1.05 1.38 1.43 1.78

Bus

∆R [%] -2.74 -25.80 -21.74 -26.08 -26.99 -31.37

∆PSNR [dB] 0.16 1.52 1.26 1.54 1.60 1.90

Coastguard

∆R [%] 6.64 -16.34 -14.43 -18.45 -19.28 -24.01

∆PSNR [dB] -0.29 0.67 0.58 0.77 0.81 1.04

GOP = 8

Stefan

∆R [%] -53.02 -50.35 -44.18 -52.46 -51.99 -55.90

∆PSNR [dB] 3.83 3.55 2.98 3.78 3.73 4.11

Foreman

∆R [%] -32.68 -22.77 -26.16 -32.82 -34.20 -39.86

∆PSNR [dB] 1.93 1.26 1.45 1.93 2.01 2.42

Bus

∆R [%] -11.49 -32.33 -28.55 -32.14 -33.24 -38.56

∆PSNR [dB] 0.58 1.88 1.62 1.89 1.96 2.34

Coastguard

∆R [%] -7.95 -28.14 -26.50 -31.64 -32.45 -39.02

∆PSNR [dB] 0.27 1.20 1.09 1.37 1.41 1.76

Table 2. Rate-distortion performance gain for Stefan, Fore-

man, Bus, and Coastguard sequences towards DISCOVER

codec, using Bjontegaard metric, for a GOP size of 2, 4, and
8.

Lin allows a gain of up to 2.01 dB, with a rate reduction of

34.20%, compared to the DISCOVER codec, while the SAD-

fusion method allows a gain up to 1.26 dB, with a rate reduc-
tion of 22.77%, compared to the DISCOVER codec.

5. CONCLUSION

A new technique based on SVM for the fusion of global and

local SI is proposed in this paper. Experimental results show

that our proposed method can achieve a gain in RD perfor-

mance up to 1.7 dB for a GOP size of 2 and 3.78 dB for longer

GOP sizes, compared to DISCOVER codec, especially when

the video sequence contains high motion.

6. REFERENCES

[1] J.D. Slepian and J.K. Wolf, “Noiseless coding of correlated information

sources,” IEEE Transactions on Information Theory, vol. IT-19, pp.

471–480, July 1973.

[2] A. Wyner and J. Ziv, “The rate-distortion function for source coding

with side information at the decoder,” IEEE Transactions on Informa-

tion Theory, vol. 22, pp. 1–10, July 1976.

[3] R. Puri and K. Ramchandran, “PRISM: A video coding architecture

based on distributed compression principles,” EECS Department, Uni-

versity of California, Berkeley, Tech. Rep. UCB/ERL M03/6, 2003.

[4] B. Girod, A. Aaron, S. Rane, and D. Rebello-Monedero, “Distributed

video coding,” Proceedings of the IEEE, vol. 93, pp. 71–83, Jan. 2005.

[5] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, andM.Ouaret,

“The DISCOVER codec: Architecture, techniques and evaluation,” in

Proc. of Picture Coding Symposium, Lisboa, Portugal, Oct. 2007.

[6] “Discover project,” http://www.discoverdvc.org/.

[7] J. Ascenso, C. Brites, and F. Pereira, “Improving frame interpolation

with spatial motion smoothing for pixel domain distributed video cod-

ing,” in 5th EURASIP Conference on Speech and Image Processing,

Multimedia Communications and Services, Slovak, July 2005.

[8] A. Abou-Elailah, F. Dufaux, M. Cagnazzo, B. Pesquet-Popescu, and

J. Farah, “Fusion of global and local motion estimation for distributed

video coding,” IEEE Transactions on Circuits and Systems for Video

Technology (in press).

[9] J. Ascenso, C. Brites, F. Dufaux, A. Fernando, T. Ebrahimi, F. Pereira,

and S. Tubaro, “The VISNET II DVC Codec: Architecture, Tools

and Performance,” in Proc. of the 18th European Signal Processing

Conference (EUSIPCO), 2010.

[10] A. Abou-Elailah, J. Farah, M. Cagnazzo, B. Pesquet-Popescu, and

F. Dufaux, “Improved side information for distributed video coding,”

in 3nd European Workshop on Visual Information Processing (EUVIP),

Paris, France, July 2011, pp. 42 – 49.

[11] R. Martins, C. Brites, J. Ascenso, and F. Pereira, “Refining side infor-

mation for improved transform domain wyner-ziv video coding,” IEEE

Transactions on circuits and systems for video technology, vol. 19, no.

9, pp. 1327 – 1341, Sept. 2009.

[12] G. Petrazzuoli, M. Cagnazzo, and B. Pesquet-Popescu, “High order

motion interpolation for side information improvement in DVC,” in

IEEE International Conference on Acoustics Speech and Signal Pro-

cessing (ICASSP), June 2010, pp. 2342 – 2345.

[13] T. Maugey, C. Yaacoub, J. Farah, M. Cagnazzo, and B. Pesquet-

Popescu, “Side information enhancement using an adaptive hash-based

genetic algorithm in a Wyner-Ziv context,” in IEEE International

Workshop on Multimedia Signal Processing, Saint-Malo, France, Oct.

2010, pp. 298 –302.

[14] F. Dufaux and T. Ebrahimi, “Encoder and decoder side global and local

motion estimation for distributed video coding,” in IEEE International

Workshop on Multimedia Signal Processing (MMSP), 2010, pp. 339 –

344.

[15] T. Maugey, W. Miled, M. Cagnazzo, and B. Pesquet-Popescu, “Fusion

schemes for multiview distributed video coding,” in 17th European

Signal Processing Conference (EUSIPCO), Scotland, Aug. 2009.

[16] F. Dufaux, “Support vector machine based fusion for multi-view dis-

tributed video coding,” in 17th International Conference on Digital

Signal Processing (DSP), Corfu, Aug. 2011, pp. 1 –7.

[17] “SVM implementation,” http://www.cs.cornell.edu/

People/tj/svm_light/.

[18] G. Bjontegaard, “Calculation of average PSNR differences between

RD-curves,” in VCEG Meeting, Austin, USA, Apr. 2001.


